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Background: Lung adenocarcinoma (LUAD) is the most common respiratory

globallywith a poor prognosis. Lipid metabolism is extremely important for the

occurrence and development of cancer. However, the role of genes involved in

lipid metabolism in LUAD development is unclear. We aimed to identify the

abnormal lipid metabolism pathway of LUAD, construct a novel prognostic

model of LUAD, and discover novel biomarkers involved in lipid metabolism

in LUAD.

Methods: Based on differentially expressed genes involved in lipid metabolism

in LUAD samples from The Cancer Genome Atlas (TCGA), abnormal lipid

metabolism pathways in LUAD were analyzed. The lasso penalized regression

analysis was performed on the TCGA cohort (training set) to construct a risk

score formula. The predictive ability of the risk score was validated in the Gene

Expression Omnibus (GEO) dataset (validation set) using Kaplan-Meier analysis

and ROC curves. Finally, based on CRISPR gene editing technology,

hematopoietic prostaglandin D synthase (HPGDS) was knocked out in A549

cell lines, the changes in lipid metabolism-related markers were detected by

western blotting, and the changes in cell migration were detected by

transwell assay.

Results: Based on the differential genes between lung cancer tissue and normal

tissue, we found that the arachidonic acid metabolism pathway is an abnormal

lipid metabolism pathway in both lung adenocarcinoma and lung squamous

cell carcinoma. Based on the sample information of TCGA and abnormally

expressed lipid metabolism-related genes, a 9-gene prognostic risk score was

successfully constructed and validated in the GEO dataset. Finally, we found

that knockdown of HPGDS in A549 cell lines promoted lipid synthesis and is

more invasive than in control cells. Rescue assays showed that ACSL1

knockdown reversed the pro-migration effects of HPGDS knockdown. The

knockdown of HPGDS promoted migration response by upregulating the

expression of the lipid metabolism key enzymes ACSL1 and ACC.
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Conclusion: The genes involved in lipid metabolism are associated with the

occurrence and development of LUAD. HPGDS can be a therapeutic target of a

potential lipid metabolism pathway in LUAD, and the therapeutic target of lipid

metabolism genes in LUAD should be studied further.
KEYWORDS
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Introduction

Lung cancer is the most common cancer in the world (1),

and its incidence is increasing every year. It is the leading cause

of cancer-related mortality, making it a major global health

problem (2). Adenocarcinoma is the most common histological

subtype of lung cancer in both men and women (3). Even

although the development of treatment strategies and new

drug discoveries in recent years have resulted in prolonged

survival of lung adenocarcinoma (LUAD).However, its five-

year survival rate is only 15%. Recent studies have suggest that

more than half of patients have missed the targetable gene

alterations period that can improve their survival rate (4).

Therefore, the discovery of specific early detection markers

and therapeutic targets is the key to improving the survival

rate of patients with LUAD (5, 6).

Lipid metabolism, including uptake, storage, and

lipogenesis, occurs in various types of cancers, such as

pancreatic, hepatic, and colorectal cancer, and affects tumor

resistance and therapeutic efficacy (7–10). Previous studies on

lipid metabolism showed that patients with higher lung cancer

having high levels of high-density lipoprotein cholesterol (HDL-

C), low-density lipoprotein (LDL), and low-density lipoprotein

receptor (LDLR) have better survival rates (11, 12). Compared

with the control group, the levels of some lipid metabolism-

related products in the serum of patients with nonsmall-cell lung

cancer (NSCLC) were significantly increased (13). The activity of

cancer cells is accompanied by a large consumption of ATP, and

fatty acid oxidation (FAO) can help generate ATP by

coordinating the activation of lipid anabolism (14). Therefore,

elucidating the underlying lipid metabolism-related mechanisms

of LUAD will help to increase clinical treatment and thus

prolong the survival of patients.
ene Ontology; AUC,

, immune checkpoint

, gene set enrichment
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Hematopoietic prostaglandin D synthase (HPGDS, an

enzyme that produces prostaglandin D2) is a s class

glutathione transferase, which was discovered 40 years ago

(15–17)HPGDS is involved in the arachidonic acid metabolic

pathway, and catalyzes the production of prostaglandin D2

(PGD2) (18). HPGDS is associated with some pulmonary

inflammatory diseases (19, 20). It is also associated with

pancreatic tumors and testicular germ cell tumors (21, 22).

HPGDS plays an important role in the occurrence and

development of lung cancer, however, its catalytic product,

PGD2, has been confirmed to be a mast cell-derived anti-

angiogenic factor for lung cancer (23). Therefore, the

relationship between HPGDS and lung cancer should be

further revealed.

In this study, we used bioinformatics to analyze the

characteristics of lipid metabolism-related genes in lung

cancer, and found differential lipid metabolism pathways

between lung cancer and normal tissues. Risk signatures of

lipid metabolism-related genes were established and validated

in external datasets. In the process, the recurring appearance of

HPGDS was intriguing. Finally, we performed cell biology

experiments to demonstrate that the knockdown of HPGDS

promoted adipogenesis and increased the migration of lung

cancer cells.
Materials and methods

Datasets and genes involved in lipid
metabolism

LUAD and lung squamous cell carcinoma (LUSC) gene

expression patterns and clinical data were collected from The

Cancer Genome Atlas (TCGA), wherein the LUAD dataset

included 516 tumor samples and 59 paracancerous tissues,

while the LUSC dataset included 501 tumor samples and 108

paracancerous tissues. The Gene Expression Omnibus (GEO)

was searched for microdata on the mRNA expression. GSE72094

is a LUAD dataset composed of 442 samples, based on the

GPL15048 platform, for external validation of the risk score.

GSE74777 is a LUSC dataset based on the GPL17586P platform,
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containing 107 samples, which were used as an external

validation for LUSC. Based on the method described by of

Deng et al, we downloaded the lipid metabolism-related genes

from the Molecular Signature Database (version 7.0) (24).
Screening and functional enrichment
of lipid metabolism-related
differential genes

R “Limma” (R.4.1.0) was applied to identify differentially

expressed genes (DEGs) between tumor tissue and normal tissue

with a false discovery rate FDR <0.05 and |log2FC| ≥2 for the

assessment of the involvement of significantly different genes in

lipid metabolism. Functional enrichment analysis of GO and

KEGG was performed using by DAVID (V.6.8 https://david.

ncifcrf.gov/tools.jsp).
Protein-protein interaction network and
subcluster analysis

The PPI of DEGs was predicted using the STRING online

platform (http://string-db.org/). Hub genes were calculated

with reference to the “Degree” algorithm in the cytohub

plugin in Cytoscape (v.3.8.2) and the visualization

was calculated.
Construction and validation of the
prognostic risk score

Based on the lasso algorithm, the prognostic risk scoring

formula was constructed with the TCGA dataset as the training

set, and the GSE72094 and GSE74777 datasets were used as the

external validation datasets for LUAD and LUSC, respectively.

Independent prognostic factors were identified by multivariate

Cox regression analysis using the survival R package. The

patients were assigned to the high- and low-risk groups in

accordance the median risk score, and Kaplan-Meier analysis

was performed to plot overall survival (OS) and ROC curves in

order to assess the prognostic power of the risk score.
Gene set enrichment analysis

To explore the underlying molecular mechanisms of

prognostic risk score and HPGDS, we applied the Gene Set

Enrichment Analysis(GSEA)of the underlying molecular

mechanisms (25, 26). C2, C5, and C6 were searched to

identify the oncogenic signatures of KEGG pathways,

biological processes, cellular components, molecular functions

and dysregulation(P < 0.01,FDR < 0.05).
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Plasmid construction

The 20-nt target DNA sequences preceding a 5,-NGG PAM

sequence in the genomic HPGDS and ACSL1 were selected for

generating a single guide RNA (sgRNA) for the SpCas9 targets by

using the CRISPR design website (https://design.synthego.com/#/).

Homo sapiens HPGDS and ACSL1 sgRNA were cloned into the

lentiCRISPR v2 vector at the site of BsmBI with sgRNA forward

CACCGGCCTCATCTTATGCAAGACT and reverse AAACAG

TCTTGCATAAGATGAGGCC, forward CACCGGAAGAGTAC

GCACGTACTGT and reverse AAACACAGTACGTGCGTA

CTCTTCC. Definitively, to confirm the DNA sequence, the DNA

was successfully cloned, after which the plasmid was sequenced and

aligned (BGI, Chongqing, China).
Cell culture and transfection

A549 (human non-small cell lung cancer line) was sourced

from the American Type Culture Collection (ATCC) and

cultured in Dulbecco’s Modified Eagle Medium (DMEM)

(Gibco, Carlsbad, CA, USA) supplemented with 10% fetal

bovine serum (FBS, vol/vol, Biological Industries) and 1%

penicillin/streptomycin (Invitrogen, Grand Island, NY, USA).

The cell line was cultured at 37°C under a 5% CO2 atmosphere.

sg-HPGDS, sg-negative control (sg-Con), and sg-ACSL1

plasmids were transfected into A549 cells with the TurboFect

Transfection Reagent (Thermo Scientific, Waltham, MA, USA)

in accordance with the manufacturer’s instructions. Briefly, the

cells with 80% confluence were transfected using the Turbofect

reagent in the DMEM medium and selected by puromycin

(Invitrogen, San Diego, CA, USA) treatment (1mg/mL) for 4

days after transfection for 48 h. The cells were cultured

supplementary with a complete medium until all cells survive.

The sg-HPGDS transfection efficiency was determined from the

genomic sequence after cell collection. Briefly, the genomic DNA

was extracted with the TIANamp Genomic DNA Kit (TIANGEN

BIOTECH, Beijing, China). Genomic DNA was amplified with

polymerase chain reaction (PCR), using the following primer

(sense): ATACACAAAGAAACTAAGAACTGG, and antisense:

ATTCTGTGTGTTCTCTATGCACC. The PCR product was

sequenced and aligned (BGI, Chongqing, China). The sg-ACSL1

transfection efficiency was determined by Western blotting. To

obtain HPGDS and ACSL1 double knockout cell lines, based on the

sg-HPGDS cell lines, the sg-ACSL1 plasmids were transfected into

the cells with the Transfection Reagent according to the

manufacturer’s instructions.
Transwell assay

To confirm the effect of HPGDS, ACSL1 on A549 cells

migration, a total of 1×105 sg-Con, sg-HPGDS, sg-ACSL1,
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sg-HPGDS and sg-ACSL1 double knockout cell lines diluted in

DMEM without FBS were plated into the Transwell chamber

(Corning), which was plated in a 24 well plate containing 600 mL
of the complete medium. After 24 h, the cells that had migrated

to the bottom of the membrane were fixed with 4%

paraformaldehyde for 30 min, after which the membrane was

stained with 0.1% crystal violet (Sangon Biotech, Shanghai,

China). Eight fields were captured randomly under a

microscope (Wetzlar, Germany). Crystal violet was eluted with

600 mL of 33% acetic acid, and the OD value was measured at

570 nm.
Western blot analysis

Western blotting analysis was performed as described

previously (27). Briefly, the cells were lysed with 1% SDS lysis

buffer containing protease inhibitor cocktail and phosphatase

inhibitor cocktail (Apexbio, Houston, USA). The protein

concentration was determined by using a BCA protein assay

reagent kit (Thermo Scientific). The protein content (18 mg) was
separated by SDS-PAGE gels and transferred onto PVDF

membranes (Millipore, Billerica, MA, USA). The PVDF

membranes were blocked overnight by 5% fat free milk in

TBST at 4°C, followed by incubation at 4°C for 12 h with

primary antibodies for anti-b-actin (1:5000) (Sigma), anti-b-
Tubulin (1:5000) (TransGen Biotech), anti-ACSL1 (1:1000)

(Cell Signaling Technology), ACC (1:1000) (Cell Signaling

Technology), HK2 (1:1000) (Cell Signaling Technology),

ACAA1 (1:1000) (Cell Signaling Technology), E-cadherin

(1:1000) (Bioworld), N-cadherin (1:1000) (Bioworld), Twist1

(1:1000) (Cell Signaling Technology), respectively. The

membranes were washed with TBST and incubated for 1.5 h

with the corresponding HRP-conjugated secondary antibodies.

The bands were visualized with ECL reagents (Merck, Billerica,

MA, USA). The western blots were analyzed with the Image Lab

Software (BIO-RAD, USA), and the program included an

application with protein gels; the image exposure time to was

set to 16 s.
Results

Prognostic differential genes associated
with lipid metabolism in lung
adenocarcinoma

Based on the TCGA dataset, we analyzed the differential

genes of lung adenocarcinoma, among which 1301 genes showed

differential expression, including 840 upregulated genes and 461

downregulated genes (Figure 1A). Univariate COX prognostic

analysis of all genes identified 2416 genes with prognostic
Frontiers in Oncology 04
significance (Figure 1C; Supplementary Table 1). Following the

method of Zheng et al. (24), we obtained a total of 776 lipid

metabolism-related genes from the molecular signature database

(version 7.0), KEGG and Reactome databases. After the further

intersection with 1301 differential genes and 2416 prognostic

genes, we finally found got 12 prognostic differences in lung

adenocarcinoma expressed genes, and they were also associated

with lipid metabolism (Figure 1B).
Functional enrichment analysis

Further enrichment analysis of 45 genes showed that most of

their biological processes were related to redox processes, lipid

metabolism processes and lipoxygenase pathways, and were

mainly located in the cytosol, endoplasmic reticulum

membrane and lipid granules. It is also involved in iron ion

binding, heme binding and oxidoreductase activity

(Supplementary Figure 1A). The most relevant metabolic

pathways are arachidonic acid metabolism and peroxisome

proliferators-activated receptor (PPAR) signaling pathway

(Supplementary Figure 1B). more over, 45 lipid metabolism-

related differential genes were used to draw the PPI network map

(Supplementary Figure 1C), and the top ten hub genes,

(Supplementary Figure 1D) namely PPARG, ALOX15,

ALOX5, PTGIS, PTGES, HPGDS, PLA2G1B, ALOX15B,

CYP27A1, and CAV1 were visualized and calculated

using Cytoscape.
Construction of a prognostic risk score
based on the TCGA cohort

Twelve genes were further analyzed by LASSO-Cox

regression analysis. A 9-gene signature was constructed based

on the optional l value. The risk score is defined as Risk score =

(−0.0797) *CYP4B1 + (0.1527) * KLF4 + (−0.1243) * DPEP2 +

(−0.0165) * PTGDS + (−0.0057) * CYP27A1 + (−0.1551) *

ACSS3 + (−0.0444) * HSD17B13 + (−0.0213) * HPGDS +

(0.0381) * FA2H (Figures 2A, B).The TCGA cohort samples

were divided into low- and high-risk groups according to the

median cut-off value of the risk score (Figure 2C), and the

Kaplan-Meier analysis showed that this risk grouping was

effective in distinguishing between the good and poor

prognosis groups. In other words, the OS of the low-score

group in LUAD was statistically better than that of the high-

score group (P<0.05) (Figure 2D). Time-dependent receiver

operating characteristic (ROC) curves constructed to test the

accuracy of the prognostic model, and the area under the curve

(AUC) was 0.696 for 1 year, 0.675 for 3 years, and 0.646 for 5

years (Figure 2E). As shown in Supplementary Figure 2, these 12

genes have independent survival predictive power.
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Validation of prognostic models in the
GEO cohort and gene set enrichment
analyses

Patients with LUAD from the GEO dataset were involved in

the validation of the risk model. Based on prognostic

information from 442 patients enrolled in GSE72094, patients

in the GEO cohort were divided into low- and high-risk groups

based on the median risk score of the TCGA cohort, similar to

the TCGA cohort. Kaplan-Meier analysis showed that overall

survival was higher in the low-risk group than in the high-risk

group (P < 0.01), regardless of whether the optimal cutoff

(Figure 3A), median (Figure 3C), or quartile (Figure 3D). Due

to incomplete 5-year survival data for patients in GSE72094,

only an AUC of 0.0.67 at 1 year and 0.6 at 3 years was

validated (Figure 3B).

To elucidate the underlying molecular mechanisms of risk

scoring, we performed a GSEA comparison between high-risk

and low-risk groups in the 442 patients in the data GSE72094. In

the low-risk group, four oncological features of base excision

repair, cell cycle, mismatch repair, and p53 signaling pathway,

and a lipid metabolism feature of glyoxylate and dicarboxylate

metabolism were enriched. In the high-risk group, the enriched

KEGG pathway mainly focused on various cardiac disease

associations (including dilated cardiomyopathy, virtual

myocarditis, and cardiac muscle contraction, etc.). However,
Frontiers in Oncology 05
no significant enrichment was found in the oncological features

(Supplementary Figure 3).
Combining the TCGA-LUSC dataset to
identify HPGDS as a key lipid metabolism
gene

As previously described, we performed differential analysis

on TCGA data of lung squamous cell carcinoma (TCGA-

LUSC) (Figure 4A; Supplementary Figure 4A) (LogFC = 2,

FDR <0.05), and extracted genes related to lipid metabolism. A

total of 542 upregulated genes and 830 downregulated genes

was found in lung squamous cell carcinoma, including 12 and

35 genes related to lipid metabolism, respectively (Figures 4B,

C). To further select the lipid metabolism-related genes with

prognostic significance and to avoid the unreproducibility of a

single dataset, we performed a univariate COX regression

analysis on the above 47 important genes in the LUSC

dataset GSE74777. The results showed that HPGD,

B4GALNT1, HPGDS, LPL, SGMS2, SLC44A4, and MFSD2A

were prognostically significant lipid metabolism-related genes

(Figure 4D). Moreover, we also performed routine

bioinformatics analysis of GO, KEGG and PPI for these 47

important genes (we consider count<20% as invalid

enrichment). In terms of GO, they were enriched in two
A B

C

FIGURE 1

(A) Differentially expressed genes (DEGs) between LUAD and normal tissues in TCGA dataset. (B) Intersection of DEGs, lipid metabolism-related
genes and prognostic genes in TCGA. (C) Univariate COX analysis of 12 key lipid metabolism genes (P<0.05).
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biological processes, oxidation-reduction process and lipid

metabolic process, and were mainly located in the cytosol,

extracellular exosome and endoplasmic reticulum membrane.

However, related molecular functions were not enriched.

Additionally, the results showed that the main pathway

enrichments were metabolic pathways and arachidonic acid

metabolism (Supplementary Figure 4B, Supplementary

Table 2). Subsequently, we drew the PPI map of these 47

genes (Supplementary Figure 4C), and further analyzed the

Hub genes among them using Cytoscape (v 3.8.0). The results

showed that the top ten genes were PPARG, HPGDS, ALOX5,

FABP4, CYP27A1, ALOX15B, PLA2G1B, LPL, CYP4F3 and

PTGIS (Figure 4E). Notably, HPGDS simultaneously appeared

in the HUB gene of the previous TCGA-LUAD dataset, the

lasso regression prognostic model, the HUB gene of the TCGA-

LUSC dataset, and the prognostic gene of LUSC (Figure 4F).
Frontiers in Oncology 06
Monogenic GSEA for HPGDS

To explore the underlying molecular mechanism of HPGDS,

we performed a GSEA comparison between groups with different

HPGDS expression. In terms of the KEGG pathway, the high

expression group was enriched in lysosome, whereas proteasome

was enriched in the low expression group (Figure 5A). Moreover,

15 oncological signatures including HOXA9, STK33, MTOR,

RPS14, PGF, CSR, and YAP1 were enriched in the high

expression group; however, no significantly enriched oncological

signatures were found in the low expression group (Figure 5B).

GO terms focused on ribosomal and mitochondrial function

correlations. These enriched KEGG pathways and GO terms

revealed molecular alterations in the HPGDS high expression

group and were closely associated with metabolism. The results of

GSEA are shown in Supplementary Table 3.
A B

D

E

C

FIGURE 2

(A) LASSO regression analyses of the 12 OS-related genes. (B) Cross-validation for tuning the parameter selection in the LASSO regression.
(C) The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the
dotted line). (D) Kaplan-Meier analysis for the OS of patients in the high- and low-risk groups. (E) The AUC of the prediction of 1-, 2-, and 3-
year survival rates of LUAD.
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Knockout of HPGDS is associated with
lipid metabolism in lung adenocarcinoma

Using CRISPR gene editing technology, we obtained the

HPGDS knockout A549 cell line (Appendix 1). We examined

differential expression of lipid metabolism-related proteins

by western blotting. Compared with non-knockout cells, the

expression of ACSL1, ACC, ACAA1, and HK2 was significantly

increased after HPGDS knockout, which indicated that HPGDS

knockout promoted lipid biosynthesis, and HPGDS can be

associated with lipid metabolism (Figure 6A).
Knockdown of HPGDS enhances lung
adenocarcinoma migration

As shown in Figure 6B, the knockdown of HPGDS

resulted in a decrease in E-cadherin and an increase in
Frontiers in Oncology 07
N-cadherin and TWIST1. Moreover, the migratory ability

of A549 cells was examined using a transwell assay. A549

cells in the HPGDS knockout group were much higher than

those in the control group (Figure 6C). These results

INDICATED the role of HPGDS in the malignant

progression of LUAD.
Knockdown of HPGDS promoted
migration by upregulating the expression
of the lipid metabolism key enzyme
ACSL1 and ACC

Rescue assays indicated that ACSL1 knockdown reversed the

pro-migration effects of HPGDS knockdown. The knockdown of

HPGDS promoted migration response by upregulating the

expression of the lipid metabolism key enzymes ACSL1 and

ACC (Figure 7).
A B

DC

FIGURE 3

(A) Kaplan-Meier analysis applied for the evaluation of the risk scoring formula in the GSE72094 dataset, while considering the optimal cut-off
value for grouping by P<0.05. (B) ROC curve in the validation set. (C) Grouped by median (P < 0.05). (D) Grouped by quartile (P < 0.05).
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A B

D

E F

C

FIGURE 4

(A) Differentially expressed genes between LUSC and normal tissues in the TCGA dataset. (B) Upregulated lipid metabolism differential genes in
tumor tissues. (C) Lipid metabolism differential genes downregulated in the tumor tissues. (D) Univariate COX analysis of key lipid metabolism
genes (P<0.05). (E) Top10 hub genes were identified based on the PPI network map. (F) Recurrence of HPGDS in LUAD and LUSC.
A B

FIGURE 5

Single-gene GSEA analysis of HPGDS. (A) Enriched KEGG pathway. (B) Abundant tumor features.
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Discussion

The clinical efficacy of LUAD is not optimistic because owing

to its extremely poor prognosis (28). Diagnostic biomarkers of

LUAD and molecules should be identified for new therapeutic

targets. Increased lipid uptake, storage, and lipogenesis occur in

many cancers and increase tumor malignancy (29–31). Genes

involved in lipid metabolism play a role in lipid metabolism

reprogramming and drug resistance in tumors, making them

potential targets for cancer therapy (32, 33). In this study, we

aimed to discover potential biomarkers and therapeutic targets by

identifying genes involved in lipid metabolism and their

expression associated with prognosis in patients with LUAD,

supplemented by biological experimental evidence.

Radiotherapy and chemotherapy for tumors have been

developed vigorously in recent years. However, the 5-year survival

rate of LUAD is still unsatisfactory (34–36). Risk score

establishment based on bioinformatics analysis of RNA-

sequencing data is an efficient approach, which classifies patients
Frontiers in Oncology 09
for rationally individualized and targeted treatment. Even though

the risk models for the tumor microenvironment, immune cell

infiltration, and energy metabolism of LUAD have been reported

(37–39), we constructed a 9-gene prognostic risk model based on

CYP4B1, KLF4, DPEP2, PTGDS, CYP27A1, ACSS3, HSD17B13,

HPGDS, and FA2H, which was validated by an external dataset.

For a comprehensive understanding of the lipid metabolism

process in lung cancer, we repeated the analysis pipeline of

LUAD in the LUSC set, and in its results, the recurring

appearance of HPGDS garnered our attention (Supplementary

Figures 1D, 2A and Figure 4E). Presently, tumor studies on

HPGDS are limited, and many studies report them as tumor

suppressor genes (22, 40). In recent years, most studies on

tumors are related to bioinformatics; however, they lack

experimental verification (22, 40–44). Therefore, we used

CRISPR technology to knock out HPGDS in the A549 cell

line. The detection of lipid metabolism pathways showed that

the knockout of HPGDS promoted lipid synthesis. Besides, the

knockdown of HPGDS promoted migration of A549 relative to
A B C

FIGURE 6

(A) Western blotting of the expression of lipid metabolism-related markers in normal control A549 cell line (NC) and HPGDS knockout A549
(sgHPGDS) group. (B) Knockdown of HPGDS promotes the EMT related markers of A549. (C) Knockdown of HPGDS enhances the migration of
A549 cells. ***P<0.001.
A B

FIGURE 7

(A, B) Knockdown of HPGDS promoted migration by upregulate the expression of the lipid metabolism key enzyme ACSL1 and ACC, but not for
HK2 and ACAA1. ns (no sense) P > 0.05, *P < 0.05, ***P < 0.001.
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the control group. The knockdown of HPGDS promoted

migration response by upregulating the expression of the lipid

metabolism key enzymes ACSL1 and ACC, but not for HK2 and

ACAA1. Interestingly, the arachidonic acid metabolic pathway is

an aberrant metabolic pathway in both LUAD and LUSC tissues.

HPGDS happens to be involved in the arachidonic acid

metabolic pathway as a s class glutathione transferase (16).

Even though lipid metabolism pathways in lung cancer are

widely studied (45–47), this study is different because it focused on

the abnormal lipid metabolism pathways in patients with LUAD

and established a more reliable prognostic risk score. We performed

biological experiments and confirmed that HPGDS can promote

the migration of A549 by upregulating the expression of key lipid

metabolism enzymes ACSL1 and ACC, but not HK2 and ACAA1.

This study will provide a good theoretical guide for further research

on LUAD. However, the present study has some limitations. For

example, the bioinformatics analysis of this study included lung

squamous cell carcinoma; however, no biological experiments were

performed, which will be a part of our follow-up work. In addition,

there are insufficient biological experiments on HPGDS to

completely explain how HPGDS leads to malignant changes in

LUAD by affecting lipid metabolism pathways. Finally, our risk

scoring formula also lacked validation on a large cohort.

To conclude, we investigated the abnormal lipid metabolism

pathway of lung adenocarcinoma by bioinformatics and

performed biological experiments to prove that HPGDS can

lead to malignant changes by altering the lipid metabolism of

lung adenocarcinoma. Therefore, the molecular mechanism

underlying HPGDS regulating the lipid metabolism pathway

in lung adenocarcinoma should be further studied.
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