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Objective: The aim of the study is to develop and validate a deep learning

model to predict the platinum sensitivity of patients with epithelial ovarian

cancer (EOC) based on contrast-enhanced magnetic resonance imaging (MRI).

Methods: In this retrospective study, 93 patients with EOC who received

platinum-based chemotherapy (≥4 cycles) and debulking surgery at the Sun

Yat-sen Memorial Hospital from January 2011 to January 2020 were enrolled

and randomly assigned to the training and validation cohorts (2:1). Two

different models were built based on either the primary tumor or whole

volume of the abdomen as the volume of interest (VOI) within the same

cohorts, and then a pre-trained convolutional neural network Med3D (Resnet

10 version) was transferred to automatically extract 1,024 features from two

MRI sequences (CE-T1WI and T2WI) of each patient to predict platinum

sensitivity. The performance of the two models was compared.

Results: A total of 93 women (mean age, 50.5 years ± 10.5 [standard deviation])

were evaluated (62 in the training cohort and 31 in the validation cohort). The

AUCs of the whole abdomen model were 0.97 and 0.98 for the training and

validation cohorts, respectively, which was better than the primary tumor

model (AUCs of 0.88 and 0.81 in the training and validation cohorts,

respectively). In k-fold cross-validation and stratified analysis, the whole

abdomen model maintained a stable performance, and the decision function
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value generated by the model was a prognostic indicator that successfully

discriminates high- and low-risk recurrence patients.

Conclusion: The non-manually segmented whole-abdomen deep learning

model based onMRI exhibited satisfactory predictive performance for platinum

sensitivity and may assist gynecologists in making optimal treatment decisions.
KEYWORDS

deep learning, magnetic resonance imaging, platinum sensitivity, epithelial ovarian
cancer, non-manually segmented
Introduction

The standard treatment of epithelial ovarian cancer (EOC)

comprises debulking surgery and platinum-based chemotherapy

(1). Although a high remission rate can be achieved, 20%–30% of

patients received multiple cycles of toxic therapy before

platinum resistance was identified and delayed the initiation

of therapy with effective agents, which turned out to be a

major impediment to improved outcomes (2). At the same

time, platinum sensitivity is a simple index to screen out

populations sensitive to poly (ADP-ribose) polymerase

inhibitors (PARPi) (3, 4), and this prediction may reduce the

unnecessary enrollment of patients into various clinical trials.

Accordingly, if platinum sensitivity could be reliably predicted,

patients would gain more benefits from precision therapy (5).

However, classic clinical indicators such as CA125 and tumor

immunohistochemistry possess limited predictive power (6).

Nowadays, biopsies followed by mutation profiling or surgical

resections have become a standard and informative procedure

(7). However, high cost, invasiveness of the approaches, intra-

tumoral heterogeneity, and repeated tumor sampling

enormously limit the applicability of such molecular testing,

raising much concern regarding the cost–benefit balance (8).

Contrastingly, MRI is a non-invasive method to detect

tumors by obtaining the size, location, and other basic imaging

information. A study that recruited 125 participants with EOC

found that the changes in apparent diffusion coefficient (ADC)

after chemotherapy are indicative of the response to platinum

(9). Additionally, radiomics based on MRI have been developed

to recognize different subtypes of EOC (i.e., benign, borderline,

malignant) (10) and 3-year recurrence prediction was also

effective (11). However, conventional radiomic methods

require manual detection, segmentation, and extraction, which

is time-consuming, tedious, and susceptible to manual operation

errors and may be unsuitable for general practice at this time (12,

13). This highlights the urgent need for the development of new

radiomic methods to predict the platinum sensitivity of patients

with EOC.
02
Deep learning with powerful algorithms greatly reduce

unnecessary labor and display effectiveness in applications of

medical imaging (12, 14), for instance the screening of breast

cancer (15), diagnosis of cataracts (16) and Alzheimer’s disease

(17), ALK-TKI or radiation therapy in patients with lung cancer

(18, 19). In this study, we aimed to develop a deep learning

model to predict platinum sensitivity of patients with EOC based

on MRI before the initial intervention.
Materials and methods

Patients and study design

This study followed the STARD reporting guidelines and

the Helsinki Declaration. The institutional review boards of the

Sun Yat-sen Memorial Hospital approved this retrospective

study with identified data [Institutional Review Board (IRB)

no. SYSEC-KY-KS-2020-072] and issued a waiver for written

consent. This study was registered with ClinicalTrials.gov,

number NCT04511481. Data generated or analyzed during

the study are available from the corresponding author

on request.

Ninety-three patients from the Sun Yat-sen Memorial

Hospital from January 2011 to January 2020 were enrolled and

randomly assigned (2:1) to the training (n = 62) and validation

cohorts (n = 31) (Figure 1). Inclusion criteria: (i) pathologically

confirmed EOC; (ii) whole abdomen contrast-enhanced MRI

within 2 weeks before the initial intervention (MRI detailed in

Supplementary Methods S1 and Table S1); (iii) received

cisplatin/carboplatin chemotherapy (≥4 cycles) in the initial

treatment or switched chemotherapy scheme due to primary

platinum-refractory; and (iv) received either primary debulking

surgery (PDS) or interval debulking surgery (IDS) (Residual

disease <1 cm). Exclusion criteria: (i) cancer lesions invisible on

MRI; (ii) poor quality MRI (e.g., with motion or artifacts) as

assessed by two radiologists (ZW and ZC); (iii) concurrent

cancers; and (iv) unavailability of complete clinical data.
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Tumor response to chemotherapy was assessed by the

RECIST 1.1 criteria before PDS; patients were followed up

according to the NCCN guideline. The date of the last follow-

up was 1 June 2021.
Study endpoints

The primary endpoint was the platinum-free interval (PFI).

According to the PFI, patients with ovarian cancer were divided

into platinum-resistant (PFI <6 months) and platinum-sensitive

(PFI ≥6 months). The secondary endpoint was progression-free

survival (PFS), calculated from the first date of the initial

intervention to disease progression or to the last progression-

free date for those censored. Recurrences and distant metastases

were confirmed by clinical, biochemical, or radiographic

evidence or by biopsy findings.
Frontiers in Oncology 03
Image pre-processing

We built prediction models based on different algorithms,

MRI sequences, and volumes of interest (VOIs). The two

representative deep learning models (whole abdomen model

and primary tumor model) were constructed and validated with

the same training and validation cohorts. The difference between

the two models was the VOI in the preprocessing

part (Figure 2A).

The whole abdomen model took the entire abdomen volume

on axial CE-T1WI sequence (venous phase) and axial T2WI

(acquired before the injection of contrast medium) as the VOI to

be the input of the model without any segmentation and

delineation by hand, which is the most significant difference to

the primary tumor model. The, the sequences of an individual

patient were first aligned into the same coordinate system in

reference to the CE-T1WI sequence. Then, pixels outside of the
FIGURE 1

Patients’ recruitment and study design. A total of 93 patients with preoperative magnetic resonance imaging from the Sun Yat-sen Memorial
Hospital were enrolled. The two representative deep learning models (whole abdomen model and primary tumor model) were constructed and
validated with the same training and validation cohorts, then compared for performance. EOC, epithelial ovarian cancer; CE-MRI, contrast-
enhanced magnetic resonance imaging; IDS, interval debulking surgery; PDS, primary debulking surgery.
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human body area, which was defined by OTSU thresholding,

were filled with Gaussian noise as in the original implementation

of the Med3D network (20, 21).

The primary tumor model took the primary tumor area as

the VOI on axial CE-T1WI and T2WI sequences. First,

sequences were loaded into 3D Slicer software (version 4.10.2)

in NRRD format and were then manually segmented and

delineated slice-by-slice by two radiologists (ZW and ZC)

independently as precisely as possible. The radiologists were

blinded to prognostic information. The data was then reviewed

by two radiologists (MG and ZW) from the same hospital, each

of whom had more than 15 years of experience in gynecologic

oncology radiology and was mainly responsible for the VOI

assessment. Any disagreements were resolved by consensus

among the four radiologists.

To eliminate the interference, all values from the areas

outside of the VOIs were removed and filled with Gaussian

noise, similar to the whole abdomen model (Figure 2A). Finally,

spatial and intensity normalization was applied to these VOIs

(see Supplementary Methods S2).
Model building and validation

Features were extracted from the input data using a feed-

forward neural network. It was pre-trained on a few medical

imaging datasets to learn to capture useful information from
Frontiers in Oncology 04
medical images. Through the power of transfer learning, we are

able to transfer the knowledge that the model has acquired from

one task and apply it to the other. This means that the model

does not need to learn everything from scratch every time. The

neural network uses 3D convolution operations as its core

structure. Hierarchically, deeper layers will produce more

complicated features. For example while shallow layers may

capture edges or brightness information, deeper layers may

capture texture or even abnormality information. The model

uses a residual structure, so that information extracted by the

shallow layers will not be “forgotten” during the feeding forward

through so many layers.

Apre-trained convolutional neuralnetworkMed3D(Resnet 10

version) was transferred as the feature encoder to extract features

(Figure 2B and SupplementaryMethods S3) from the chosen VOI.

Following the feature extraction on corresponding VOIs, we

applied principal component analysis (PCA) to perform the

decomposition (Figure 2C and Supplementary Methods S4). It

denoised and compressed them into smaller dimensions. Finally, a

support vector machine (SVM) was fitted to the data produced by

the PCA to achieve the classification of how likely a patient is to be

platinum-sensitive (Figure 2D and Supplementary Methods S5).

The validation cohort’s data was left completely untouched

throughout the training process. In the building of the model

pipeline, cross-validation was used to evaluate the model

performance and to decide on the hyperparameters. All

programs were run on Python version 3.6.8.
B C D

E

A

FIGURE 2

Schematic of two deep learning frameworks. The primary tumor model uses the primary tumor in CE-T1WI and T2WI sequences as the VOI
with manual segmentation by radiologists. Contrastingly, the whole abdomen model uses the entire abdomen volume as VOI without any
segmentation or delineation by hand. VOI on CE-T1WI and T2WI sequences were prepared for (A) pre-processing, which consisted of image
segmentation (or not), registration, and normalization; (B) the backbone of the pre-trained 3D ResNet network was transferred to extract
features and a global average pooling layer was added so that 1,024 features could be extracted from each patient; (C) the PCA was used for
decomposition; (D) the platinum sensitivity prediction model was constructed using SVM; (E) the feature map that the last convolutional layer
output was generated as heat maps for visualization. CE-T1WI, contrast-enhanced T1-weighted imaging; T2WI, T2-weighted imaging; VOI,
volume of interest; MRI, magnetic resonance imaging; PCA, principal component analysis; SVM, support vector machine.
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Feature visualization

Feature maps were acquired from the output of the last

convolution layer right before global average pooling. All the

feature maps were averaged to get a heat map to determine

which areas of the image were the most active and deserved the

model’s focus (Figure 2E).
Statistical analysis

When assessing clinical characteristics, categorical variables

were compared using the c2 test, and continuous variables were

compared using the independent t-test. Receiver operating

characteristic curve (ROC) analysis was used to determine the

optimal threshold for maximizing prediction accuracy and to

assess and evaluate the performance of models. Five-fold cross-

validation was employed to compare robustness. The PFS was

calculated using the Kaplan–Meier method, and the log-rank

test, hazard ratios (HRs), and 95% confidence intervals (Cls)

were calculated using a Cox regression analysis. The optimal

cutoff values were generated with the R package ggsurvimier.
Frontiers in Oncology 05
Moreover, the calibration curve and decision curve analysis

(DCA) were plotted to assess the whole abdomen model. P-

values of less than 0.05 were considered significant, and all tests

were 2-tailed. Statistical analyses were conducted with Python

3.6.8, and R version 3.6.1.
Results

Characteristics of the patients

A total of 93 patients with EOC from the Sun Yat-sen

Memorial Hospital were eligible for this study (Figure 1).

Table 1 shows the clinicopathological characteristics of

patients from the training cohort (n = 62) and the validation

cohort (n = 31), 50 (81%) of the 62 patients in the training

cohort and 24 (77%) of the 31 patients in the validation cohort

were platinum-sensitive. Hyperthermic intraperitoneal

chemotherapy (HIPEC) was administered to 24 (39%) of the

patients in the training cohort and 12 (39%) of the patients in the

validation cohort. The median follow-up was 21.0 months

(interquartile range [IQR] 13.7–33.2) for patients in the
TABLE 1 Characteristics of patients in the training and validation cohorts.

Characteristic Training cohort n = 62 Validation cohort n = 31 p-valuea

Patients, No. (%)

Age, mean (SD), year 49.4 (11.2) 52.9 (8.6) .21

Platinum sensitivity, No. (%) .93

Resistant 12 (20) 7 (23)

Sensitive 50 (80) 24 (77)

HIPEC, No. (%) >.99

≥1 cycle 24 (39) 12 (39)

Non 38 (61) 19 (61)

FIGO stageb, No. (%) .73

I 13 (21) 8 (26)

II 4 (6) 3 (10)

III 37 (60) 18 (58)

IV 8 (13) 2 (6)

Histologic classification, No. (%) .32

Serous carcinoma 39 (63) 20 (65)

Endometrioid carcinoma 9 (15) 1 (3)

Clear cell carcinoma 5 (8) 6 (19)

Mucinous carcinoma 2 (3) 1 (3)

Special types 7 (11) 3 (10)

Type of surgery, No. (%) >.99

PDS 54 (87) 27 (87)

IDS 8 (13) 4 (13)

Follow-up time, months (median [IQR]) 21.0 [13.7, 33.2] 23.2 [15.2, 43.3] .44
fron
FIGO, International Federation of Gynecology and Obstetrics; SD, standard deviation; HIPEC, hyperthermic intraperitoneal chemotherapy; PDS, primary debulking surgery; IDS, interval
debulking surgery; IQR, interquartile range.
ap-values represent the difference of each clinicopathologic variable between the training and validation cohorts.
b2018 FIGO staging.
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training cohort and 23.2months (IQR15.2–43.3) for the validation

cohort. The clinicopathological variables between the training

cohort and the validation cohort had no statistically significant

difference (P >.05). In the univariate logistic regression analysis,

stages were found to be associated with platinum sensitivity in the

training cohort (P <.001) (Table S2).
Deep learning models predict platinum
sensitivity

The performance of the primary tumor model compared with

thewhole abdomenmodel is summarized inTable S3. The primary

tumor model achieved areas under the receiver operating

characteristic curves (AUCs) of 0.88 (95% CI, 0.79–0.97) and

0.81 (95% CI, 0.65–0.97), with accuracy (ACC) of 0.87 and 0.81,

the sensitivity of 90% and 88%, and specificity of 75% and 57% in

the training and validation cohorts, respectively. Five-fold cross-

validation showed the specificity and sensitivity had an obviously

reduced result (Table S3 and Supplementary Figure S1).

In comparison, the whole abdomen model achieved AUCs of

0.97 (95% CI, 0.93–1.00) and 0.98 (95% CI, 0.93–1.00), with

ACC of 0.95 and 0.97, the sensitivity of 96% and 96%, and the

specificity of 92% and 100% in the training and validation

cohorts, respectively. The robustness of the whole abdomen

model was verified by five-fold cross-validation, which showed

that ACC, sensitivity, and specificity maintained satisfactory

levels (Figures 3A, B and Table S3).

The calibration curve in Figure 3C indicated that the whole

abdomen model was close to the perfect model and did not

systematically make under- or over-predictions of platinum

sensitivity, as shown by the fact that the Hosmer–Lemeshow

test yielded a non-significant statistic for this model (P = .88 and

P = .81 in the training and validation cohorts, respectively). The

decision curve in Figure 3D indicates that the use of the whole

abdomen model may improve clinical outcomes.

To further assess the whole abdomen model, stratified

analysis was conducted (Supplementary Figures S2–S5). The

whole abdomen model achieved AUCs in the subgroup of

Hyperthermic intraperitoneal chemotherapy (HIPEC) (AUCs

1.00, 0.94), non-HIPEC (AUCs 0.94, 1.00), stages III–IV (AUCs

0.98, 1.00), serous carcinoma (AUCs 0.97, 1.00), other

pathological types (AUCs 1.00, 0.95), IDS (AUCs 1.00, 1.00),

PDS (AUCs 0.97, 0.96) in the training and validation cohorts,

respectively. In summary, the whole abdomen model was able to

maintain stable performance across different subgroups.
Whole abdomen model for progression-
free survival

A strong association between the whole abdomen model

decision function value and progression-free survival (PFS) was
Frontiers in Oncology 06
further demonstrated by Kaplan–Meier analysis (Figures 3E, F).

According to the decision function value, optimal cutoff values

(0.296 and −1) were generated to split patients into high- and low-

risk groups in the training and validation cohorts. High-risk

patients achieved a lower decision function value and shorter

PFS compared with the low-risk group in the training cohort (HR

0.17; 95% CI 0.08–0.36; P <.001, Log-rank test) and validation

cohort (HR 0.12; 95% CI 0.03–0.41; P <.001, Log-rank test). To

further substantiate the value of the whole abdomen model in

prediction and prognosis, we used the model to predict 1- and 2-

year PFS (Figures 3G, H). ROC curves indicated that in the 1-year

PFS prediction, the AUCs were 0.96 and 0.98, and reduced to 0.72

and 0.71 in the 2-year PFS prediction in the training and

validation cohorts, respectively.

As shown in Figure 4, patients 1 and 2 were platinum-

sensitive and belonged to the low-risk group that had higher

decision function values, predictive probability, and longer PFS.

In contrast, patients 3 and 4 were platinum-resistant and

belonged to the high-risk group that had lower decision

function value, predictive probability, and shorter PFS.

Although these high-level features were highly intricate,

feature maps were transferred as heat maps and were observed

and analyzed with the assistance of the deep learning

visualization algorithms (Figure 5). There were some high-

response areas on the heat maps, which were red, yellow, and

green. The red areas appeared to be more focused on the

peritoneal space; the green areas seemed to be more focused

on the obvious enhancement areas that demonstrated abundant

vasculature (primary tumor, enlarged para-aortic lymph nodes,

colon metastasis), and the yellow areas had a typical mesenteric

shape (Figure 5D). These patterns seemed to be observed in most

heat maps.
Discussion

This study established an end-to-end deep learning model to

predict the platinum sensitivity of patients with epithelial

ovarian cancer (EOC). The whole abdomen model, which took

the entire volume of the abdomen on axial CE-T1WI and T2WI

sequence as the volume of interest (VOI), predicted platinum

sensitivity in EOC patients with high sensitivity and specificity

and was validated by good calibration and decision curves.

Meanwhile, the algorithm discriminated between patients with

high- and low-risk recurrence and performed well in predicting

1-year PFS. In addition, the distribution patterns of high-

response areas on heat maps seemed to be associated with

platinum sensitivity.

As per recommendation 3.1 of the European Society for

Medical Oncology consensus conference, there were no

validated predictive markers of primary platinum-refractory or

resistant disease (4). In contrast with previous studies, we built
frontiersin.org
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B
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G H

A

FIGURE 3

Performance of whole abdomen model including association between the whole abdomen model decision function value and the PFS. Receiver
operating characteristic (ROC) curves (A) of whole abdomen model performance for predicting platinum sensitivity; (B) five-fold cross-
validation, and evaluation with (C) calibration curve; (D) decision curve. Kaplan–Meier curves of PFS according to the decision function value in
93 patients split into high- and low-risk groups from both the (E) training and (F) validation cohorts by cutoff values of 0.296 and −1. ROC
curves and (G) 1-, (H) 2-, year AUCs were used to assess the prognostic accuracy of the whole abdomen model. PFS, progression-free survival;
ROC, receiver operating characteristic; AUC, area under the receiver operating characteristics curve; HR, hazard ratio; CI, confidence interval; P
values were calculated using the unadjusted log-rank test, and hazard ratios were calculated by a univariate Cox regression analysis.
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B

A

FIGURE 4

Representative prediction results of the whole abdomen model. (A) Patients 1 and 2 were platinum-sensitive and (B) patients 3 and 4 were
platinum-resistant. The platinum sensitivity of patients was accurately assessed according to the decision function value by the cutoff value of
0.00. CE-T1WI, contrast-enhanced T1-weighted imaging.
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and validated a non-invasive whole abdomen model to provide

platinum sensitivity prediction by preoperative CE-MRI, which

aimed to assist in the individualized treatment of patients with

EOC. Traditional radiomic analysis required time-consuming

tumor delineation, which affected the reproducibility of

radiomic features (19). On the contrary, since tumor boundary
Frontiers in Oncology 09
segmentation is not required in our whole abdomen model, deep

learning features are not affected by manual operation. In this

study, the input of the whole abdomen model simply required

CE-T1WI and T2WI and could generate the result of the

patient’s platinum sensitivity automatically within seconds

without any additional workload.
B

C D

A

FIGURE 5

Representative heat map of deep learning feature visualization. The “rainbow” color scheme highlight showcases highly active areas. It can be
observed that the highly active areas were focused on and overlapped with (A) primary tumor, (B) enlarged lymph nodes that surrounding the
abdominal aorta and inferior vena cava, (C) colon metastasis, and (D) mesentery.
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ROC curves were similar in different pathological subgroups,

which indicated that there may be common platinum sensitivity-

related subtle imaging features in different pathologies which

could be captured and discriminated by the whole abdomen

model. In stage subgroups, the whole abdomen model

maintained robust performance. It is known that there is a big

difference between the early and advanced stages of EOC

prognosis. Previous studies in cancer radiomic prognosis

prediction tended to separate cancers into early and advanced

stages for analysis (22, 23). However, it has not been realistic to

determine the stage and pathological type of cancer before

operations. Therefore, the ideal situation would be that

regardless of the stage or pathological types of the patient,

results regarding platinum sensitivity could be obtained by

using only CE-MRI data. This is what our model delivers.

Additionally, the decision function value showed an

association with the PFS of patients with EOC by Kaplan–

Meier analysis (P <.001). ROC curves in PFS prediction

indicated that the whole abdomen model had good prediction

power in 1-year PFS yet was weakened in 2-year PFS predictions.

Perhaps the decline in accuracy is due to the passing of time and

more confounding factors (follow-up treatment, income,

religious difference). Overall, the decision function value

generated by the whole abdomen model was a good short-

term prognostic indicator but weakened over time.

Deep learning is often referred to as a “black box” due to the

lack of interpretability of the identified features (24). Huge

potential benefits for clinical and fundamental research await

those who can open the “black box” and make features more

interpretable. In our study, features were made more accessible

by creating visually appealing heat maps, generated over the last

convolutional layer. Then, we analyzed the heat maps and

incorporated medical knowledge into these invisible features.

The high-response areas appeared to be the vasculature and

peritoneal stroma in these heat maps, which suggested that the

model was using features outside of the primary tumor as well as

within. These regions were more relevant than the other areas as

they attracted more attention to the whole abdomen model and

consequently contained more platinum sensitivity features. In

previous studies, peritumoral regions in cancer were valuable in

estimating chemotherapy response (25, 26), and adding

peritumoral regions led to increased AUC (27), which was

consistent with our observations of the heat maps and might

be explained by the fact that abundant vasculature and the

micro-environment of the metastatic stroma might be related to

platinum resistance and prognosis (28, 29).

At the same time, the severity of EOC metastasis in the

peritoneal and mesenteric at CT seemed to be an indicator of

significantly shorter PFS (30, 31). EOC cells typically spread

within the peritoneal cavity with the dissemination of tumor

cells into the peritoneal fluid, followed by implantation on the

mesothelial linings of the omentum and other peritoneal

surfaces that overlie connective and adipose tissues. A
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retrospective study that enrolled 46 women with HGSO found

that the pattern of peritoneal involvement and the presence of

mesenteric infiltration on pretreatment CT appear to be

associated with prognostically relevant gene signatures (32).

These indicated that due to the biological characteristics of

intraperitoneal dissemination of EOC, features outside of the

primary tumor were gene- and prognosis-related.

Therefore, it is unsatisfactory to only use the primary tumor

as the VOI in prognosis prediction. Instead, features based on

the whole abdomen were necessary for the deep-learning model

to make a prediction. This may explain why the whole abdomen

model achieved superior performance over the primary tumor

model. However, this pattern may not be suitable for all cancers.
Limitations

This research had various limitations. First, due to the

limitation of sample size, this study lacked perspective and

extensive data cohorts to ensure clinical applicability. Second,

due to the retrospective nature, there was a lack of complete

genetic data. Therefore, combining the genetic profiles and

further explaining the deep learning features at the genetic

level will become the focus of our future work.
Conclusion

This study showed that deep learning can provide new MRI-

based prognostic markers that have high sensitivity and

specificity for platinum-sensitivity predictions of epithelial

ovarian cancer (EOC). The volume of interest of the whole

abdomen demonstrated stronger predictive power than the

primary tumor lesion alone. These results represent a step

forward for automated deep learning without any

segmentation. This study conducted a meaningful exploration

of deep-learning interpretability and pointed out the potential

relationship between vascular density, tumor micro-

environment, and platinum sensitivity of EOC as well as

revealing the potential of deep learning visualization in

promoting future clinical and basic research.
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