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The discrimination of tumor-infiltrated tissue from non-tumorous brain tissue

during neurosurgical tumor excision is a major challenge in neurosurgery. It is

critical to achieve full tumor removal since it directly correlates with the survival

rate of the patient. Optical coherence tomography (OCT) might be an

additional imaging method in the field of neurosurgery that enables the

classification of different levels of tumor infiltration and non-tumorous tissue.

This work investigated two OCT systems with different imaging wavelengths

(930 nm/1310 nm) and different resolutions (axial (air): 4.9 mm/16 mm, lateral:

5.2 mm/22 mm) in their ability to identify different levels of tumor infiltration

based on freshly excised ex vivo brain samples. A convolutional neural network

was used for the classification. For both systems, the neural network could

achieve classification accuracies above 91% for discriminating between healthy

white matter and highly tumor infiltrated white matter (tumor infiltration >60%)

.This work shows that both OCT systems with different optical properties

achieve similar results regarding the identification of different stages of brain

tumor infiltration.
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1 Introduction

Each year, more than 700,000 patients are diagnosed with

different tumor types of the central nervous system worldwide,

which need to be surgically removed (1). Particularly in glioma

and metastasis surgery, the neurosurgeon faces the challenge of

removing as many tumors as possible because the survival of a

patient directly correlates with the extent of tumor resection (2).

To achieve this and spare healthy brain tissue, brain tissue must

be identified, which is still a major challenge for the surgeon.

This challenge is aggravated by the infiltrative growth of

glioblastoma multiforme, which results in ill-defined tumor

borders. Glioblastoma multiforme makes up 15 to 20% of all

primary brain tumors and is classified by the World Health

Organization as a grade IV tumor (3–5). Glioblastoma

multiforme is characterized by aggressive and invasive growth,

which leads to a median survival time of three months if no

treatment is performed (6). At present, the conventional surgery

set-up, with intraoperative surgical navigation, including

surgical microscopes and intraoperative magnetic resonance

imaging (MRI), cannot properly visualize the gradual decrease

in the tumor cell density at the infiltration zone to the surgeon.

For example, Kut et al. showed that a surgeon with the described

surgical set-up reached 100% sensitivity and specificity of

between 40 and 50% for the identification of brain tumors (7).

These reasons motivated research on intraoperative optical

coherence tomography (OCT) as an additional imaging modality

as early as 2006 (8). OCT is an imaging method that provides

tomographic images by the interference of low-coherent light (9,

10). OCT is well established in ophthalmology [e.g., retinal

imaging (11)], because data are acquired fast, contactless and

with a resolution of a fewmicrometers. The characteristics of OCT

images are similar to ultrasound images and are difficult to

interpret by the neurosurgeon during an intraoperative setting.

Therefore, multiple research groups have successfully

demonstrated different ways to process the data for the surgeons

to identify various brain tissue types.

One approach exploits optical tissue parameters. Schmitt

et al. and Faber et al. introduced methods to extract the

attenuation coefficient, which describes the exponential decay

of the OCT signal along the depth axis (12–14). The method was

further developed by Vermeer et al., Yuan et al., and Turani et al.

(15–17). The tumor classification based on the optical

parameters assumes that the tumor changes the optical

properties of the tissue, which has already been described by

Böhringer et al. in 2009 (18). In their study, ex vivo and in vivo

OCT data were acquired from 15 selected brain regions of nine

patients, which contained healthy brain tissue and glioblastoma

multiforme, among others. It was found that the attenuation

profile of the OCT signal varies depending on whether the tissue

is healthy or tumorous. These first findings were further

elaborated by Kut et al. and Yashin et al., who showed that the

attenuation coefficient for white matter decreases with
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increasing tumor infiltration (7, 19). Yashin et al. hypothesized

a decrease with the degradation of the myelin fibers, which are

present in healthy white matter but break down with increasing

tumor invasion. Both groups could successfully classify healthy

white matter tissue and tumor tissue.

Another approach considers the usage of structural

information. Böhringer et al. stated that structural

heterogeneities occur in tumorous tissue, while healthy brain

tissue has structural homogeneity (18). Various groups have

applied different methods to extract the structural information

for the classification of brain tumor tissue. For example, Lenz et al.

used a combination of texture features like Haralick’s texture

features combined with a principal component analysis (PCA)

and a support vector machine approach (SVM) to differentiate ex

vivo OCT meningioma samples from healthy brain tissue (20).

Möller et al. used the same approach successfully for the

classification of brain metastases (21). Moisseev et al. used

patches of the OCT signal, acquired from mouse ex vivo OCT

B-scans, which were subsequently decomposed via PCA for

creating feature vectors (22). In their study, Gesperger and

Lichtenegger et al. used OCT images from ex vivo human brain

samples, which in contrast to the other publications, were

acquired by a high resolution optical coherence microscope, to

train a neural network (23). The high resolution of the OCT

system (lateral resolution of 1.8 mm, axial resolution of 0.88 mm)

enhances the structural differences between the different tissue

types. All these approaches achieved a classification accuracy of

over 90%. However, different OCT parameters (wavelength,

spatial resolution) were used, and some studies were limited to

the differentiation between healthy and tumorous white matter.

The differentiation of all tissue types (white and gray matter—

healthy and tumorous) was investigated only in a few studies (23),

(24). In these publications, detailed information on the

distribution of white and gray matter in the sample set is

missing. It was also shown that the accuracy drops significantly

when samples with low tumor infiltration are classified (23).

This work tried to account for these problems by applying a

very detailed label to the histological data of brain tissue samples

that were imaged immediately after excision. Heterogeneous

tissue combinations and different grades of tumor infiltration

were considered. The labels were transferred to corresponding

OCT B-scans. Each sample was imaged using two OCT systems:

one of the OCT systems had an acquisition rate of up to 1.6

MHz, which makes the system suitable for real-time in vivo

imaging if it is mounted to the surgical microscope, for example

(25). This work was used to prove that such a system can classify

tumor-infiltrated brain tissue from healthy brain tissue.

Additionally, a second OCT system was used during the study

as a control system. The two systems differ in their acquisition

wavelength and lateral and axial resolution. The use of two OCT

systems allowed us to get more insight into which OCT

properties guarantee a good tissue classification. It was

investigated if, due to different optical properties of the tissue
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at different wavelengths and structural information, the two

OCT systems differ in their ability to identify tumor regions. In

the end, neural networks were used to classify healthy brain

tissue from tumor-infiltrated tissue based on the ex vivo dataset

for each OCT system. The neural networks used extracted

regions of the B-scans or optical properties like the

attenuation coefficient, which were determined from the

extracted regions, as input.
2 Materials and methods

2.1 OCT systems

The data acquisition was performed with two OCT systems:

a spectral domain (SD) OCT system (Callisto, Thorlabs Inc.) and

a swept source OCT system (Optores GmbH, Germany). The

core of the latter system consists of a Fourier domain mode

locked (FDML) laser with a central wavelength of 1,310 nm and

a spectral bandwidth of 110 nm (26). The FDML technology

allowed the acquisition of OCT A-scans at a rate of 1.6 (27). An

objective lens with a focal length of 54 and a numerical aperture

of 0.021 (LSM04, Thorlabs Inc.) was used during data

acquisition. The lateral and axial resolution of the OCT

systems were determined through point spread function (PSF)

measurements, using the full width at half maximum (FWHM)

of nano particles dispersed in a non-scattering medium (OCT

Resolution Validation Phantom, National Physical Laboratory)

(28). The results gave a lateral resolution of around 22 mm and

an axial resolution of 16 mm in air. The scan field of the system

was set to 6 mm × 6 mm. The SD-OCT had a central wavelength

of 930 nm and a spectral bandwidth of 127 nm. The system was

equipped with an objective lens with a focal length of 36 mm and

a numerical aperture of 0.051 (LSM03-BB, Thorlabs, Inc.). The

lateral and axial PSF measurements showed a lateral and axial

resolution of 5.2 mm and 4.9 mm in air. The field of view was

2 mm × 5.2 mm. The system was additionally equipped with a

spectator camera, which allowed the acquisition of color images

in a range of 12.8 mm × 9.6 mm. Both OCT systems were

mounted on a movable rack system in order to be used in a

separate room adjacent to the operation theater. The close

distance of the OCT system to the tumor extraction assured

that the sample was imaged within 15 min after excision and that

possible ex vivo tissue changes were kept to a minimum (29).
2.2 Data acquisition

Over the course of the clinical study (Study No.: 18-204,

ethics committee University of Luebeck) 21 patients contributed

samples. For an overall 73 samples of 15 patients, complete
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datasets were acquired with both OCT systems (see Table 1).

Seven of these patients were diagnosed with glioblastoma

multiforme (WHO IV), four were classified as WHO III and

WHO II, and the remaining four as metastasis (5). Samples were

excised from the untouched brain surface, from tissue above the

main tumor mass, the main tumor mass, and from the border of

the resection cavity after the resection was finished by the

surgeon (Figure 1A). Samples were not taken if the location

was too close to a functional area. After the excision, each sample

was embedded in an agarose-filled tissue cassette (Figure 1B)

(30). The tissue cassette had four imprints of different sizes

(3x3x1, 4x4x2, 5x5x3 and 6x6x3 mm3). The sample was placed

into one of these imprints, depending on the sample size and

which shape it matched the best. Over the course of the data

acquisition, the soft brain sample will take over the predefined

shape of the imprint. The shape of the sample functions as a

priori information for the transformation of the histological

information and as a measure to control the cutting process.

Each OCT system acquired one OCT volume of the sample

within a 15-minute time frame after the sample extraction

(Figure 1C). Afterwards, the sample was fixed with a 4.5%

formalin solution for at least 24 h before being processed

further by the neuropathology. Fixation with formalin also

fixed the shape of the sample. Ten hematoxylin and eosin

(H&E) stained histological sections were cut equidistantly (100

mm) from each sample. The position and orientation of the

sections were defined prior to the cutting by cutting lines on the

top view image of the sample (Figure 1D). Each histological

section was labeled by the neuropathologist. The labels covered

four different infiltration grades (0% (healthy tissue), 0 to 30%,

30 to 60%, and >60% tumor infiltration), and various other
TABLE 1 Overview over the different patients and their diagnosis and
the number of samples considered during the tissue analysis.

Patient Diagnosis Number of Samples

1 Oligodendroglioma—WHO II 6

2 Glioblastoma multiforme—WHO IV 7

3 Metastasis 4

4 Glioblastoma multiforme—WHO IV 6

5 Glioblastoma multiforme—WHO IV 5

6 Anaplastic astrocytoma—WHO III 3

7 Glioblastoma multiforme—WHO IV 5

8 Metastasis 3

9 Anaplastic oligodendroglioma—WHO III 6

10 Metastasis 5

11 Glioblastoma multiforme—WHO IV 4

12 Glioblastoma multiforme—WHO IV 5

13 Metastasis 2

14 Oligodendroglioma—WHO II 5

15 Glioblastoma multiforme—WHO IV 7
frontiersin.org

https://doi.org/10.3389/fonc.2022.896060
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Strenge et al. 10.3389/fonc.2022.896060
structures like edema, necrosis, vessels, blood, connective tissue,

coagulation, or cysts. The labels also differentiate whether the

tumor infiltration or structure is located in white matter or gray

matter (the cortex). The grade of tumor infiltration was selected

subjectively based on the experience of the neuropathologist.
2.3 Data preparation

The preparation of the acquired data includes the transfer of the

histological information onto the OCT B-scans and the creation of a

dataset for the tissue classification. The transfer of the histological

information onto the OCT B-scans will only be described briefly. A
Frontiers in Oncology 04
detailed description of the process can be found in (30). The first

step was to find OCT B-scans that corresponded to the histological

section. The cutting lines, which were used to determine the cutting

position, were transferred onto the OCT volume by an image

registration process. The field of view of the SD-OCT is known in

the top-view white light image of the sample since both modalities

were acquired by the same system. A registration between the two

OCT volumes based on their topological height information,

extracted from the tissue surface, enables the transformation of

the cutting lines between the OCT volumes. The registration was

performed by iteratively minimizing the dissimilarity between the

topological height maps of the OCT volumes. The corresponding

OCT B-scans were then extracted along the transferred cutting lines
FIGURE 1

Images of the brain surface and the resection cavity (A). * marks the locations where samples were extracted. Embedded sample in agarose-
filled tissue cassette (B). In (B), the red square marks the field of view of the SD-OCT system. Examples of acquired OCT volumes by the two
OCT systems (C). An example of the H&E stained histological cut and the label set by the neuropathologist (D). In (D), the location of the
histological section was marked by the red line. Extracting the corresponding OCT B-scans from the OCT volumes based on the position of the
transformed cutting line (E). An example of the transferred label on the corresponding OCT B-scans (F). Extraction of patches from
homogeneous parts of the B-scan (G).
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(Figure 1E). The transformation of the histological information

onto the corresponding OCT B-scans was performed through a

non-affine registration approach based on the tissue shape

(Figure 1F). The tissue content was extracted from the histology

and the corresponding OCT B-scan in the form of binary masks.

This was possible because the tissue dimensions were known due to

the tissue shaping by the agarose imprint. The non-affine

transformation was then determined between the masks based on

the shape of the tissue information using shape context features and

a thin plate spline interpolation. Then, the determined

transformation is then applied to the labeled image. As a result,

693 labeled OCT B-scans were created for each of the two systems.

From each B-scan, homogeneous patches with a size of

around 300 × 200 mm2 (SS-OCT: 50 × 50 pixel; SD-OCT: 100

× 50 pixel) were extracted (Figure 1G). Each patch overlapped

with the one before by 10 pixels and started 10 pixels below the

tissue surface. This process resulted in two datasets, one for each
Frontiers in Oncology 05
OCT system, which were used for further processing. Figure 2

shows the distribution of the labels among the different study

patients and the diagnosed pathology. Deviations in the sample

numbers of patients or tumor types for the two OCT systems

were due to differences in the lateral pixel sizes and the

differences in the field of view. Figure 3 displays examples of

B-scan patches.
2.4 Extracting optical parameters

The determination of optical properties from OCT data has

already been used for tissue characterization by several groups

(7, 24, 29, 31). Usually, the parameters used for the

characterization of the tissue are the attenuation coefficient m
and the back-scattered intensity I0. Both parameters are

influenced by the scattering anisotropy, which changes with
B

C D

A

FIGURE 2

Distribution of the extracted B-scan patches among the different study patients [SS-OCT: (A), SD-OCT: (C)] and the diagnosed tumor types [SS-
OCT: (B), SD-OCT: (D)]. For (A) and (C) the different patients were represented through different colors.
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the composition of the tissue (e.g., increasing tumor infiltration)

(32, 33). The evaluation of those parameters for the two OCT

systems with different wavelengths and optical set-up also

allowed the comparison of possible differences in tissue

classification accuracy for both settings. There are different

models to retrieve optical parameters from OCT data (31). In

this case, a single scattering model was chosen, which describes

the exponential signal decay along an OCT A-scan. The model is

given by the following:

A2(z) = r(z) · h(z) · I0 exp ( − 2mz) (1)

Here A2(z)∈RL was the measured intensity by the OCT

system. r (z) is the intensity roll-off, which describes a system

dependent on intensity decreasing along the depth. For the SD-

OCT system roll-off is caused by the finite resolution of the

spectrometer, which cannot properly resolve the high fringe

frequencies in the depth (34–36). For the SS-OCT system, the

roll-off was neglected since the SS-OCT does not use a

spectrometer for signal detection. r(z) was given by (35):
Frontiers in Oncology 06
r(z) =
sin (x)

x

� �2

· exp −
x2w2

2ln2

� �
(2)

Here x is the imaging depth normalized to the maximum

possible imaging depth, while w is the relationship of wavelength

spacing between pixels and the spectral resolution of the

spectrometer. For the SD-OCT system, the roll-off was

determined by measuring the signal of a mirror, which was

moved through the imaging window by only adjusting the length

of the reference arm. Equation (2) was then fitted to the

maximum signal intensity of each measurement.

h(z) describes the light collection efficiency along the depth

axis by the objective (14, 36), where zf is the focus position, zr the

Rayleigh length, and n the refractive index of the imaged

medium.

h(z) =
1

1 +
z−zf
nzr

� �2 (3)

h(z) was determined for both systems by moving a mirror

through the imaging window while the reference length and the
FIGURE 3

Example patches of each OCT-system for the five different tissue types (GM0%, gray matter 0% tumor infiltration; WM0%, white matter 0%
tumor infiltration; WM0–30%, white matter with 0–30% tumor infiltration; WM30–60%, white matter with 30–60% tumor infiltration; WM >60%,
white matter with >60% tumor infiltration).
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focus position were fixed. Equation (3) was fitted to the

maximum signal intensity of each measurement after each

measurement was corrected with r(z). For a medium with a

refractive index n≠1, the focus position shift: Due to the

difference in the refractive index between air and the medium,

the refractive angle changes, which shifts the position of the

focus zf′. Based on Snell’s law and simple geometrical

considerations sketched in Figure 4, Equations (4) to (7) were

derived. By setting Equations 6 and 7 equal, the correct focus

position zf', is given by Equation (8).

Based on Figure 4, Equations (6) and (7) were derived. From

these equations, Equation (8) was formed to calculate the

corrected focus position. The angles a and b ere derived from

Snell’s law of refraction and resulted in Equations (4) and (5).

a = arcsin  
NA
n1

� �
(4)

b = arcsin
n1 sin (a)

n2

� �
(5)

Dx = tanðaÞ · (zf − zs) (6)

Dx = tanðbÞ · (zf 0 − zs) (7)

zf 0 =
tanðaÞ
tanðbÞ · (zf − zs) + zs (8)

After the determination of r(z) and h(z), A2(z) was corrected.

Note, that z as assumed to be the geometrical length for h(z) and

A2(z), which means that the pixel size. Ds was scaled with the

refractive index of the medium present at that pixel ni

(z(i) =oL
i=0

Ds
n(i)

). In the case of this work n was either 1 for

air or 1.36 for brain tissue (37–39). This resulted in an A-scan A2

(z)′, which only contains the signal decay caused by the tissue.

The natural logarithm was applied to A2(z)′, which brought the
Frontiers in Oncology 07
equation in a linear form. The optical parameters were then

retrieved through a linear fit.

ln  (A2(z)0) = ln(I0) − 2mz (9)

For the application of the linear fit each B-scan patch was

averaged to one A-scan. The fit was applied over a length of 300

mm. For the SD-OCT the length of the length corresponds to 100

pixel and for the SS-OCT 50 pixel.
2.5 Tumor classification

A supervised classification was implemented for the dataset

of each of the two OCT systems. The performance in this

classification was used to evaluate the ability to identify the

tumor infiltration zones. Four classification tasks were prepared

for each acquired dataset. The complexity increased with each

task. The first task (I) was the classification of healthy white

matter from >60% infiltrated white matter. The second task (II)

added the infiltrated data with 30 to 60% tumor to the dataset.

For the third task (III), the data labeled with >030% tumor

infiltrated white matter was added to the tumor data. The final

task (IV) included the healthy gray matter data with the healthy

white matter data. The classification was based on a

convolutional neural network (CNN) (Figure 5). The network

takes roll-off and focuses on corrected OCT B-scan patches as

the input. The set-up allowed the neural network to consider

optical and structural properties during the training.

Information was extracted from each B-scan patch through

four convolutional blocks. The structure of each block is

similar to that of other image classification networks (23, 40).

Each block consisted of two or three 2D-convolutional layers,

with a filter size of 3, “same” padding, and “relu” activation. The

number of filters per layer started at 64 and increased with each

convolutional block. A 2D maxpooling layer with a size of 2 was

applied at the end of each block, which down samples the

information. The resulting feature map after the four

convolutional blocks was flattened. The resulting feature vector

was then put through two fully connected layers and a sigmoid

layer, which outputs the predicted probabilities for each label.

For training, k-fold cross validation was applied (41). The

training was repeated for each patient once as test data, while the

remaining patients were used for the training data. To reduce

errors due to the number of B-scan patches contributed by each

sample, the training data were re-sampled for each training (see

Figure 2). The B-scan patches of each under-represented sample

were randomly duplicated to match the number of B-scan

patches of the most prominent sample. Label imbalances were

addressed in the same way, by randomly duplicating B-scan

patches of each under-represented label to match the number of

B-scan patches of the most prominent label. During the training,

the data were randomly augmented by flipping and shifting the
FIGURE 4

Refraction of the incident laser light at the tissue surface zs due
to the change of the refractive index from n1 to n2 This effect
shifts the focus position zf in air to zf′ in the medium.
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patches horizontally. For the optimization, an Adam algorithm

with a learning rate of 0.001 and with a categorical cross-entropy

function was chosen (42, 43). The batch size was set to 32 (44).

The specificity and sensitivity were determined for the test set

after the training for each fold (45). Each input was standardized

with a zero mean.

An additional fully connected neural network (FCNN) was

configured, which was used to better evaluate the performance of

the CNN (Figure 5). The FCNN uses the attenuation coefficientm
and the backscattered intensity I0 as the input feature vectors,

which were extracted from each B-scan patch as explained in the

previous section. The FCNN architecture consists of two fully

connected layers. The training configuration of the FCNN was

the same as for the CNN. Both network approaches only differ in

their method of extracting features from the OCT B-scan

patches, which allowed the comparison of the different

methods for feature extraction: The FCNN classification is

based on optical parameters only, whereas the CNN

classification can additionally consider structural information.
3 Results

3.1 Comparison of the optical properties

Figure 6 shows the results for the attenuation coefficient m
and the backscattered intensity I0 determined from the averaged

B-scan patches for each OCT system. Both parameters were

determined separately for each pathology in order to better

visualize possible differences. It is visible that, independent of the

OCT system and the pathology, the median value of m as well as

I0 is lower in tumor infiltrated white matter than in healthy white

matter. The optical properties of healthy gray matter differ from
Frontiers in Oncology 08
those of healthy white matter and are more similar to tumor

infiltrated white matter.

Table 2 shows the numerical values derived from Figure 6

summarized for all pathologies. The presented data shows that

the absolute values of the backscattered intensity and

attenuation coefficient are different for the 930 nm and 1,300

nm OCT systems, but the relative differences in both values for

different tissue types are similar. The relative differences were

calculated for the two OCT systems and the optical properties

for each possible tissue combination from Table 2. Afterwards,

the median relative differences between the different systems

were determined for each optical parameter. The median relative

difference in the attenuation coefficient between the SD-OCT

and the SS-OCT was 1.00[0.76;1.31]. A value of 1.00[0.64;1.54]

was calculated for the maximum backscattered intensity
3.2 Results of tumor classification

Table 3 displays the results for the different classification

tasks specified in the section Tumor classification. The two

neural networks delivered reasonable classification results for

the classification tasks I to III independent of the OCT system.

The two neural networks struggled with task IV, indicating a

high similarity between tumor infiltrated white matter tissue and

healthy gray matter, which was already visible when evaluating

the optical parameters (section Comparison of the optical

properties). For the SS-OCT, the performance of the CNN and

FCNN was similar, although the CNN had the chance to extract

structural features. The presence of structural features in B-scans

of the SS-OCT could have been limited due to the low resolution

compared to the SD-OCT. For the SD-OCT, a difference in the

performance of the CNN and FCNN is visible for classification
A

B

FIGURE 5

Architectures of the neural networks for the tumor classification. Feature extraction via multiple convolutional layers in the CNN (A) and
extraction of the m and I0 for the FCNN (B).
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task I. This indicates, that for this case the CNN could extract

additional features from the B-scans. This was expected since a

higher resolution should have created B-scans with more details.

For all other classification tasks, the performance of the two

classification approaches was similar.
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4 Discussion

Achieving full brain tumor removal during glioma and

metastasis surgery increases the likelihood of the length of

survival of patients and reduces the chance of tumor recurrence
TABLE 2 Numerical values of the optical properties determined over all pathologies for the two OCT systems.

OCT-System GM0% WM0% WM0–30% WM30–60% WM>60%

SD-OCT
m [mm−1]

6.93 [5.18;9.22] 12.58 [10.52;15.55] 10.21 [5.72;12.80] 6.95 [5.46;10.41] 4.79 [3.32;6.06]

SS-OCT
m. [mm−1]

1.85 [1.21;2.71] 4.93 [4.47;5.41] 3.91 [1.70;4.39] 2.05 [1.05;3.67] 1.22 [0.72;1.81]

SD-OCT
I0 [a.u.]

0.04 [0.02;0.07] 0.08 [0.04;0.15] 0.05 [0.02;0.08] 0.04 [0.02;0.06] 0.01 [0.01;0.03]

-OCT
I0 [a.u.]

0.18 [0.13;0.25] 0.40 [0.29;0.49] 0.16 [0.12;0.24] 0.13 [0.11;0.17] 0.11 [0.08;0.14]
f

The values presented are the median value and the 25th and 75th percentiles values respectively in brackets.
B

C D

A

FIGURE 6

Determined optical properties m (SS-OCT: (A) SD-OCT: (C) and I0 (SS-OCT: (B) SD-OCT: (D) for the four different pathologies (median value =
orange line). Note that I0 was normalized to the maximum determined I0. The optical properties were determined for the following label:
GM0%, gray matter 0% tumor infiltration; WM0%, white matter 0% tumor infiltration; WM0–30%, white matter with 0–30% tumor infiltration;
WM30–60%, white matter with 30–60% tumor infiltration; and WM>60%, white matter with >60% tumor infiltration.
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(2, 46). In thepast, several other researchgroupshavedemonstrated

that OCT might be a possible additional imaging method for

detecting tumorous brain areas (7, 18–20, 23).

Regarding the determination of the optical properties,

Yashin et al. and Kut et al. calculated the attenuation

coefficients for gray matter, white matter, and different degrees

of tumor infiltration for different tumor types and used a similar

imaging wavelength of 1,300 nm for the data acquisition, the

same as that of the SS-OCT used in this work (7, 24). Yashin

et al. determined, among others, the attenuation coefficients for

white matter (8.5 mm−1), gray matter (2.5 mm−1), and

glioblastoma multiforme (3.0 to 5.5 mm−1) (24). Kut et al.

provided the attenuation coefficients for white matter and

different tumor infiltration grades: healthy white matter (6.2 ±

0.8 mm−1), tumor infiltrated white matter (3.5 ± 0.8 mm−1), and

tumor core (3.9 ± 1.6 mm−1) (7). When comparing the results of

these groups with the presented results of this work, it stands out

that the absolute values differ, but the relative trends are the

same. The decrease in the attenuation coefficient in white matter

with increasing tumor infiltration is clearly visible and was

explained by Yashin et al. with the degradation of the myelin

fibers, which are present in healthy white matter (24, 47). The

lack of myelin fibers aggravates the separation of gray matter

from tumor-infiltrated white matter because the attenuation

values for gray matter overlap with tumor-infiltrated white

matter. The differences in the absolute attenuation values

among the research groups can be caused by different

properties of the OCT systems or different approaches in the

signal processing. For example, Kut et al. used a reference

phantom in order to compensate for focus and roll-off effects

(7). Yashin et al. did not consider these effects, which lead to

higher signal decay and therefore higher attenuation values (24).

Another reason could be the freshness of the imaged ex vivo

samples. Kiseleva et al. showed that the attenuation coefficient

can vary significantly between in vivo and ex vivo samples (29).

They determined smaller attenuation coefficients for in vivo than

for ex vivo samples. It was also demonstrated that the

attenuation coefficients change with increasing time after
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extraction of the sample (29). The sample processing of this

work was done within 15 min, while Yashin et al. processed the

samples after 15 to 30 min (19, 24). Kut et al. did not disclose

the age of the ex vivo samples (7). Therefore, it is possible that

the fresher samples used in this work lead to lower

attenuation coefficients.

The determined attenuation coefficients for the SD-OCT with

an imaging wavelength of 930 nm cannot be compared with other

groups because research groups using an imaging wavelength of

around 930 nm did tumor classification based on structural

information (20, 21) or conducted a qualitative analysis (48).

According to Almasian et al., the attenuation coefficient derived

from an OCT A-scan should be smaller than the scattering

coefficient stated in the literature (49) because in tissues with high

scattering properties, multi-scattered light can influence the OCT

signal (50). This is the case for the determined values. The higher

attenuation values compared to 1,300 nm were expected because

the scattering in brain tissue increases with decreasing imaging

wavelength (49). The relative trends visible in Figure 6 have the

same explanation as for the attenuation values of the SS-OCT.

Regarding tumor classification based on the convolutional

neural network, different stages of tumor discrimination were

shown. Each classification task resembled the classification

problems raised by other research groups. The most popular

one is the tumor classification between healthy white matter and

highly tumor-infiltrated tissue. For both datasets, very good

classification results were achieved because the optical

properties of healthy white matter and highly tumor-infiltrated

white matter are very different. The results achieved in this task

are comparable with those of other groups that used machine

learning-based classification approaches. For example, Juarez-

Chambi et al. achieved a sensitivity of 99% and a specificity of

86% with an A-scan based approach. Other groups used B-scan

based approaches and achieved classification accuracies above

93% for very structural tumors like meningioma, metastasis, or

highly infiltrated white matter (20, 21, 23). In their study,

Gesperger et al. raised the problem that the classification

accuracy is reduced significantly if tumor-infiltrated tissue is
TABLE 3 Sensitivity and specificity for the different classification tasks, determined on the k-fold cross-validated test data from the SS-OCT and
SD-OCT dataset and for both used neural network (CNN/FCNN).

OCT system Neural network Metric I II III IV

SS-OCT CNN Sensitivity 0.97 ± 0.05 0.89 ± 0.16 0.89 ± 0.14 0.58 ± 0.20

SS-OCT CNN Specificity 0.95 ± 0.06 0.86 ± 0.22 0.79 ± 0.29 0.63 ± 0.27

SS-OCT FCNN Sensitivity 0.92 ± 0.20 0.87 ± 0.20 0.84 ± 0.21 0.56 ± 0.34

SS-OCT FCNN Specificity 0.96 ± 0.07 0.94 ± 0.08 0.86 ± 0.24 0.62 ± 0.38

SD-OCT CNN Sensitivity 0.91 ± 0.14 0.85 ± 0.19 0.83 ± 0.19 0.54 ± 0.19

SD-OCT CNN Specificity 0.95 ± 0.03 0.76 ± 0.20 0.62 ± 0.13 0.65 ± 0.17

SD-OCT FCNN Sensitivity 0.81 ± 0.25 0.75 ± 0.24 0.72 ± 0.25 0.63 ± 0.26

SD-OCT FCNN Specificity 0.85 ± 0.06 0.81 ± 0.08 0.76 ± 0.10 0.57 ± 0.22
fron
The four different classification tasks include the classification healthy white matter from >60% infiltrated white matter (I), classification healthy white matter from >30% infiltrated white
matter (II), classification healthy white matter from >0% infiltrated white matter (III), and classification healthy white matter and gray matter from >0% infiltrated white matter (IV).
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not considered during the training. Classification tasks II and III

considered tumor infiltration zones during the training, which

led to a significant decrease in the classification specificity. This

seems plausible, since the properties of less infiltrated regions

can be very similar to those of healthy white matter, which can

lead to false classifications. The fourth classification task added

healthy gray matter to the classification data. Since the optical

properties are very similar to those of tumor-infiltrated tissue,

the neural network could not extract features from the B-scans

to achieve a good classification result. In contrast to this work,

Lenz et al. demonstrated that discrimination of healthy gray

matter and white matter from meningioma is possible if

structural information (e.g., Haralick’s texture features) is

considered. This suggests that more features need to be

considered for this classification task.

For all classification tasks, the approach using only the

optical parameters, attenuation coefficient, and backscattered

intensity achieved similar results for all classification tasks as

the approach using the convolutional neural network. This

shows that the optical parameters are strong descriptive

features, which is not surprising because other groups

achieved good classification results using only optical features

(7, 24). It also gives the impression that the structural

information in the extracted B-scan patches was not

significant enough to improve the classification results for

the SS-OCT. The reason for this result could be the low

resolution of the OCT-system, which is not high enough to

make structural differences visible. On the other hand, the SD-

OCT showed a difference in the classification performance for

the classification of healthy white matter and white matter with

a tumor infiltration of >60%. Here, the CNN could extract

more information from the OCT B-scan patches in improve

the classification result, which could be a result of the higher

resolution of the SD-OCT.

Comparing the OCT systems showed that both of them

performed very similarly, regarding the determination of the

optical properties and discrimination of tumor from healthy

tissue. However, the results of the SD-OCT show slightly higher

fluctuations in the measured optical properties than the SS-OCT.

This could be a result of the higher resolution. Due to the higher

detail of the OCT B-scans, small tissue variations, like blood

accumulations created through the excision or small air bubbles

created through the embedding process, could create artefacts.

These artefacts could be present in each B-scan and are hard to

detect. They also aggravate the classification and determination

of the optical properties. For B-scans acquired by the SS-OCT,

these artefacts were already averaged out or were suppressed by

the lower resolution, which led to more stable values in the

classification and determined optical parameters. The higher

numerical aperture of the SD-OCT was also a potential error

source, since a higher numerical aperture leads to faster signal
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degradation with increasing distance from the focus position.

This aggravates the compensation of the focus effects, which

could lead to potential errors. Another limiting factor in this

work was the limited size of the dataset. The small number of

patients leads to unfavorable training and test combinations.

These combinations resulted in bad classifications, which might

not happen if the number of patients and therefore the number

of samples was higher. A much higher number of patients and

samples with low tumor infiltration is needed to allow a neural

network to identify differences between healthy and

tumorous tissue.
5 Conclusion

In conclusion, this work showed that OCT systems with

different optical properties achieve similar results regarding the

identification of brain tumors. The attenuation coefficient and

the backscattered intensity of different tumor types were

determined for each OCT system. The determined optical

properties showed similar relationships between different

tissue types independent of the OCT system. Based on B-

scans and optical properties, different neural networks were

trained for different classification tasks, which can occur

during tumor resection. Both OCT systems achieved good

classification results for separating healthy white matter from

tumor-infiltrated white matter. Both OCT systems failed when

it came to the discrimination of healthy gray and white matter

from tumor infiltrated white matter because the optical

properties of gray matter are similar to those of tumorous

white matter. The achieved results will be used as a first

benchmark in the future to test different approaches to the

classification. The target will not only be to differentiate healthy

white matter from tumor-infiltrated tissue but also to achieve

good classification results even when gray matter or other

tissue types are present in the dataset. More data needs to be

collected in the future to cover most of the tissue combinations

that can happen during tumor resection. Additionally, it was

recently demonstrated by Theisen-Kunde et al. that the SS-

OCT can be mounted to a surgical microscope, enabling in vivo

real-time imaging of the brain during tumor resection (25).

The methods presented in this manuscript will be applied to

the in vivo data of that OCT system in order to progress

towards the goal of guiding the neurosurgeon during tumor

resection with the help of OCT.
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