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Acute myeloid leukemia (AML) is a polyclonal and heterogeneous hematological
malignancy. Relapse and refractory after induction chemotherapy are still challenges for
curing AML. Leukemia stem cells (LSCs), accepted to originate from hematopoietic stem/
precursor cells, are the main root of leukemogenesis and drug resistance. LSCs are
dynamic derivations and possess various elusive resistance mechanisms. In this review,
we summarized different primary resistance and remolding mechanisms of LSCs after
chemotherapy, as well as the indispensable role of the bone marrowmicroenvironment on
LSCs resistance. Through a detailed and comprehensive review of the spectacle of LSCs
resistance, it can provide better strategies for future researches on eradicating LSCs and
clinical treatment of AML.
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INTRODUCTION

Acute myeloid leukemia (AML) is a hematopoietic disease characterized by malignant proliferation
of myeloid stem/progenitor cells and differentiation arrest. Standard intensive chemotherapy-based
regimens remain central in inducing complete remission (CR) in AML, with CR rates of 60–85% for
adults younger than 60 years of age and 40–60% for older patients aged ≥60 years (1). Furthermore,
with an advanced understanding of the pathogenesis and drug-resistant mechanisms, new
therapeutic agents in clinical development target abnormal karyotypes, such as FMS-like tyrosine
kinase 3 (FLT3) inhibitors (2), isocitrate dehydrogenase 1 or 2 (IDH1/2) inhibitors (3, 4), and target
effector molecules of apoptosis, metabolism, epigenetics, stemness, and immune escape, such as B-
cell lymphoma 2 (BCL2) inhibitors (5, 6), hypomethylating agents (HMA) (7), smoothened (SMO)
inhibitors (8), CD33 monoclonal antibody (9), have improved the overall survival of patients,
especially elderly patients with AML who are not candidates for intensive chemotherapy (10).
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However, there are still induction failures in some patients with
AML with high-risk karyotypes, and short- or long-term relapse
occurs after complete remission in most patients, based on
different relapse/refractory mechanisms (11).

Lapidot and Bonnet et al. successively identified a rare
population of leukemia cells capable of initiating leukemia
when transplanted into severe combined immune-deficient
(SCID) mice. The rare subset that marked the CD34+CD38-

population was the same as that of normal hematopoietic stem
cells (HSCs), and was defined as leukemia stem cells (LSCs).
These LSCs possessed self-renewal and unlimited proliferation
potential (12, 13). Several subsequent studies also confirmed the
existence of this cell population (14–17). The established views
described that current chemotherapy drugs could only eradicate
most of the AML blast cells, but not LSCs, and LSCs were the
root of AML relapse (18, 19). Furthermore, there were also
treatment-resistant cells carrying leukemia clones with different
characteristics from the originally diagnosed LSCs (19–21).
Chemotherapy-induced leukemia repopulating cells, some of
which derive from LSCs present intrinsic mechanisms of
chemotherapy resistance, and are termed primary resistances
while others derive from leukemia cells that regain stemness
under chemotherapy stress, and are termed secondary resistance
mechanisms (22). Therefore, identifying both primary and
secondary mechanisms of chemotherapy resistance is essential
for the targeted elimination of LSCs and ultimately the cure of
AML. This review mainly summarizes the primary and
secondary resistance mechanisms of different leukemia clones
identified in recent years (Figure 1), including (1) the inherent
dormancy of LSCs that protects them from cell cycle-specific
agents (CCSA) ;(2) the overexpression of multiple ATP-binding
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cassettes (ABC) transporters in LSCs transports cytotoxic drugs
out of the cell ;(3) LSCs with the defects in apoptotic signals lead
to chemotherapy resistance ;(4) senescent resistance mechanisms
also result in chemotherapeutic failure ;(5) metabolic
reprogramming of LSCs allows them to adjust to energy
changes ;(6) epigenetic alternations and reprogramming refresh
the stemness of LSCs; and (7) bone marrow (BM) niches that
provide a sanctuary for LSCs from therapeutic drugs.
DORMANCY OF LSCS AND DRUG
RESISTANCE

In short, the dormant cancer cells are defined as being in a state
of reversible nonproliferation, which includes both the quiescent
cell populations in the primary tumor and residual tumor cells
after chemotherapy-induced stress, both are closely associated
with tumor recurrence. Thus, dormant cancer cells include not
only cancer stem cells (CSCs) but also cancer cells that have
acquired stemness (23). In AML patients, CD34+CD38- LSCs are
enriched with stemness-related genes and persist after
chemotherapy, and are closely correlated with a poor prognosis
(14, 18, 24, 25). LSCs, derived from hematopoietic stem cells or
progenitor cells, acquire self-renewal capacity and stemness in
the process of clone formation and often remain in a quiescent
state (26). LSCs are in the G0 phase prior to transplantation into
nonobese diabetic(NOD)-SCID mice, and some remain
quiescent and self-renewal after several consecutive transplants
(27). With different methods such as the use of granulocyte
colony-stimulating factor (G-CSF) to induce dormant LSCs into
the cell cycle, initially slow-proliferating LSCs become
FIGURE 1 | The schematic of LSCs clonal diversification resulting in AML relapse. The normal HSCs or progenitor cells carry CH-type mutations without proliferative
potentials, such as ‘DTA’ mutations, denoted by the number I, and convert to pre-leukemia HSCs or progenitor cells with enhanced self-renewal through acquiring
additional genetic mutations, which are divided into linear and branching patterns of clonal evolution. The former stepwise acquires CH-type mutations like TP53,
IDH1/2 and AML-related mutations like FLT3, NPM1. The latter parallelly acquires CH-type mutations and AML-related mutations in different cell populations.
Different colors of nuclei show heterogeneous LSCs clones. Residual leukemia cells (grey box) after treatment include dominant clones LSCs and subclones leukemia
cells. Relapsed AML arises from these two types of cells corresponding to the primary resistance (green box) of LSCs and the secondary resistance (yellow box) of
reprogramming leukemia cells via acquiring a new relapse-driven clone. AML, acute myeloid leukemia; LSCs, AML stem cells; HSCs, hematopoietic stem cells; CH,
clonal hematopoiesis; BM, bone marrow; ‘DTA’ mutations, mutations in DNMT3A, TET2 and ASXL1.
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susceptible to chemotherapy (28). Generally, AML recurrences
are mainly attributed to quiescent LSCs, because conventional
CCSA only act on proliferating cells but not on quiescent
LSCs. Herein, we mainly describe the regulation of LSCs
quiescence by cellular molecular mechanisms and their
surrounding microenvironment.

The activation of the Wnt signaling pathway is one of the
most important pathways for the maintenance of LSCs
quiescence (Figure 2). Wnt/b-catenin activation is required for
the conversion of HSCs as well as relatively mature granulocyte-
macrophage progenitor cells (GMPs) into LSCs, regulates LSCs
stemness, self-renewal and proliferation (29). R-spondin 3
(RSPO3) activates b-catenin by binding to LGR4 (leucine-rich
repeat-containing G protein-coupled receptors) high-expressed
on the surface of LSCs, further promotes the expression of
stemness and self-renewal genes such as MYC, CCND1 and
HOXA clusters. The anti-RSPO3 antibody can reliably debilitate
the ability of LSCs to restart leukemia through serial
transplantation in mice (30). Recently, it has been discovered
that the transcription factor FOXM1 activates the Wnt/b-catenin
molecular pathway through stabilizing b-catenin expression to
mediate quiescence and self-renewal of MLL-AF9-LSCs (31). In
particular, FOXM1 inhibitors do not significantly alter
downstream Nurr1 expression [one of the most important
molecules regulating HSCs quiescence (32)] and have a lower
impact on HSCs, providing a therapeutic window for the
targeted elimination of LSCs. Other studies have shown that
the long non-coding RNA (lncRNA)-DANCR (differentiation
antagonizing non-protein coding RNA) is involved in the
regulation of the Wnt signaling pathway. LncRNA DANCR is
relatively highly expressed in CD34+ AML primary cells, and
knocking down of lncRNA DANCR expression reduces the
Frontiers in Oncology | www.frontiersin.org 3
quiescence and self-renewal of LSCs in vitro and in vivo by
down-regulating MYC expression, but not that of normal
hematopoietic stem and progenitor cells (HSPCs) (33). The
differential regulation of MYC expression by lncRNA DANCR
illustrates the important role of the Wnt signaling pathway in
LSCs resistance. Although lncRNA DANCR is differentially
regulated in HSCs and LSCs, the resistance mechanisms in
LSCs require a thorough understanding. Further research is
needed on how to clinically inhibit the Wnt signaling pathway
to provide a therapeutic window for the targeted clearance of
LSCs (34).

The other important mechanism of quiescent maintenance of
LSCs involves the PI3K/AKT signaling pathway, LSCs rely on the
relative low-activity AKT to keep quiescent (Figure 2). PI3K/
AKT signaling pathway is usually activated during
leukemogenesis to promote cell proliferation and is associated
with specific genetic alterations like mutations of FLT3 and
NPM1 (35). Thus, the state of LSCs depends on rigorous AKT
regulation. Micro(miR)-126 is an important negative regulator of
the PI3K/AKT pathway in LSCs. The overexpression of miR-126
in LSCs reduces AKT activity by targeted down-regulation of
CDK3, a regulator of G0/G1 conversion, to maintain cell cycle
quiescence, improving stemness and resistance to chemotherapy
(36). Recent studies have shown that miR-126 is highly expressed
in the endothelial cells (ECs) surrounding BM arterioles relative
to sinusoids. In the FLT3-ITD+ AML mouse model, treatment
with tyrosine kinase inhibitors (TKIs) inhibited the AML-
mediated remodeling of arterioles to sinusoids, resulting in the
increase of miR-126 in the BM, which further enhanced LSCs
quiescence, whereas, the inhibition of miR-126 can effectively
eradicate LSCs and prolong survival (37). This may partly
explain the greater therapeutic resistance of AML after relapse.
FIGURE 2 | Signaling pathways of dormancy in LSCs. LSCs arrest the cell cycle at G0 phase in a low level of ROS. The Wnt signaling pathway is activated through
overexpression of FOXM1 which stabilizes b-catenin, up-regulated RSPO3 by activating b-catenin and increased lncRNA DANCR which upregulates MYC expression
to induce LSCs dormancy. The repression of PI3K/AKT signaling pathway by miR126 mediates the stemness of LSCs and drug resistance. The abnormal activation
of the Hh and NOTCH signaling pathways plays an important role in maintaining LSCs quiescence. AML, acute myeloid leukemia; LSCs, AML stem cells; ROS,
reactive oxygen species; Hh, Hedgehog; SMO, smoothened; EVI1, Ecotropic virus integration site 1.
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Altogether, these findings suggest that miR-126 has a great
potential in targeting quiescent LSCs.

Other signal pathways involved in LSCs quiescence are the
Hedgehog (Hh) and NOTCH pathways (Figure 2). The Hh
pathway plays an important role in maintaining quiescence, self-
renewal, survival, and chemoresistance of BCR-ABL+ LSCs (38).
The abnormal activation of the Hh signaling pathway has been
observed in AML (39). The transmembrane protein smoothened
(SMO), an essential regulator of Hh signal transduction, is highly
expressed in CD34+ leukemia cells and can activate downstream
glioma-associated oncoprotein (GLI) transcription factors to
maintain the dormancy and chemoresistance of LSCs (40).
Preclinical studies found that PF-913, an inhibitor of SMO,
can decrease the proportion of CD34+ leukemia cells, induce
dormant LSCs into the cell cycle, reduce leukemia initiation, and
exert synergistic effects with cytarabine (AraC) (41). Phase II trial
of glasdegib (SMO inhibitor) plus conventional chemotherapy in
patients with AML achieved a better complete remission (CR)
rate and prolonged overall survival (8) (Table 1). On the other
hand, NOTCH signaling pathway can also drive the expression
of stemness-related genes and maintain the pool of LSCs. LSCs
with high expression of Ecotropic virus integration site 1 (EVI1)
were enriched in G0 phase in vivo and in vitro, and all-trans
retinoic acid (atRA) further enhanced LSCs quiescence in an
EVI1-dependent manner, and EVI1 and atRA synchronously
activate NOTCH signal pathway through targeting downstream
molecule NOTCH4 (57). Paradoxically, the finding by Lobry
showed that activation of the NOTCH signaling pathway
induced cell cycle arrest and apoptosis in LSCs with MLL-AF9
fusion, in part due to Tet methylcytosine dioxygenase 2 (TET2)-
mediated epigenetic alterations (58). As a result, precise
modulation of NOTCH threshold to induce LSCs entry into
the cell cycle and jointly promote AML blast clearance may be an
interesting direction.

In addition, the BM microenvironment also plays a vital role
in maintaining LSCs quiescence. The interaction of the CXCR4/
CXCL12 axis induced the localization of LSCs in the endosteal
region where LSCs could maintain a quiescent state, which was
closely related to resistance to chemotherapy and adverse
prognosis (55). Hypoxia is essential for HSCs dormancy based
on the regulation of hypoxia-inducible factors (HIFs) (59).
However, the role of HIFs in LSCs is contradictory (60). The
expression of HIF-1a in LSCs was increased. HIF-1a deletion led
to the elimination of LSCs (61), in contrast, HIF-1a deletion
promoted the conversion of pre-leukemic cells to LSCs, and HIF-
1a knockout in MLL-AF9 mice showed LSCs increase and AML
progression after chemotherapy (62). Recently, reactive oxygen
species (ROS) have been proposed to represent the LSCs
population (43). Cell populations with low ROS were rich in
quiescent LSCs, which was associated with drug resistance/
recurrence, compared to cell populations with high ROS (63).
Eimear OR et al. simulated BM-induced dormancy of KG1a cells
in vitro by using a hydrogel-based layered co-culture system
based on bone mesenchymal stem cells (BMSCs), adding TNFb-
1 and HIFs (64). This model is valuable for targeted drugs
screening to treat dormant LSCs in the microenvironment. The
Frontiers in Oncology | www.frontiersin.org 4
regulation mechanisms of BM on the quiescence of LSCs need to
be further studied. The humanized mesenchymal niche model
system established by Waclawiczek et al. is prospective to study
th e c ro s s t a l k b e twe en MSCs , LSCs and no rma l
hematopoiesis (65).

The maintenance of LSCs quiescence and self-renewal
depend on a complex intracellular molecular signaling
network, which overall maintains low expression of cell cycle-
related genes and proliferation-related genes, with elusive
crosstalk between various stemness-related pathways. It was
found that GLI1 can promote AML cell proliferation directly
through PI3K signaling pathway and can be reversed by AKT
inhibitors (66). AKT can enhance FOXM1 expression and form a
positive feedback to enhance venetoclax resistance in FLT3 wild-
type AML (67). Therefore, FOXM1 inhibitors may be a
promising therapeutic strategy due to their dual signaling
pathway regulations. Similarly, it was found that the
combination of inhibitors targeting PI3K/AKT/mTOR
signaling pathway and atRA can almost eliminate cellular
MYC to drastically kill leukemia cells of different AML
subtypes (68). Additionally, the crosstalk between the Wnt and
NOTCH pathways has also been reported. Kang YA et al. verified
that NOTCH and Wnt signal cooperatively maintained HSCs
lineage differentiation. And it also demonstrated that LSCs
characteristically maintain high levels of Wnt and low levels of
NOTCH, and that restoring those dysregulated pathway
activities can inhibit myeloid differentiation and delay
leukemia progression (69). These results present the possibility
of strong crosstalk in cell-cycle regulation between both
pathways. Furthermore, due to the high heterogeneity within
and between patients, there is no single indicator to identify
LSCs. Data have shown multiple candidate surface markers
including CD123 (70), CD33 (71), CD96 (72), TIM-3 (73),
CD44 (74), CLL-1 (75), c-MPL (76), MHDA2 (77), CD25 and
CD32 (24) that play a significant role in the stemness properties
of LSCs. Of these, CD25, CD32, CD123, c-MPL, and MHDA2
are expressed in quiescent human LSCs, and targeting these
surface markers may facilitate the removal of dormant LSCs. A
recent study tracking the leukemia cells of AML patients before
and after chemotherapy found that CD34+CD38- LSCs and AML
blasts were equally eliminated, and LSCs no longer remained
quiescent after chemotherapy (21, 63). Although chemotherapy
may promote the evolution of some clones, quiescence or
dormancy i s not suffic ient to protec t LSCs from
chemotherapy-induced cell death (78).
ABC TRANSPORTER FAMILY AND AML
DRUG RESISTANCE

A vital mechanism of multiple drug resistance in tumor cells is
the transport of cytotoxic drugs outside cells to reduce DNA
damage. The ABC transporter family, which currently consists of
48 members, pumps out exogenous substances via ATP-
dependent membrane transport pathways (79). A variety of
ABC transporters are highly expressed in AML cells, and are
July 2022 | Volume 12 | Article 896426
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TABLE 1 | Clinical trials of targeted therapies in AML.

Targeting
mechanism

Agents Patient Population Eliminating
LSCs

Combination therapy ClinicalTrials.gov Iden-
tifiers

Self-renewal Signaling
Wnt CWP232291

(Degradation of b-
catenin)

R/R AML Yes (29) Not NCT01398462

PRI-724
(CBP inhibitor)

AML Not/Dasatinib/LDAC NCT01606579

PI3K/AKT BEZ235
(Dual PI3K/mTOR
inhibitor)

Refractory AML Yes (35) Not NCT01756118

GSK2141795
(AKT inhibitor)

RAS-mutated R/R AML Trametinib NCT01907815#

Everolimus
(mTOR inhibitor)

AML Midostaurin NCT00544999
Relapsed AML Cytarabine and daunorubicin NCT 01074086*

Rapamycin
(mTOR inhibitor)

AML Decitabine NCT02109744*

Hh Glasdegib
(SMO inhibitor)

de novo/relapsed AML; Yes (38) LDAC/Decitabine NCT01546038*
de novo AML Azacitidine NCT02367456*
AML with MDS-related changes/therapy-
related AML

CPX-351 NCT04231851

ABC transporters
P-gp Valspodar de novo AML Potential (42) Cytarabine, daunorubicin and

etoposide
NCT00006363#

Zosuquidar de novo AML Cytarabine and daunorubicin NCT00046930#

Regulators of apoptosis and senescence resistance
BCL2 Venetoclax de novo AML/ R/R AML Yes (43) Milademetan tosylate and LDAC NCT03634228

AML CC-486 NCT05287568
AML ASTX727 NCT04657081
R/R AML Azacitidine and lintuzumab-

Ac225
NCT03867682

R/R AML Alvocidib NCT03441555
R/R AML Dinaciclib NCT03484520
de novo AML/ R/R AML FLAG-IDA NCT03214562*
de novo AML CLIA regimen NCT02115295*
AML Sabatolimab and azacitidine NCT04150029
R/R AML Gilteritinib NCT03625505

MCL1 MIK665 R/R AML Yes (44) VOB560 NCT04702425
AML Azacitidine NCT04629443
AML Venetoclax NCT03672695

PRT1419 R/R AML Yes (45) Not NCT05107856
AMG 176 R/R AML Yes (46) Itraconazole/ Azacitidine NCT02675452

CDKs Alvocidib de novo AML Yes (47) Cytarabine and daunorubicin NCT03298984*
P53-MDM2 Idasanutlin R/R AML Yes (48) Cytarabine NCT02545283

KRT-232 de novo AML/ R/R AML LDAC/Decitabine NCT04113616
APG-115 de novo AML/ R/R AML Azacitidine/Cytarabine NCT03634228
HDM201 AML Venetoclax and azacitidine NCT05155709

P53 Arsenic Trioxide p53-mutated AML Yes (49) Decitabine NCT03855371
Eprenetapopt p53-mutated AML Yes (50) Azacitidine NCT03588078*

Metabolism
IDH1 Ivosidenib de novo, mutant-IDH1 AML Yes (51) Azacitidine NCT02677922*

R/R, mutant-IDH1 AML Azacitidine NCT04250051
IDH2 Enasidenib de novo, mutant-IDH2 AML Azacitidine NCT02677922*

R/R, mutant-IDH2 AML Azacitidine NCT03683433
IDH1/IDH2 Ivosidenib/Enasidenib de novo, mutant- IDH1/IDH2 AML Intensive chemotherapy NCT02632708

Epigenetics
KDM1A Iadademstat AML Yes (52) Azacitidine EudraCT 2018-000482-

36*
HDAC Panobinostat de novo AML Yes (53) Intensive chemotherapy (54)*

de novo AML Idarubicin and cytarabine NCT01242774*
Valproic acid AML ATRA and Decitabine NCT00867672#

AML ATRA and cytarabine NCT00995332*
AR-42 AML Decitabine NCT01798901

BM niche

(Continued)
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closely associated with adverse chemotherapy responses in AML
patients. Consecutively, follow-up studies revealed that LSCs also
have higher expression of different ABC transporters (42).
Therefore, targeting ABC transporters has a positive impact on
enhancing the chemosensitivity of AML. ABC transporters
showing the greatest correlation with AML chemotherapy
resistance are permeability glycoprotein (P-gp), breast cancer
resistance protein (BCRP), and multidrug resistance-associated
protein 1 (MRP1), respectively, where P-gp and BCRP are the
most frequently expressed (Figure 3).

The best-characterized ABC transporter is P-gp, which is
encoded by the multidrug resistance gene 1 (MDR1 or ABCB1).
P-gp confers resistance to chemotherapeutic drugs such as
doxorubicin, daunorubicin, vincristine, mitoxantrone, and
methotrexate (80). Numerous studies have confirmed that
leukemia cells overexpressed P-gp, which was strongly
associated with the poor prognosis in AML (81–83).
Subsequent studies have found that the association was age-
dependent, which was more pronounced in patients older than
Frontiers in Oncology | www.frontiersin.org 6
60 years than in young adults with AML (84). Furthermore, de
Figueredo et al. reported that compared with the relatively
mature CD34+CD38−CD123− cells, the CD34+CD38−CD123+

subset had a higher P-gp, while CD34+CD38−CD123− cells had
an increased P-gp expression than the CD34+CD38+ subset (85).
However, the study found that the use of P-gp inhibitors, such as
zosuquidar or cyclosporine, failed to improve the CR rate and OS
of AML patients (86). The possible cause may be that AML stem
cells express multiple ABC transporters, hence, single blocking of
a certain ABC transporter does not significantly improve
chemotherapy outcomes. In addition, adriamycin stress can
increase the expression of ABCB1 enhancers, and this adaptive
change of ABCB1 mediated drug resistance in AML (87).

Another important ABC transporter, BCRP, encoded by the
ABCG2 on chromosome 4, has been linked to drug resistance in
the treatment of AML with chemotherapeutic agents such as
doxorubicin, daunorubicin, vincristine, mitoxantrone, and
methotrexate (80). Many studies have indicated that higher
levels of BCRP expression were associated with lower survival
TABLE 1 | Continued

Targeting
mechanism

Agents Patient Population Eliminating
LSCs

Combination therapy ClinicalTrials.gov Iden-
tifiers

CXCL12/
CXCR4

CX-01 R/R AML Yes (55) Azacitidine NCT02995655*
Plerixafor R/R AML mitoxantrone, etoposide and

cytarabine
NCT00512252*

TIM3 Sabatolimab de novo AML/ R/R AML Yes (56) Magrolimab and azacitidine/not NCT05367401
AML Venetoclax and azacitidine NCT04150029
July 2022 | Vo
AML, acute myeloid leukemia; LSCs, leukemia stem cells; CPX-351, liposomal cytarabine and daunorubicin at a fixed 5:1 molar ratio; R/R, relapsed or refractory; CBP, CREB-binding
protein; LDAC, low-dose cytarabine; MDS, myelodysplastic syndrome; CC-486, oral azacytidine; Lintuzumab-Ac225, humanized CD33 antibody; FLAG-IDA, fludarabine, cytarabine,
granulocyte colony-stimulating factor (G-CSF), and idarubicin; ASTX727, decitabine and cedazuridine; CLIA regimen, cladribine, high-dose cytarabine and idarubicin; VOB560, BCL-2
inhibitor; ATRA, all-trans retinoic acid. * active clinical activity; #no clinical activity.
FIGURE 3 | Drug efflux and drug resistance. Multiple anti-tumor drugs enter to kill leukemia cells (upper part), but LSCs upregulate ABC transporters to efflux drugs
to overcome the cytotoxic effects of multiple chemotherapeutic drugs, even single blocking of MDR1 does not significantly improve chemotherapy outcomes.
Additionally, MRP1 mediates the ATP-dependent efflux of GSH to reduce cellular oxidative stress. BRCP transports excessive PPIX out of the cell to maintain
porphyrin homeostasis (lower part). MRP1, multidrug resistance-associated protein 1; MDR1, multidrug resistance gene 1; BRCP, breast cancer resistance protein;
PPIX, protoporphyrin IX; GSH, glutathione; ATP, adenosine triphosphate; ADP, adenosine diphosphate.
lume 12 | Article 896426
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rates of AML, and increased expression of BCRP in patients is
observed in patients that fail to achieve CR after chemotherapy
(82, 88, 89). Researchers also found that the expression of BCRP
has correlated with the expression of side population (SP) cells, a
stem cell-enriched fraction, with obvious potential for both self-
renewal and proliferation (90). Raaijmakers et al. found that
expression of BCRP was predominant in LSCs and blocking of
BCRP-mediated drug export by the fumitremorgin C analog
KO143 resulted in increased intracellular mitoxantrone
accumulation in these cells (91). Therefore, targeting ABCG2
may be a promising therapy to eliminate LSCs.

The ABC-C subfamily encodes multidrug resistance-
associated proteins (MRP), of which MRP1 was the first MRP
molecule to be discovered. MRP1 is overexpressed in many
multidrug-resistant cancer cell lines and confers an extensive
drug resistance phenotype, which can develop resistance to
multiple chemotherapy agents in AML (80). Previous studies
have reported a correlation between MRP1 expression and the
prognosis of AML, but the results remain controversial. Some
studies have shown that high expression of MRP1 is associated
with poor prognosis in AML (83, 92), contrarily, some
researchers have found no such correlation (93, 94). There are
several possible explanations such as the different methods used
to study MRP1 expression, different treatment regimens, and
patient characteristics which impact on MRP1 expression. The
inconsistency of these findings has also suggested that MRP1is
not a major determinant in drug resistance in AML.

Overall, LSCs exhibit a much higher expression of ABC
transporters than mature cell populations, which results in
chemotherapy resistance (95). Noteworthily, ABC transporters
also act as efflux transporters of biomolecules relevant to tumor
resistance. MRP1 mediates the ATP-dependent efflux of
glutathione (GSH) to reduce cellular oxidative stress (96).
BRCP transports excessive protoporphyrin IX (PPIX) out of
the cell to maintain porphyrin homeostasis (97). However,
clinical trials evaluating the efficacy of ABC transporters-
inhibitors have been unsatisfactory. The main reason may be
that HSCs also have a high expression of various ABC
transporters, as demonstrated by Zhou et al. Mice models
engineered to knock-out ABCB1 or ABCG2 genes are
particularly sensitive to drugs such as mitoxantrone and
vinblastine, so the expression of these genes may represent a
protective mechanism for HSCs (98). Inhibitors of ABC
transporters may reduce the chemoresistance of leukemia
primitive populations and LSCs, but may also render HSCs
more sensitive to chemotherapeutic drugs, which compromises
normal hematopoietic function. Co-expression or activity of
ABC transporters is also particularly important in
chemotherapy resistance in AML patients. ABCB1 and ABCG2
mRNA co-expression was significantly associated with higher
age, increased CD34 expression and poor prognosis (99).
Robinson et al. developed that overexpressing both ABCB1
and ABCG2 in vitro not only exerted the function of substrate
transport independently but also additively transport new
substrate molecules (100). Therefore, it is of great significance
to find ABC transporters that are specifically expressed by LSCs.
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APOPTOSIS RESISTANCE OF LSCS IS
ASSOCIATED WITH DRUG RESISTANCE

The induction of apoptosis of AML cells by chemotherapy is an
effective approach to kill malignant cells. However, recent studies
have shown that multiple anti-apoptotic mechanisms exist in
LSCs. Defects of apoptosis-related signaling pathways represent
an integral mechanism for treatment resistance in AML. The
principal apoptosis-regulatory molecules are B-cell lymphoma 2
(BCL-2), myeloid cell leukemia sequence 1 (MCL1) and p53,
mutations or abnormalities of which can induce apoptotic
resistance of LSCs.

BCL-2, the foremost anti-apoptotic protein in hematological
malignancies, is significantly up-regulated in lymphoma,
multiple myeloma, and AML (101). BCL-2 can stabilize
mitochondria and prevent the activation of pro-apoptotic
proteins. The expression of BCL-2 in different AML subtypes
is irregular, with much higher levels in M1 andM2 subtypes than
in M3, M4, and M5 subtypes (102). Furthermore, higher
expression of BCL-2 is associated with a worse response to
chemotherapy and inferior survival of patients, indicating that
BCL-2 is an important factor contributing to the prognosis of
AML (102, 103). BCL-2 is markedly up-regulated in LSCs, and its
inhibition can restrain oxidative phosphorylation and selectively
eradicate quiescent LSCs (43). Venetoclax, which specifically
targets BCL-2, achieves a wide range of anti-leukemia
capabilities, partly due to the decreasing apoptotic threshold of
AML cells (104). MCL1 is another antiapoptotic protein involved
in leukemia cell survival. Overexpression of MCL1 has been
associated with drug resistance and a poor prognosis of AML
(105). The increased expression of MCL1 is also another
important cause of venetoclax-based resistance (106, 107).
Several MCL1 inhibitors have currently been evaluated in
clinical trials, and are one of the promising molecules for
targeted AML treatment and detailed examples will be
discussed below. Similarly, the inhibitor of cyclin-dependent
kinase 9 (CDK9) induced AML apoptosis by down-regulating
the expression of MCL1 and demonstrated anti-leukemia and
clinical activity in refractory and relapsed (R/R) AML (47,
108) (Table 1).

Mutation of the anti-oncogene p53 also has a great
contribution to apoptosis resistance, and p53 plays a central
role in the initiation of apoptosis in different physiological
conditions (Figure 4) (109). Although the frequency of p53
mutation is low in newly diagnosed AML, the mutation rate is
markedly elevated in therapy-related AML patients (110).
Absent apoptosis signals by p53 gene mutation result in
chemotherapy resistance (111). Furthermore, p53 may
selectively activate the MDR-1 promoter, causing leukemia
cells to develop multidrug resistance (112). AML patients with
mutated p53 exhibit a poor response to chemotherapy and a
poor prognosis. The finding suggested that restoring p53 activity
through histone deacetylation could enhance the targeted
chemotherapeutics in LSCs (113). PRIMA-1, a small molecule,
has been reported to restore mutant p53 activity via binding to
DNA and induction of apoptosis in p53-deleted AML, which
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enhances the sensitivity of chemotherapy drugs (50). In wild-
type TP53 AML, overexpression of MDM2 (minute 2 homolog, a
negative regulator of p53) leads to inactivation of p53 expression,
which also exhibits apoptotic resistance. Indeed, several
inhibitors targeting the MDM2-p53 axis to restore p53
function have shown broad anti-leukemia activities (48, 114).
P53 activation promotes MCL1 degradation through
downregulating the RAS/RAF/MEK/ERK signaling pathway,
therefore, MDM2 inhibitor in combination with BCL2
inhibitor overcomes MCL1-mediated apoptotic resistance and
shows synergistic lethality of relapsed/refractory AML in
preclinical and clinical trials (115) (Table 1).
SENESCENCE RESISTANCE OF LSCS
INVOLVES DRUG RESISTANCE

The observations indicated that stress-induced activation of p38
mitogen-activated protein kinase (p38 MAPK), ROS, and DNA
damage response (DDR) could induce HSCs senescence (116).
However, a previous study found that LSCs had higher p38
MAPK activity, ROS levels, and increased accumulation of DNA
damage but lower cellular senescence compared with HSCs
(117). Wajapeyee et al. demonstrated that oncogenes induced
senescence of HSCs rather than of LSCs (118). These
investigations collectively suggested that senescent resistance
mechanisms existed in LSCs. Ablain et al. were the first to
identify the mechanisms involving arsenic trioxide in the
treatment of acute promyelocytic leukemia (APL). Arsenic
trioxide induced senescence through the promyelocytic
leukemia gene (PML)-p53 pathway rather than by inducing
APL cells apoptosis, which indicated that the induction of
Frontiers in Oncology | www.frontiersin.org 8
senescence was critical for the eradication of LSCs (49). Our
recent data firmly demonstrated that lower expression of miR-
34c-5p, a central regulator of cell senescence, was probably a
significant factor involved in the resistance of LSCs senescence.
Up-regulated miR-34c-5p in LSCs induces cellular senescence
and promotes the eradication of LSCs in mouse models, which
further supported the hypothesis (119).

Most chemotherapy drugs exert their therapeutic effect by
inducing senescence of AML cells. However, recent studies have
indicated that LSCs present multiple mechanisms of senescence
resistance compared with HSCs, and also result in chemotherapy
resistance. Until recently, these mechanisms have been poorly
understood, for the following potential reasons (1) LSCs present
the abnormal expression of both known and unknown molecules
related to the senescent signaling pathway; and (2) LSCs activate
DNA repair mechanisms leading to chemotherapy-induced
DDR that fail to induce cell senescence.

Molecular abnormalities in the p53/p21 or p16/pRb axes, two
fundamental signal pathways regulating cell senescence (120),
could result in resistance of LSCs senescence. Mutational
inactivation of p53 is a significant factor influencing
senescence resistance and poor therapeutic outcomes in AML
(Figure 4). The mutation rate of p53 in AML patients is less than
10%, and p53 mutation-positive AML patients are mostly
treatment-related or are associated with cases of AML with a
complex karyotype (110, 121, 122). P53 has been strongly
associated with poor chemotherapy efficacy and prognosis of
AML, whereas refractory and relapsed (R/R) LSCs are largely
dependent on p53 mutation inactivation (112, 123). Currently,
few reports have evaluated the expression of senescence
regulatory molecules such as p16 and p21 in LSCs, which
implicits a research direction to be explored in the future.
FIGURE 4 | The role of TP53 in apoptosis and senescence. Mutations or inactivation of p53 plays an important role in both apoptosis and senescence resistance of
LSCs. While LSCs with mutant P53 are unable to activate downstream P21 to enter the senescent process, they do not target apoptosis pathway proteins including
induction of pro-apoptotic proteins like Bax, and apoptosis initiator groups like NOXA and repressing anti-apoptotic members BCL2 and MCL1, eventually fail to
initiate apoptosis. MDM2, minute 2 homolog; BCL2, B-cell lymphoma 2; MCL1, myeloid cell leukemia sequence 1; Bax, Bcl-2-associated X protein; NOXA,
proapoptotic BH3-only protein.
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DNA damage is considered an important factor inducing cell
senescence. Chemotherapy drugs induce DNA damage, and
simultaneously DDR occurs in HSCs and LSCs (124).
Interestingly, HSCs are more sensitive to chemotherapeutic
agents than LSCs. Normal HSCs possess mechanisms able to
inhibit DNA damage repair. DNA damage prolongs the S phase
of the cell cycle and promotes DNA damage repair, but severe
DNA damage can lead to cellular senescence (125). Hence, HSCs
may progress to premature senescence induced by DNA damage,
which can reduce the accumulation of harmful mutations in
HSCs but also disrupts normal hematopoiesis. Conversely, LSCs
are able to escape this mechanism, which does not appear to be
associated with the phenomenon of premature senescence
induced by chemotherapeutic drug-induced DNA damage,
because the LSCs population lacks the signals inhibiting DNA
damage repair (126). Thus, several DNA damage repair
mechanisms are activated in LSCs treated with chemotherapy
agents, which protect LSCs from chemotherapy-induced DNA
damage and cell senescence (127, 128). Furthermore, sequential
chemotherapy cycles also lead to depletion of the normal HSCs
pool, and exacerbate the growth advantages of LSCs, resulting in
R/R leukemia. Therefore, the restoration of senescence-initiated
transmitting signals after chemotherapy-induced DNA damage
may represent a novel approach for effectively eradicating AML.
Evidence showing that the combined treatment of miR-34c-5p
and chemotherapy facilitated LSCs senescence and elimination
of LSCs in vivo preliminarily confirmed this hypothesis (119).

A more recent study found that following cytarabine
chemotherapy, the enriched-senescent AML cells produced a
senescence-associated secretory phenotype (SASP) by increasing
NF-kB transcription through the ataxia telangiectasia and Rad3-
related (ATR) activities, and regained stemness properties
sufficient to restore leukemia (129). These effects may be
mediated by changes in the SASP in a specific context. Further,
it is important to understand how to eradicate senescent AML
cells and overcome the adverse effects of SASP to prevent
a recurrence.
METABOLIC REPROGRAMMING-
INDUCED CHEMORESISTANCE IN LSCS

Enhanced glycolysis and an active truncated tricarboxylic acid
(TCA) cycle have been described in many malignancies (130).
The significant increase in AML blast cells leads to higher glucose
uptake and the accumulation of a large amount of lactate, even
under unlimited oxygen conditions, noted as the Warburg effect
(131). The serum changes of 6 metabolites involved in glucose
metabolism, including increased glycerol-3-phosphate, lactate,
citrate , and decreased pyruvate, 2-oxoglutarate , 2-
hydroxyglutaric acid (2-HG), have independent prognostic
values in AML patients, in which poor prognosis was linked to
accelerated glycolysis and activation of the TCA cycle (132).
Additionally, HSCs reside in the hypoxic BM niche with tightly
limited oxidative stress. HSCs specifically utilize glycolysis for
energy generation while suppressing the influx of glycolytic
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metabolites into the mitochondria via pyruvate dehydrogenase
kinases (PDKs) activity, which are downstream effectors of HIF-
1a (133). Nevertheless, LSCs are particularly dependent on
oxidative phosphorylation (OXPHOS) (63). OXPHOS utilizes
amino acids, fatty acids, and glucose as energy substrates to
generate ATP. It is more efficient to maintain LSCs survival in a
hypoxic and nutrient-deprived microenvironment (Figure 5).
Increased OXPHOS activity in LSCs has been associated with
chemotherapy resistance. In primary human AML, despite the
increased mitochondrial mass, LSCs display reduced spare
respiratory capacity for OXPHOS compared to mature AML
blasts and normal HSCs (134). It appears to be paradoxical that
LSCs are maintained in a low ROS state because OXPHOS is
prone to produce more ROS. Therefore, the metabolic stringency
o f L SC s s u g g e s t s t h a t t h e y a r e s u s c e p t i b l e t o
OXPHOS disturbances.

BCL2 is highly expressed in LSCs defined by low ROS levels.
Venetoclax targets LSCs by inhibiting OXPHOS and impairs
energy homeostasis. Jones et al. suggested that LSCs were
uniquely dependent on amino acids that catabolize into the
intermediates of the TCA to fuel OXPHOS in de novo AML
patients. In relapsed AML patients, fatty acid catabolism was
alternatively upregulated to maintain OSPHOS levels upon
venetoclax plus azacitidine (ven/aza) treatment (135). Another
FIGURE 5 | Metabolic alteration and drug resistance. LSCs are particularly
dependent on OXPHOS, which utilizes amino acids and fatty acids rather
than glucose as energy substrates to generate ATP. Therapy-resistant LSCs
exhibit increased FAO through increasing fatty acid transporters such as
CD36, CPT1 and FABP4. Inhibitions of MCL1 or BCL2 inhibit amino acid and
fatty acid metabolisms to reduce OXPHOS. The mutant IDH1/2 catalyzes the
conversion of a-KG to 2-HG, the latter regulates both epigenetic and
metabolic changes. OXPHOS, oxidative phosphorylation; FAO, fatty acid
oxidation; TCA, tricarboxylic acid cycle; FFA, free fatty acids; FABP4, fatty
acid-binding protein-4; PPARg, peroxisome proliferator-activated receptor g;
CPT1, carnitine O-palmitoyltransferase 1; a-KG, a-ketoglutaric acid; a-HG,
2-hydroxyglutaric acid; IDH1/2, isocitrate dehydrogenase 1 or 2; cox,
cytochrome c oxidase; KDM6A, Lysine Demethylase 6A.
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study revealed that R/R AML patients achieved a worse response
to ven/aza treatment because of elevated nicotinamide
metabolism in LSCs which activated both amino acid and fatty
acid metabolism in the TCA cycle to drive OXPHOS. Moreover,
inhibition of nicotinamide phosphoribosyltransferase
(NAMPT), the rate-limiting enzyme for the biosynthesis of
nicotinamide adenine dinucleotide (NAD+), specifically
targeted R/R LSCs by decreasing OXPHOS. Further, NAMPT
inhibitors decreased glycolysis, but not OXPHOS, in AML blasts
with high ROS levels, suggesting a metabolic heterogeneity of
AML cells (136). In addition to the metabolic plasticity of LSCs,
loss of BCL2 expression is another mechanism of venetoclax
drug resistance. In particular, patients with monocytic AML are
preferentially dependent on the anti-apoptotic protein MCL1 for
OXPHOS activity (106). Inhibition of MCL1 showed a dual
restriction on amino acid levels and fatty acid oxidation to reduce
OXPHOS. Pre-clinical trials investigating multiple MCL1
inhibitors MIK665 (44), PRT1419 (45), AMG176 (46) and
AMG397 (137) have been reported to exert anti-leukemia
activity and have reported synergistic effects with venetoclax in
murine models of AML (Table 1).

As described previously, ven/aza-resistant LSCs exhibit
increased fatty acid oxidation (FAO) compared to ven/aza-
sensitive LSCs, including L-carnitine and acyl-carnitines rather
than the levels of fatty acids (138). BM adipocytes provide
sufficient fatty acids for LSCs survival and proliferation.
Inhibition of fatty acid transporters, such as fatty acid
transporter CD36, fatty acid mitochondrial transporter CPT1,
and fatty acid-binding protein 4 (FABP4), are other mechanisms
that reduce FAO to overcome drug resistance. The expression of
CD36 was increased in AraC-resistant LSCs and enhanced
proliferative activity (63). Studies have shown that CD36+

LSCs were protected from chemotherapy damage by the
microenvironment of gonadal adipose tissue (GAT). Drug-
resistant LSCs secretes TNF-a, IL-1a, IL-1b, and CSF2 to
promote GAT lipolysis and the release of free fatty acids (FFA)
in the MLL-AF9 mouse model. CD36+ LSCs increased
intracellular FAO levels by uptake of lipolytic free fatty acids
(139). And deletion of CD36 in combination with ven/aza
showed the potential to eliminate resistant LSCs. The CPT1
inhibitor, etomoxir, similarly decreased LSCs activity only in the
presence of ven/aza, indicating that inhibition of both amino acid
and fatty acid metabolism is necessary to target LSCs resistant to
ven/aza treatment (138). BM adipocytes have higher FABP4
expression and promote lipid transport to support the activities
of AML cells, and FABP4 can activate the downstream
peroxisome proliferator-activated receptor (PPARg) to further
induce gene transcription of CD36, FABP4, and BCL2 in AML
cells (140). These studies explain how adipose tissue and fatty
acid transport support AML metabolism and are associated with
drug resistance (Figure 5). In addition, the sphingolipid pathway
is involved in the regulation of leukemia cell apoptosis, thus
targeting sphingolipid metabolism also has considerable clinical
significance (141). Xie SZ et al. demonstrated that S1PR3, a
receptor for sphingosine-1-phosphate, was specifically
overexpressed in the myeloid-like subset of LSCs. S1PR3
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regulates myeloid differentiation, activates inflammatory and
metabolic-related pathways through TNFa–NF-kB axis which
disrupts LSCs stemness (142).

Mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) occur
in 10 to 20% of the patients with AML and play an important role
in the occurrence of AML (143). The mutant IDH1/2 catalyzes
the conversion of a-ketoglutaric acid (a-KG) to 2-HG. The
accumulation of the oncometabolite 2-HG regulates both
epigenetic and metabolic changes in AML (Figure 5). 2-HG
consistently inhibited the activity of cytochrome c oxidase
(COX) and promoted the breakdown of L-glutamine, inducing
the dependence of LSCs on BCL2, thus demonstrating the
therapeutic sensitivity of venetoclax (51). Importantly, the US
Food and Drug Administration (FDA) has approved inhibitors
targeting mutant IDH1 or IDH2 to treat AML with relapses or
resistance to other drugs. Clinical trials of ivosidenib and
enasidenib, respectively mIDH1 and mIDH2 inhibitors, in
newly diagnosed and R/R AML patients with IDH1/IDH2
mutations have improved chemotherapy response, and
mutation-cleared AML patients had a longer duration of
remission and a longer overall survival than patients without
mutation clearance (3, 144–146). Other clinical trials reported
that IDH1/2 inhibitors plus azacytidine achieved a higher
complete response rate and mutation clearance and prolonged
survival (147)(Table 1). But in patients with AML with
simultaneous FLT3-ITD or RAS mutations, IDH1/2 inhibitors
were less effective (148, 149). Mutations in receptor tyrosine
kinase (RTK) pathway genes and IDH-related mutations were
associated with resistance/relapse of ivosidenib (149). These
prompt us to pay attention to the resistance mechanisms of
IDH inhibitors and their combined application with other
targeted inhibitors.
EPIGENETIC ALTERNATIONS DRIVING
DRUG RESISTANCE OF LSCS

Driver mutations in leukemia often involve epigenetic genes, and
subsequent epigenetic abnormalities promote the progression of
AML. Specific epigenetic modifications of LSCs are linked to
chemotherapy resistance and relapse. Methylation, the most
common type of epigenetic modification in tumors, operates at
the DNA, RNA, and histone levels as a “reader”, “writer” and
“eraser” (Figure 6).

Aberrant DNAmethylations are common molecular changes,
including DNA methylation mutations and hypermethylation of
CpG islands, which are associated with the prognosis of patients
with AML (150). DNA hypermethylation generally inhibits gene
expression, while hypomethylation leads to chromosome
instability and abnormal gene activation (151). It was generally
believed that the mutation of epigenetic factors was mainly
involved in the conversion of HSPCs to pre-LSCs, and
involved mainly DNA methyltransferase 3A (DNMT3A) and
Tet methyl cytosine dioxygenase 2 (TET2), which made HSCs
more prone to leukemogenesis (152). Pre-LSCs mutations that
persist after chemotherapy were more likely to relapse of AML.
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DNMT3A mutations are frequently accompanied by FLT3 and
NPM1 mutations in AML. The frequency of LSCs was increased
in samples from patients with triple mutations in AML,
indicating a poor prognosis (153). The deletion mutations of
TET2 coexisted with mutations such as TP53, FLT3, and KRAS,
cooperating to drive the occurrence of leukemia, which is related
to a poor prognosis (154). Another DNA methylation reader, the
methyl-CpG binding domain protein 2 (MBD2), maintained the
quiescent state of LSCs by inhibiting the expression of cyclin-
dependent kinase inhibitor 2C (CDKN2C) by hypermethylation
(155). As a whole, LSCs showed a hypomethylated state rather
than mutation dependence, which overexpressed the HOXA
cluster , suggest ing the possibi l i ty of res istance to
hypomethylating agents (156).

In recent years, increasing studies have revealed the role of
RNA epigenetic modification in the initiation and progression of
AML. N6-methyladenosine (m6A) is the most frequent RNA
epigenetic modification including METTL3/14 methylase as
“writer” proteins, FTO/ALKBH5 demethylase as “eraser”
proteins and YTH family proteins as “reader” proteins.
Patients with higher m6A scores had a higher survival rate,
while those with lower m6A scores had a poor prognosis.
Methyltransferase 3(METTL3) increased the translation of
Frontiers in Oncology | www.frontiersin.org 11
downstream leukemia-related genes, such as MYC, BCL2, and
PTEN mRNA, in an m6A-dependent manner, and depletion of
METTL3 blocked proliferation, induced differentiation, and
apoptosis in immunodeficient recipient mice (157). In
addition, METTL3 recruitment by the transcription factor
CEBPZ to the promoter of SP1, increased its mRNA
methylation level, and promoted its protein translation by
alleviating ribosomal stasis, which was essential for the
maintenance of LSCs (158). STM2457, a METTL3 inhibitor,
strongly reduced the frequency of LSCs, inhibited the
implantation and progression of AML derived from patient
xenografts, and prolonged the life span of recipient mice (159).
METTL14 has also been found to play an important role in LSCs.
METTL14 can enhance the stability of the oncogenic
transcription factor MYB and MYC mRNA and promote
translation to progress AML (160). The fat mass and obesity-
associated protein (FTO) was the first m6A demethylase
identified that removes m6A methylation modifications. FTO
was more abundant in CD34+ AML cells. Knockdown of FTO in
LSCs achieved a lower frequency of LSCs, impaired their self-
renewal ability, and promoted apoptosis and differentiation by
decreasing the expression of MYC and CEBPA in an m6A-
dependent manner (161). Meanwhile, inhibition of FTO
significantly reprogrammed the immune response by inhibiting
the expression of the immune checkpoint gene LILRB4, making
leukemia cells sensitive to T cell toxicity and overcoming
hypomethylation agent-induced immune evasion (162).
Additionally, ALKB Homolog 5 (ALKBH5) was significantly
higher in LSCs derived from AML patients, which was related
to a poorer prognosis. The deletion of ALKBH5 can significantly
inhibit proliferation and impair the leukemia initiation potential
in the immunodeficient mouse model (163). ALKBH5 acts
through the KDM4C-ALKBH5-AXL signal axis in AML.
KDM4C increased chromatin accessibility by recruiting MYB
and Pol II to the ALKBH5 promoter and reducing H3K9me3.
ALKBH5 subsequently promoted the expression of receptor
tyrosine kinase (RTK) AXL, further activated downstream
PI3K, MAPK, JAK/STAT, and NF-kB pathways, and played an
essential role in the development and maintenance of LSCs
(164). Furthermore, recent studies have shown that the m6A
recognition protein YTHDF2 (YTH N6-Methyladenosine RNA
Binding Protein 2) promoted the stemness maintenance of AML
LSCs. The deletion of YTHDF2 improved apoptosis to selectively
eliminate LSCs (165). Recently, it has been discovered that YTH
Domain Containing 1 (YTHDC1) was the top essential m6A
reader in AML from a genome-wide CRISPR screen. YTHDC1
enhanced MYC expression and reduced degradation to maintain
leukemogenesis. YTHDC1 knockdown also reduced LSCs
proliferation, increased differentiation, and delayed the
development of leukemia (166).

Histone modification is an essential form of epigenetic
regulation. Histone methyltransferases (HMTs) and histone
demethylases (HDMs) regulate methylation at different histone
locations. The Histone-H3 lysine-79 (H3K79) methyltransferase
DOT1L and H3K4 demethylases KDM1A play a key role in the
occurrence and development of LSCs harboring the MLL
FIGURE 6 | Epigenetic regulation in LSCs. Methylation operates at the DNA,
RNA, and histone levels as a ‘reader’, ‘writer’ and ‘eraser’. LSCs showed a
hypomethylated state which overexpressed the tumor-promoting gene like
HOXA cluster, MYC and MEIS1. Overexpressed HBO1 in LSCs adds acetyl
to histone H3K14 up-regulating HOXA gene transcription. Me, methyl; Ac,
Acetyl; HMTs, histone methyltransferases; HDMs, histone demethylases;
EZH2, zeste homolog 2; HBO1, lysine acetyltransferase 7; HDACs, histone
deacetylases; DNMTs, DNA methyltransferases; TETs, ten-eleven
translocation; MBD, methyl-CpG binding domain protein 2; m6A, N6-
methyladenosine; METTL3/14, methyltransferase-like protein 3/14; FTO, fat
mass and obesity-associated protein; ALBH5, ALKB Homolog 5YTHDC1/
YTHDF2, YTH family proteins.
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rearrangement by up-regulating stem cell-related genes HOXA
and Meis (167, 168). In the primary AML cells, the KDM1A
inhibitors inhibit PI3K pathway and activate the MEK pathway,
further inhibition of KDM1A sequential the MEK inhibitor
significantly promotes leukemia cell apoptosis especially in M5
leukemia, which was associated with protein phosphorylation
and RAS mutation (169). The DOT1L inhibitor EPZ5676 (170)
and KDM1A inhibitor ORY-1001 (52), respectively, inhibited
the proliferation and differentiation of MLL-LSCs and increased
the survival of transplanted mice. Nuclear receptor binding SET
Domain Protein 1 (NSD1) encodes mono- and di-methylation of
H3K36. The NUP98-NSD1 fusion activated HOX gene through
H3K36 hypermethylation for leukemogenesis, and was identified
as a high-risk factor for AML (171). A recent study reported that
targeting inhibitor of NSD1, BT5, reduced the expression levels
of HOX cluster andMEIS1 and impaired the colony formation of
primary AML cells (172). And inhibition of NUP98-NSD1
reduced leukemia burden and prolonged survival in NUP98-
NSD1 patient-derived xenograft model (172, 173).

Other histone methylation modifications at methyl residues
include H3K27 methyltransferase component zeste homolog 2
(EZH2) and H3K27 demethylase KDM6B. EZH2 is a member of
the Polycomb inhibitory complex 2 (PRC2), which acts as a
transcriptional inhibitor (174). Low levels or loss of the EZH2
protein are associated with chemoresistance and a poor
prognosis (175). However, with the advanced evolution of
AML, EZH2 may play the opposite oncogenic function, which
demonstrates the dependence on tumor stage and context (176).
Thus, targeted EZH2 therapy should consider leukemia status. 3-
Deazaneplanocin A (DZNep), an inhibitor of EZH2 and
H3K27me3, targeted LSCs to induce apoptosis (177).
Overexpression of KDM6B is correlated with poor OS in AML.
GSK-J4, a KDM inhibitor, decreased the level of the cAMP
response element-binding protein (CREB) and inhibited the
proliferation of LSCs (178). However, KDM6B also maintained
self-renewal and quiescence of the HSCs (179). This may limit
the clinical translation of GSK-J4.

Histone modification also includes histone acetylation.
Generally, increased acetylation is related to up-regulating
transcription activity, while decreased acetylation is related to
inhibition of gene expression (Figure 6) (151). The MYST
acetyltransferase HBO1 and acetylation of histone H3K14,
upregulate the HOXA family of genes in MLL-LSCs, which are
essential for the maintenance of LSCs. WM-3835 exhibits a
remarkable anti-leukemic effect in vitro by the reduction of
H3K14ac levels (180). The abnormal recruitment of histone
deacetylase (HDAC) proteins into cancer-causing fusion
proteins such as AML1-ETO, CBFB-MYTH11, PML-Ra and
MLL plays an important role in the development of leukemia
(181). However, clinical results have shown that HDAC
inhibitors are not effective as a monotherapy for AML, and in
vitro experiments have shown that HDAC inhibitors and DNMT
inhibitors cooperate to induce the re-expression of silent genes in
LSCs (53). Phase I clinical trial showed that panobinostat, a
HDAC inhibitor, combined with intensive chemotherapy
induced CR/incomplete count recovery (Cri) in 8 elderly AML
Frontiers in Oncology | www.frontiersin.org 12
patients (54). The reversibility of epigenetic modification
provides an opportunity to personalize AML with specific
epigenetic inhibitors.
THE PROTECTION MECHANISMS OF
LSCS WITHIN THE BM
MICROENVIRONMENT

Chemotherapy-resistant LSCs home and remodel the BM niche
to allow leukemia survival , thus inhibit ing normal
hematopoiesis. The complex crosstalk between LSCs and their
microenvironment contributes to LSCs survival, treatment
resistance, and recurrence (Figure 7). Targeting the LSCs
microenvironment is a critical avenue for the treatment of AML.

BMSCs play a key role in remodeling the leukemia niche. The
CXCR4/CXCL12 axis plays a central role in the regulation of
LSCs-BMSCs interactions. Blocking the interaction between
CXCR4/CXCL12 effectively compromised the homing of LSCs
into the BM niche and rendered leukemia cells sensitive to
chemotherapy (55). The BMSCs transferred mitochondria to
provide additional energy for the survival of both the AML blast
FIGURE 7 | BM niches and drug resistance. LSCs utilize the BM niches for
increased survival. LSCs highly express CXCR4, binding to its ligand
CXCL12, positioned in a hypoxic area. BMSCs also transfer mitochondria to
provide additional energy for the survival of LSCs. Adipocytes provide
sufficient fatty acids for LSCs metabolic reprogramming. LSCs globally induce
immune tolerance via upregulating TIM3 and inducing multiple chemokines
and an inflammatory secretome and thereby promoting leukemia progression.
BM, bone marrow; MSCs, mesenchymal stromal cells; CXCR4, CXC
chemokine receptor-type 4; CXCL12, CXC motif chemokine ligand 12;
IL1RAP, interleukin-1 co-receptor; TIM3/Gal9, T cell immunoglobulin and
mucin protein 3/galectin-9; NF-kB, nuclear factor kB. EVs, extracellular
vesicles.
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cells and the LSCs. And recipient LSCs were resistant to
cytarabine-induced apoptosis and had a greater potential for
leukemia initiation (182). Furthermore, the accumulation of
Nestin+ BMSCs in the bone marrow of AML was critical for
the viability and proliferation of LSCs in vitro and in vivo,
Nestin+ BMSCs induced chemoresistance by increasing energy
production and glutathione-peroxidase (GPX) activity in LSCs
(183). BMSCs protect AML cells from chemotherapy by
increasing stem-type signaling pathways, such as the Notch
and Wnt pathways, and by inhibiting apoptosis (184). In
addition, senescent BMSCs increased the survival and
proliferation of AML in the form of cytokine secretion (185).

The formation and maintenance of the AML niche depend on
the imbalance of the cytokine profile. LSCs existed in a pro-
inflammatory environment that was conducive to the survival
and proliferation of LSCs. Autocrine tumor necrosis factor a
(TNF-a) of LSCs activated NF-kB activity to form the NF-kB/
TNF-a positive feedback loop (186). Similarly, LSCs highly
expressed the interleukin-1 co-receptor IL1RAP, while deletion
of IL1RAP inhibited the stemness of LSCs and increased
apoptosis (187). Researchers have found a specific
overexpression of T cell immunoglobulin and mucin protein 3
(Tim-3) in LSCs. In addition, the formation of the Tim-3/Gal-9
autocrine loop activated NF-kB and b-catenin pathways to
support the self-renewal and survival of AML cells (56).
Treatment with anti-Tim-3 antibodies not only reduced LSCs,
but also regulated immune balance to prevent AML from
immune evasion (188). In BM, several cytokines and soluble
factors have been shown to influence the survival and growth of
leukemia cells. For example, the pro-inflammatory cytokines IL-
1b, GM-CSF, IL-3, TNF-a, and IL-6 appear to promote the
proliferation of AML cells, while anti-inflammatory molecules
such as IL-1Ra, TGF-b and IL-10 exert inhibitory effects (189).
The specific functions of cytokines depend on the crosstalk of
multiple complex molecules within the microenvironment.

Extracellular vesicles(EVs), classified into exosomes,
microvesicles, and apoptotic bodies, also regulate the
interaction between LSCs and the BM niche (190). A growing
number of studies have shown that EVs played a key role in drug
resistance and regulating immune response regulation. EVs
derived from AML bone marrow-derived MSCs promote AML
cell proliferation, migration and protect AML cells from
treatment with AraC (191). BMSCs secrete exosomes and IL-8
to promote the resistance to etoposide in the AML stem cell line
KG1a (192). Chemoresistant AML cells were able to induce
increased expression of MRP-1 in chemosensitive AML cells
through EVs to enable them to be resistant to chemotherapy
drugs (193). EVs contain higher levels of known clinical risk
factors, such as TGF-b1, miR-21, miR-155, miR-10b (194, 195).
Similarly, exosomes carry Fas ligand (FAS-L), NPM1, FLT3,
matrix metallopeptidase 9 (MMP9), insulin-like growth factor
type 1 receptor (IGF1-R), CXCR4, and chaperones to alter the
BM microenvironment and to improve the survival of leukemia
cells, especially LSCs (196, 197). Overall, EVs can directly or
indirectly alter the signaling pathways, or increase the
mitochondrial content, leading to the proliferation, survival,
Frontiers in Oncology | www.frontiersin.org 13
and drug resistance of AML. Therefore, targeted blocking of
EVs in the crosstalk between LSCs and the supportive
microenvironment may be considered a promising therapy.
CONCLUSIONS

Multiple intracellular and extracellular mechanisms are the root
of drug resistance and relapse in AML stem cells, and influence
the dormancy, resistance to apoptosis and senescence, epigenetic
modification, metabolic reprogramming, and protection of the
BM microenvironment. Although corresponding targeted drugs
have been developed and are being applied in the clinic, it
remains difficult to eradicate LSCs. We are now convinced that
AML might alter leukemic clones during treatment, which
results in tumor progression. LSCs were located at the top of
the clonal heterogeneity, and their clonal diversification is
accelerated by the tumor mutation burden (26). AML clone
evolution is divided into linear and branching patterns. The
former stepwise acquires clonal hematopoiesis (CH)-type
mutations and AML-related mutations. The latter parallelly
acquires CH-type mutations and AML-related mutations in
different cell populations (198). CH is prominent in AML
clone evolution, and is assumed to represent a pre-malignant
state. DNMT3A, TET2, and ASXL1 (“DTA”) mutations
prevalently occur early in pre-leukemia hematopoietic stem
and progenitor cells (HSPCs), persist for a long time and are
not considered to be associated with poor prognosis. The
acquisition and persistence of other CH-type mutations like
TP53, IDH1/2 are related to an increased risk of AML relapse
(199). AML transformation occurs with acquirement of AML-
related mutations like FLT3, NPM1, NRAS/KRAS. The relapse of
LSCs clones derives from persistent clonal evolution or new sub-
clonal structures post-chemotherapy. Mutations in AML can
persist after treatment induction, or new types of AML
mutations may appear after chemotherapy, eventually leading
to the recurrence of leukemia (20) (Figure 1). LSCs are the root
of drug resistance and are prone to the co-existence of multiple
mechanisms and crosstalk with the BM microenvironment.

In general, treatment agents must be adjusted to target altered
LSCs clones. Future treatment strategies have been proposed to
address the dynamics of LSCs clones; thus, real-time monitoring
of minimal residual disease (MRD) and timely adjustment of
treatment regimens are critical. Finding more LSCs-specific
therapeutic targets that can avoid affecting normal
hematopoiesis. Furthermore, chemotherapy can induce
multiple drug-resistant LSCs clones, and consequently, it is
critical to focus on the elimination of naïve LSCs that can
minimize the formation of polyclonal LSCs. Regarding
relapsed drug-resistant LSCs, combined therapy is necessary
due to the different mechanisms of drug resistance. Ultimately.
Single-cell combined with multi-omics sequencing will
contribute to the specific identification and the discovery of
key mechanisms of LSCs. Preliminary clinical trials have shown
that the combination of novel agents or with traditional
July 2022 | Volume 12 | Article 896426
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chemotherapeutic agents increased clinical activity, which was
beneficial in overcoming primary resistance and second
resistance in AML.
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