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Purpose: The aim of this study is to compare two methods for improving the
image quality of the Varian Halcyon cone-beam CT (iCBCT) system through the
deformed planning CT (dpCT) based on the convolutional neural network (CNN) and
the synthetic CT (sCT) generation based on the cycle-consistent generative adversarial
network (CycleGAN).

Methods: A total of 190 paired pelvic CT and iCBCT image datasets were included in the
study, out of which 150 were used for model training and the remaining 40 were used for
model testing. For the registration network, we proposed a 3D multi-stage registration
network (MSnet) to deform planning CT images to agree with iCBCT images, and the
contours from CT images were propagated to the corresponding iCBCT images through
a deformation matrix. The overlap between the deformed contours (dpCT) and the fixed
contours (iCBCT) was calculated for purposes of evaluating the registration accuracy. For
the sCT generation, we trained the 2D CycleGAN using the deformation-registered CT-
iCBCT slicers and generated the sCT with corresponding iCBCT image data. Then, on
sCT images, physicians re-delineated the contours that were compared with contours of
manually delineated iCBCT images. The organs for contour comparison included the
bladder, spinal cord, femoral head left, femoral head right, and bone marrow. The dice
similarity coefficient (DSC) was used to evaluate the accuracy of registration and the
accuracy of sCT generation.

Results: The DSC values of the registration and sCT generation were found to be 0.769
and 0.884 for the bladder (p < 0.05), 0.765 and 0.850 for the spinal cord (p < 0.05), 0.918
and 0.923 for the femoral head left (p > 0.05), 0.916 and 0.921 for the femoral head right
(p > 0.05), and 0.878 and 0.916 for the bone marrow (p < 0.05), respectively. When the
bladder volume difference in planning CT and iCBCT scans was more than double, the
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accuracy of sCT generation was significantly better than that of registration (DSC of
bladder: 0.859 vs. 0.596, p < 0.05).

Conclusion: The registration and sCT generation could both improve the iCBCT image
quality effectively, and the sCT generation could achieve higher accuracy when the
difference in planning CT and iCBCT was large.
Keywords: iCBCT, registration, sCT generation, pelvic, CycleGAN
INTRODUCTION

Cervical cancer is an important factor that endangers women’s
lives (1), and radiotherapy is one of the main ways to treat
cervical cancer. The most widely used radiotherapy techniques in
clinical practice are IMRT (intensity modulated radiotherapy)
(2) and VMAT (volumetric modulated radiotherapy) (3, 4), both
of which can provide a high dose to the target area while
protecting more organs at risk (OARs). Higher conformity
requires higher accuracy of the patient’s position during
treatment; thus, image-guided radiotherapy (IGRT) is used to
monitor changes in the patient’s position and anatomical
structure during clinical treatment. The acquisition of CT
image again may increase the treatment burden and radiation,
and CBCT image guidance is most widely accepted in clinical
practice. However, the quality of CBCT images is poor due to the
scattering and artifacts, which is typically not enough for dose
calculation and adaptive radiotherapy. The iterative cone beam
CT (iCBCT) combines the statistical reconstruction and Acuros
CTS scattering correction algorithm (5, 6), which can achieve
uniform imaging with less noise and higher quality. Nevertheless,
the artifacts (cavity artifacts, etc.) still exist, which need to
be improved.

In recent years, deep learning-based image processing
methods have been widely applied to the field of medical
imaging, including medical image segmentation (7–9), disease
diagnosis (10, 11), medical image denoising (12), and medical
image translation (13, 14). The development of deep learning
technology has accelerated the process of clinical treatment and
improved the mining of medical image information. For the
inaccuracy of CBCT images, many scholars have made a lot of
contributions to improve the quality of CBCT images based on
deep learning methods; some of them used the planning CT
(pCT) to be registered to the CBCT to obtain deformed planning
CT (dpCT), which was used to approximately replace CBCT as
the current treatment images. Duan et al. (15) proposed a patch-
wise CT-CBCT registration unsupervised model for thoracic
patients; Han et al. (16) used a segmentation similarity loss, in
addition to the image similarity loss, to train the network to
predict the transformation between the pancreatic CT and CBCT
images. Liang et al. (17) developed a deep unsupervised learning
(DUL) framework based on a regional deformable model for
automated prostate contour propagation from pCT to CBCT. In
addition, some scholars tried to generate sCT from CBCT
images, which was used to replace CBCT as the current
treatment images. Zhao et al. (18) used the modified
2

CycleGAN to generate sCT from MV CBCT; the auto-
segmentation and dose calculation based on sCT showed
promising results. Liang et al. (19) compared the CycleGAN
model with other unsupervised learning methods and
demonstrated that CycleGAN (20) outperformed the other
models on sCT generation. Chen et al. (21) retrained the head
model in the pelvic region, and the improvement of the accuracy
proved the generalization feasibility of sCT generation.

However, the registration accuracy of CT-CBCT depends
more on the consistency of pCT and CBCT images.
Deformable image registration (DIR) enabled accurate contour
propagation and dose calculation for head and neck (22), but
obtained lower accuracy in more complex anatomical regions
such as the lung (23) and pelvis (24). Due to the daily
deformation of the patient’s anatomy, especially for cases with
large differences in bladder volumes in cervical cancer patients,
the accuracy of the registration can be greatly compromised. On
the other hand, the sCT generation is obtained from the trained
model parameters, which may produce some fake structure
inconsistent with the CBCT images. Therefore, this study
implemented image registration based on MSnet and sCT
generation based on CycleGAN to better improve the quality
of CBCT images, and analyzed the effect of anatomical structure
changes in pCT and CBCT scans on the accuracy of registration
and sCT generation.

In this paper, we introduce the dataset acquisition and image
processing in Section 2.1, deformable image registration and data
preprocessing in Section 2.2, and the CycleGAN-based CBCT to
sCT generation in Section 2.3. Then, we present the experimental
results in Section 3 and discuss the experimental results and
related research in Section 4.
MATERIALS AND METHODS

Dataset Acquisition and Image Processing
In this study, 115 cases of cervical cancer were retrospectively
collected between June 2021 and October 2021 at Peking Union
Medical College Hospital. The patients ranged in age from 32 to
73 years with a median age of 56 years. Among them, each
patient includes 1–2 sets of pCT and the corresponding
delineation information. The iCBCT was acquired when the
patient underwent radiotherapy for the first time normally.
Moreover, iCBCT could be obtained in each fraction when the
radiotherapy was delivered in the Varian Halcyon 2.0 system. A
total of 190 pairs of CT and first fraction iCBCT images were
May 2022 | Volume 12 | Article 896795
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collected, of which 150 were used for model training, and 40 were
used for model evaluation. The CT images were obtained on
PHILIPS BrillianceTM Bigbore CT, which has a bore with a
diameter of 85 cm. The plane resolution of the CT ranged from
0.962 mm × 0.962 mm to 1.365 mm × 1.365 mm, and the slice
thickness was 5 mm. The iCBCT images were obtained from the
Halcyon system, with a plane resolution ranging from 0.908 mm ×
0.908 mm to 1.035 mm × 1.035 mm and a slice thickness of 2 mm.
The range of iCBCT was mainly concentrated near the tumor
target area, with a length of about 240 mm. Meanwhile, the
scanning range of CT is longer than that of iCBCT and can
completely cover the scanning range of iCBCT.

The data preprocessing was required before DIR and sCT
generation. The common preprocessing is shown in Figure 1,
which included removing couch, resampling, rigid alignment,
and cropping; the specific preprocessing for registration and sCT
generation will be introduced later. Firstly, the skin prediction
model was combined with the image processing of expansion
corrosion, which can quickly and accurately extract the skin
mask. The interference of redundant information outside the
body was removed, and the HU values outside the body were set
to the HU value of the air (−1000). Secondly, the CBCT and CT
images were resampled to 1 mm × 1 mm × 5 mm. Then, the
CBCT images were set as fixed images, and the CT images were
rigidly aligned to the CBCT images based on the ITK rigid
registration method (25, 26). The redundant layers in the CT
images were removed. Finally, the centroid of the skin mask was
set as the image center; 400 × 288 voxels are cropped out of each
layer of the image, which can completely contain the outline of
the body. It should be emphasized that the entire image
preprocessing is fully automatic without manual participation.

Deformable Image Registration
Although common preprocessing was completed, additional data
processing operations for registration required threshold cutoff
Frontiers in Oncology | www.frontiersin.org 3
and normalization. The threshold range of HU values is [−250,
200]; then, the pixel values of the image data were normalized
and mapped to the range of (−1, 1).

The used registration method was a 3D multi-stage cascade
registration network, which was shown in Figure 2 and realized
the registration of pCT images to CBCT images. The network
expected a pair of CT and CBCT images with 400 × 288 × 48 × 2
voxels and output a deformation field with 400 × 288 × 48 × 3
voxels. The network consists of three stages of registration, which
achieved accurate registration from coarse to fine. The network
architecture is shown in Figure 2B, which included two down-
sampling layers and two up-sampling layers. Six ResNet Blocks
(27) were used to increase the depth of the network and make the
model easier to optimize. The loss function of the registration
included the MIND (modality-independent neighborhood
descriptor) loss (LMIND) (28, 29) and smoothing loss (Lsmooth)
(30). The model was trained and tested on Nvidia Geforce RTX
3090. The batch was set to 20 with the model in stage 1, 4 in stage
2, and 1 in stage 3. The training required approximately 24 h for
200 epochs.

CycleGAN-Based CBCT to sCT Generation
Additional data processing operations for sCT generation was
required, which was according to the formula.

x = Tanh
x
400

� �
where the Tanh function was the hyperbolic tangent function,
defined as

Tanh(x) =
ex − e−x

ex + e−x

Because the final activation function of the generator model
was Tanh, the CBCT and CT images were preprocessed by Tanh,
which could improve the accuracy of sCT generation.
FIGURE 1 | Schematic diagram of data preprocessing.
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The architecture of CycleGAN is shown in Figure 3A, which
mainly included two generators (Gcbct-ct and Gct-cbct) and two
discriminators (Dct and Dcbct): Gcbct-ct generated sCT from the
CBCT image, Gct-cbct generated sCBCT from the CT image, Dct
identified the sCT image from the real CT image, and Dcbct
identified the sCBCT image from the real CBCT image. During
the training process, Gcbct-ct would try to generate an sCT that
made Dct indistinguishable as much as possible, and then Gct-cbct
would convert the sCT image generated in the previous step into
the CBCT image, called cycle CBCT, so as to make the CBCT
image and the cycle CBCT image as consistent as possible. We
compared the accuracy of different networks as generators, such as
the U-net (Figure 3B) and Resnet (Figure 3C). The discriminators
used the same architecture as shown in Figure 3D.

The loss function of the sCT generation consisted of three
parts: ① Adversarial Loss Ladv, which could facilitate the
distribution of the synthetic images similar to that of the
images in the target. ② Cycle-consistency Loss Lcycle, which
could serve as an indirect constraint of structure between the
input and synthetic images. ③ Similarity-constraint Loss Lsc,
which used the MIND loss to enforce the structural consistency
between synthetic images and real images. LG is defined as
follows and the hyperparameters l and m were set to 10.

LG = Ladn + lLcycle + mLsc
Frontiers in Oncology | www.frontiersin.org 4
The model was trained and tested on Nvidia Geforce RTX
3090. Verified by extensive experiments, the batch was set to 6,
the initial learning rate was set to 0.002, and the discrimination
rate was set to 0.02. The epoch number was set to 200, and the
learning rate decreased linearly from 0.002 to 0 in last
100 epochs.

Deformable Image Registration Evaluation
In this study, 40 pairs of CBCT and CT images were used to
evaluate the registration. Due to the poor quality of CBCT
images, the distribution of HU values was also different
from CT images; thus, the single-modal similarity measure
was not accurate to evaluate the registration. Firstly, objective
evaluation criteria were used for images, including normalized
mutual information (NMI) and normalized cross-correlation
(NCC). Then, the dice similarity coefficient (DSC) was used to
evaluate the registration accuracy. The manual contours
delineated on CBCT (Mask_CBCT) were used as the ground
truth, the contours on the pCT image were propagated to the
CBCT image (deformed mask, dMask) through the
deformation matrix, and the DSC values of Mask_CBCT
and dMask could reflect the accuracy of the registration.
The organs for contour comparison included the bladder,
spinal cord, femoral head left, femoral head right, and bone
marrow.
A

B

FIGURE 2 | Our proposed registration method. (A) The network flow diagram. (B) The network architecture.
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NMI(I1, I2) = 2
o
I1

i¼1
o
I2

j¼1
P(i, j) log (

P(i, j)
P(i)P(j)

)

( −o
I1

i¼1
P(i) log (P(i))) + ( −o

I2

j¼1
P(j) log (P(j)))

(1)

NCC(I1, I2) =
1

ninjnk
o

ninjnk

x,y,z

(I1(x, y, z) − mI1 )(I2(x, y, z) − mI2 )

(sI1sI2 )
(2)
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DSC(V1,V2) =
2(V1 ∩ V2)
V1 + V2

(3)
I1 and I2 represent two different images, P(i) means the
probability distribution of the variable i, I(x, y, z) means the
HU value of pixels (x, y, z) in image I. ninjnk is the total number
of pixels in image I. µ and s represent the mean and the standard
deviation of the HU value in an image. V1 and V2 represent the
volume of the two contours for comparison, respectively
A

B

D

C

FIGURE 3 | The flowchart and network architecture of sCT generation. (A) Architecture of CycleGAN. (B) U-net Generator. (C) Resnet Generator. (D) Discriminator.
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Synthetic CT Image Quality Evaluation
The sCT evaluation criteria included mean absolute error
(MAE), root mean square error (RMSE), peak signal-to-noise
ratio (PSNR), and structural similarity (SSIM). The
corresponding dpCT image with MSnet was used as the
ground truth.

MAE(I1, I2) =
1

ninjnk
o

ninjnk

x,y,z
I1(x, y, z) − I2(x, y, z)j j (4)

RMSE(I1, I2) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ninjnk
o

ninjnk

x,y,z
I1(x, y, z) − I2(x, y, z)j j2

s
(5)

PSNR(I1, I2) = 10� log10 (
MAX2

RMSE(I1, I2)
2 ) (6)

SSIM(I1, I2) =
(2mI1mI2 + c1)(2sI1,I2 + c2)

(mI12 + mI22 + c1)(sI12 + sI22 + c2)
(7)

MAX was the maximum HU value in the selected image, and
other parameters are similar to the above.

Considering the difference in the anatomical structure of the
pCT and CBCT images, it is not complete to use the above
evaluation criteria to evaluate sCT generation. The DSC was also
used for sCT evaluation. The manual contours delineated on
CBCT (Mask_CBCT) were regarded as the ground truth, and the
physicians re-delineated the contours based on the generated
sCT (Mask_sCT). The overlap between Mask_CBCT and
Mask_sCT was calculated to evaluate the sCT accuracy. The
organs for contour comparison included the bladder, spinal cord,
femoral head left, femoral head right, and bone marrow.
RESULTS

Deformable Image Registration
The DIR result of pCT and CBCT is shown in Table 1. Rigid
registration was used for setup verification in the clinic and used
for rigid alignment in our experiments, and we wanted to observe
further improvement of DIR compared with rigid registration.
MSnet registration was compared with the Elastix B-spline
registration method (31, 32). It could be seen that both MSnet
and the Elastix had improved the registration accuracy to some
degree. In addition to the DSC of the bladder, MSnet was better
Frontiers in Oncology | www.frontiersin.org 6
than the Elastix in the evaluation of various indicators. Figure 4
showed the difference between CT images and CBCT images
before and after registration; MSnet had better skin contour
alignment. In terms of time, it took 0.15 s for MSnet to get the
dpCT for one case, while the Elastix method needed 30–50 s,
about two hundred times faster.

Synthetic CT Generation
Table 2 shows the CBCT image quality improvement from
CBCT images to sCT images, where CBCT images and sCT
images were compared with dpCT by metrics including MAE,
RMSE, PSNR, and SSIM. Figure 5 showed visualization of sCT
generation for one example. It can be seen from the results that
the generator of Resnet with 15 ResNet blocks had a better effect
than the generator of U-net with 5 down-sampling layers, which
had significant improvement over CBCT in various indicators
and less difference with real CT images. The results showed that
the ResNet blocks could use feature combinations at different
levels to improve CBCT image quality more accurately. Limited
by the busy work and manpower, physicians only re-delineated
the contours of organs on the sCT produced by the Resnet, which
was compared with the contours of CBCT. The DSC results are
shown in Table 3. It can be seen from the results that the
accuracy of sCT was higher than the accuracy of registration.
Except for the femoral head left and femoral head right, the
remaining three organs had significant differences, which also
showed that the sCT had higher structural consistency with
CBCT images compared with dpCT. Figure 6 showed the
boxplot of DSC values for registration and sCT generation.

We analyzed the cases with poor registration performance,
and found that these cases’ anatomical structures of pCT and
CBCT were quite different, especially the bladder volume
difference. When the volume difference was large, it was
difficult to achieve good registration performance. Therefore,
we calculated the volume difference of organs in pCT and CBCT
(including the bladder, spinal cord, femoral head left, femoral
head right, and bone marrow), and then statistically summarized
the accuracy of registration and sCT with increasing volume
difference. The results are shown in Table 4, in which it can be
seen that the volume difference of bony structures (femoral head
and pelvic) was small, most of the volume difference is less than
1%, and a small part may have a volume difference of less than
1% due to inconsistent delineation levels between the upper and
lower ends. The main reason for the lower accuracy of the spinal
cord was the different layers delineated in pCT and CBCT
images. The bladder volume difference of pCT and CBCT was
relatively large among the 40 cases in this study, only 9 had a
volume difference of less than 20%, and 11 had a doubled volume
difference (Diff > 100%). The DSC value of registration also
changed from 0.874 to 0.587. The bladder volume difference was
caused by the different degree of bladder filling during pCT scan
and CBCT scan, which may be related to factors such as drinking
water and waiting time. The above results showed that the
volume difference had almost no effect on the accuracy of sCT,
and had relatively little effect on the registration accuracy of bony
structures (femoral head and pelvis). The volume difference had
a great influence on the registration of soft tissues, especially the
TABLE 1 | The registration result of pCT and CBCT (Ave ± Std).

Rigid Elastix MSnet

NMI 0.350 ± 0.034 0.379 ± 0.033 0.397 ± 0.033
NCC 0.959 ± 0.009 0.969 ± 0.008 0.980 ± 0.005
DSC Bladder 0.738 ± 0.120 0.769 ± 0.125 0.755 ± 0.121

Spinal_Cord 0.631 ± 0.145 0.741 ± 0.075 0.765 ± 0.088
Femoral_Head_L 0.882 ± 0.061 0.913 ± 0.022 0.918 ± 0.028
Femoral_Head_R 0.878 ± 0.052 0.891 ± 0.142 0.916 ± 0.022
Bone_Marrow 0.796 ± 0.071 0.858 ± 0.036 0.878 ± 0.031
May 2022 | Volume 12 | Article 896795
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bladder in this study. Figure 7 shows the effect of bladder volume
difference on registration and sCT accuracy. With the increase of
bladder volume difference, the delineation accuracy of the
bladder in sCT was relatively stable, but the registration
accuracy had dropped significantly.
DISCUSSION

Due to the poor quality of CBCT images, which were often used
for patient setup correction before radiotherapy in the current
clinical practice, they cannot be used directly for accurate dose
calculation. In this study, we had implemented two ways to
improve the quality of CBCT images, including the registration
of pCT to CBCT and the generation of sCT from CBCT. There
existed many studies on CBCT-based dose calculations and
CBCT-guided adaptive radiotherapy, which demonstrated that
registration and sCT generation were acceptable within error
tolerances (33–38). However, few studies had compared the
accuracy difference of registration and sCT generation when
the anatomical structure changes in pCT and CBCT scans. We
Frontiers in Oncology | www.frontiersin.org 7
conducted this study on cervical cancer cases; 150 pairs of CT
and CBCT images were used for model training and 40
independent pairs were used to compare the accuracy. The
manual contours delineated on CBCT images were regarded as
the ground truth to evaluate the accuracy of registration and
sCT generation.

For deformable image registration, we compared our
proposed registration method (MSnet) with the Elastix B-
spline method. MSnet achieved higher registration accuracy
than the Elastix from the analysis of comprehensive indicators,
and the time was significantly improved. It could be clearly seen
from Figure 4 that MSnet had higher accuracy in the alignment
of skin and bony structures, and Table 1 also presented the same
result. If the bladder volume difference in CT and CBCT images
was large, the registration could not be accurate. For the worst
case, the DSC of bladder was less than 0.5, which might cause
errors on dose calculation and be not eligible for precision
radiotherapy. According to the AAPM TG 132 (39), the DSC
of registration in the range 0.8–0.9 was acceptable. When the
bladder volume difference was more than 50%, the registration
was not satisfied.
TABLE 2 | The result of sCT generation (Ave ± Std).

dpCT-CBCT dpCT-sCT (Resnet) dpCT-sCT (U-net)

MAE(HU) 51.23 ± 13.67 43.98 ± 10.74 46.71 ± 12.71
RMSE 121.09 ± 30.23 117.58 ± 28.22 127.96 ± 30.76
PSNR 20.01 ± 2.74 22.23 ± 2.61 20.00 ± 3.77
SSIM 0.623 ± 0.084 0.680 ± 0.050 0.685 ± 0.055
May 2022 | Volume
dpCT, deformed planning CT with MSnet.
FIGURE 4 | Visualization of registration result. rpCT, rigid planning CT; dpCT1, deformed planning CT with Elastix method; dpCT2, deformed planning CT with MSnet.
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CycleGAN was used to generate sCT from CBCT, which had
aroused the interest of many researchers, including KV CBCT
and MV CBCT. There are also related studies using different
CNN structures as generator models. In this study, the U-net and
Frontiers in Oncology | www.frontiersin.org 8
Resnet were compared as generators to evaluate the accuracy of
sCT; the Resnet achieved higher accuracy on our data for metrics
such as MAE. Therefore, we generated sCT with the Resnet
generator for the testing cases, and the physician re-delineated
TABLE 3 | The comparison of registration and sCT (Ave ± Std).

DSC (sCT, CBCT) DSC (dpCT1, CBCT) p1-values DSC (dpCT2, CBCT) p2-values

Bladder 0.884 ± 0.071 0.769 ± 0.125 p < 0.001 0.755 ± 0.121 <0.001
Spinal_Cord 0.850 ± 0.039 0.741 ± 0.075 p < 0.001 0.765 ± 0.088 <0.001
Femoral_Head_L 0.923 ± 0.010 0.913 ± 0.022 0.011 0.918 ± 0.028 0.265
Femoral_Head_R 0.921 ± 0.023 0.891 ± 0.142 0.217 0.916 ± 0.022 0.238
Bone_Marrow 0.916 ± 0.009 0.858 ± 0.036 p < 0.001 0.878 ± 0.031 <0.001
May 2022 | Volume 12 | Arti
dpCT1, deformed planning CT with Elastix. p1-value, DSC (sCT, CBCT) vs. DSC (dpCT1, CBCT). dpCT2, deformed planning CT with MSnet. p2-value: DSC (sCT, CBCT) vs. DSC
(dpCT2, CBCT).
FIGURE 5 | Visual comparison of dpCT, CBCT, sCT (CycleGAN with Resnet), and sCT (CycleGAN with U-net). The HU difference between two image sets. The HU
histogram comparison of dpCT, CBCT, sCT (CycleGAN with Resnet), and sCT (CycleGAN with U-net).
cle 896795
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the contours on the sCT images. The results in Table 3 show that
the sCT accuracy was comparable with the registration on bony
material, and the sCT had achieved obvious advantages in
bladder and spinal cord. Table 4 further illustrates that the
volume difference had little effect on the delineation accuracy of
the sCT, but gradually reduced the accuracy of the registration.
When the anatomical structure greatly changes, the accuracy of
the sCT is higher than that of the registration.

From the analysis of the above results, the sCTgeneratedbasedon
CBCT was superior to dpCT in terms of anatomical structure
Frontiers in Oncology | www.frontiersin.org 9
similarity with the CBCT structure. If the anatomical difference
between pCT and CBCT was small, there was little difference
between the two methods. Although sCT had higher accuracy, we
thought that if the difference between the pCT and CBCTwas small,
the registration could better reflect the real structure of the case; after
all, it was a real CT image. The sCT was generated by a series of
parameters obtained from continuously optimizing the data in the
training set, which may appear out of nothing compared with the
CBCT image. For example, the cavity artifact in theCBCT imagewas
very serious, and the information of the CBCT images was
FIGURE 6 | Boxplot of DSC values for registration and sCT generation. dpCT1, deformed planning CT with Elastix; dpCT2, deformed planning CT with MSnet.
TABLE 4 | The effect of volume difference on registration and sCT accuracy (DSC: Ave ± Std).

Diff(VCBCT ,VpCT ) Counts dpCT1 dpCT2 sCT

Bladder <20% 9 0.874 ± 0.045 0.874 ± 0.043 0.898 ± 0.034
20%–50% 13 0.846 ± 0.032 0.815 ± 0.029 0.905 ± 0.034
50%–100% 7 0.750 ± 0.046 0.737 ± 0.427 0.858 ± 0.106
>100% 11 0.596 ± 0.079 0.587 ± 0.066 0.859 ± 0.088

Spinal_Cord <20% 13 0.763 ± 0.060 0.805 ± 0.079 0.854 ± 0.031
20%–50% 18 0.768 ± 0.062 0.793 ± 0.041 0.854 ± 0.046
50%–100% 5 0.680 ± 0.043 0.700 ± 0.026 0.848 ± 0.029
>100% 4 0.620 ± 0.023 0.582 ± 0.244 0.814 ± 0.013

Femoral_Head_L <1% 7 0.925 ± 0.012 0.931 ± 0.015 0.924 ± 0.007
1%–3% 14 0.910 ± 0.027 0.902 ± 0.038 0.920 ± 0.011
3%–5% 14 0.905 ± 0.018 0.925 ± 0.017 0.926 ± 0.009
>5% 5 0.927 ± 0.010 0.924 ± 0.013 0.923 ± 0.006

Femoral_Head_R <1% 6 0.911 ± 0.017 0.930 ± 0.018 0.926 ± 0.011
1%–3% 10 0.917 ± 0.022 0.925 ± 0.018 0.926 ± 0.019
3%–5% 14 0.915 ± 0.024 0.913 ± 0.022 0.912 ± 0.024
>5% 10 0.910 ± 0.013 0.901 ± 0.021 0.922 ± 0.025

Bone_Marrow <2% 6 0.863 ± 0.016 0.889 ± 0.019 0.920 ± 0.011
2%–5% 17 0.871 ± 0.020 0.885 ± 0.019 0.917 ± 0.011
5%–10% 11 0.857 ± 0.039 0.885 ± 0.018 0.917 ± 0.005
>10% 6 0.818 ± 0.054 0.834 ± 0.047 0.909 ± 0.006
May 2022 | Volume 12 |
Diff (VCBCT ,VpCT ) =
jVCBCT−VpCT j

MIN(VCBCT ,VpCT )
� 100%

dpCT1, deformed planning CT with Elastix; dpCT2, deformed planning CT with MSnet.

100%.
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insufficient, which may bring errors in the post-processing
correction. In addition, structures such as the bladder and the
prostate were close to each other, and the HU values were also very
similar, which cannot be identified on the sCT in some instance.
Although some studies thought that this situation had little effect on
the dose calculation [11], the errors did exist in anatomical structure.

We had studied two methods to improve the image quality of
CBCT, and if the two methods could be effectively combined, they
may lead to better clinical applications. Note that the difference in
bladder volume between pCT images and CBCT images was a
major factor affecting the registration accuracy, which could be used
as a judgment condition for choosing two methods. We evaluated
the accuracy of auto-segmentation on sCT, and the DSC of bladder
was 0.874 ± 0.072, which can replace the contours on CBCT
approximately. Firstly, we have the pCT images and
corresponding contours. When the CBCT images were obtained
before radiotherapy, the pCT was registered to the CBCT to obtain
the propagated contours, especially the contours of the bladder
(dpCT_bladder). Secondly, the CBCT was transformed to sCT,
which can be used for auto-segmentation; we can get the contours of
bladder on sCT (sCT_bladder). If the DSC of dpCT_bladder and
sCT_bladder was above a certain threshold (e.g., DSC > 0.8), the
dpCT and corresponding contours would be used. If it was below a
certain threshold, the physician would check the auto-segmentation
of the sCT for the current radiotherapy, and the generated sCT can
be used for dose calculation and evaluation of adaptive
radiotherapy. The above process can be done automatically in a
short time (less than 1 min), which can be used for more accurate
dose tracking.

Several limitations should be noted in this study. First, we
selected five OARs to evaluate the accuracy of registration and
Frontiers in Oncology | www.frontiersin.org 10
sCT generation, but the target was the most important concern
in clinical practice. It was difficult to delineate the target volume,
the small intestine, and rectum on CBCT images due to the
existence of artifacts, which were also controversial as the ground
truth. In future work, the cases with small differences in
anatomical structures can be selected to evaluate the accuracy
of target delineation in the sCT images. Second, the focus of this
study was to compare the accuracy of registration and sCT
generation on structural similarity; the dosimetric differences
would be done in our next work.
CONCLUSION

We proposed two methods to improve the image quality of
CBCT in this study. Both registration and sCT generation can
effectively improve the image quality of CBCT. When the
anatomical structure changes in pCT and CBCT scans were
small, the accuracy of the registration and sCT was equivalent,
and the anatomical structure of CBCT could be better
represented by dpCT. When the anatomical structure changes
were large, the accuracy of the sCT was higher than that of the
registration, and the anatomical structure of CBCT could be
better represented by sCT.
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