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Role of mitochondrial
translation in remodeling of
energy metabolism in ER/PR(+)
breast cancer
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Maria Tirona2 and Hasan Koc3*

1Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University,
Huntington, WV, United States, 2Department of Medical Oncology, Joan C. Edwards School of
Medicine, Marshall University, Huntington, WV, United States, 3Department of Pharmaceutical
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Remodeling of mitochondrial energy metabolism is essential for the survival of

tumor cells in limited nutrient availability and hypoxic conditions. Defects in

oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis also cause

a switch in energy metabolism from oxidative to aerobic glycolysis contributing

to the tumor heterogeneity in cancer. Specifically, the aberrant expressions of

mitochondrial translation components such as ribosomal proteins (MRPs) and

translation factors have been increasingly associated with many different

cancers including breast cancer. The mitochondrial translation is responsible

for the synthesis 13 of mitochondrial-encoded OXPHOS subunits of

complexes. In this study, we investigated the contribution of mitochondrial

translation in the remodeling of oxidative energy metabolism through altered

expression of OXPHOS subunits in 26 ER/PR(+) breast tumors. We observed a

significant correlation between the changes in the expression of mitochondrial

translation-related proteins and OXPHOS subunits in the majority of the ER/PR

(+) breast tumors and breast cancer cell lines. The reduced expression of

OXPHOS and mitochondrial translation components also correlated well with

the changes in epithelial-mesenchymal transition (EMT) markers, E-cadherin

(CHD1), and vimentin (VIM) in the ER/PR(+) tumor biopsies. Data mining

analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast

cancer proteome further supported the correlation between the reduced

OXPHOS subunit expression and increased EMT and metastatic marker

expression in the majority of the ER/PR(+) tumors. Therefore, understanding

the role of MRPs in the remodeling of energy metabolismwill be essential in the

characterization of heterogeneity at themolecular level and serve as diagnostic

and prognostic markers in breast cancer.

KEYWORDS

mitochondrial translation, mitochondrial ribosomal proteins (MRPs), oxidative
phosphorylation (OXPHOS), breast cancer, ER/PR(+), luminal A
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Introduction

Breast cancer is one of the common causes of cancer-related

deaths in the world due to high rates of invasiveness, metastasis,

and recurrence. Since the recognition of energy metabolism as

one of the major hallmarks of cancer, many studies revealed the

contribution of oxidative phosphorylation (OXPHOS) and

mitochondrial metabolites to the heterogeneity of tumor cell

metabolism in cancer (1–5). OXPHOS complexes, I-V, consists

of mitochondrial and nuclear-encoded subunits localized to the

inner mitochondrial membrane. Mitochondrial genome encodes

for the 13 mRNAs, two rRNAs (12S and 16S), and 22 tRNAs to

support OXPHOS in humans. These 13 mitochondrial (mt)-

encoded essential subunits form the integral core of the

OXPHOS complexes I, III, IV, and V (ATP synthase). mtDNA

mutations, low copy numbers, and reduced mitochondrial

transcript levels are associated with increased metastasis and

poor prognosis in breast cancer (6–10). A subset of genetic

variations in complex I and IV genes, MT-ND2 and MT-COII,

has recently been related to breast cancer risk of European

Americans in 2,723 breast cancer cases and 3,260 controls

from a Multiethnic Cohort Study (11).

In addition to the changes in mt-encoded genes affecting

OXPHOS capacity, nuclear-encoded factors supporting

biogenesis of OXPHOS subunits such as mitochondrial

transcription and translation machineries are also implicated

in remodeling energy metabolism (12–17). Mitochondrial

translation machinery is composed of 55S ribosomes and

translation factors and its components are completely different

from their cytosolic counterparts (18–24). In the initial

proteomics studies of 55S ribosomes, we identified over 80

mitochondrial ribosomal proteins (MRPs) which are solely

responsible for the synthesis of 13 essential OXPHOS subunits

(20, 21, 25–27). Some MRPs have acquired additional roles in

health and various diseases (28–31). For example, two previously

identified pro-apoptotic MRPs, DAP3 and PDCD9 (also known

as MRPS29 and MRPS30), are the bona fide components of the

mitochondrial ribosome involved in apoptosis (32–38).

Altered expression of MRP genes is mostly detected in

various carcinomas, and their possible roles in mitochondrial

translation have been elegantly and systematically reviewed in

several publications (30, 31, 39). Studies from multiple

laboratories have shown the remodeling of the tumor

metabolism by changes in expression of MRP transcripts while

driving heterogeneity, invasive capabilities, and recurrence in

breast cancer (40–47). In agreement with these reports, reduced

DAP3 expression levels have been associated with local

recurrence, distant metastasis, and mortality in breast tumors

(48–50). A single nucleotide polymorphism (SNP) in

chromosome 5p12 breast cancer susceptibility locus affects

MRPS30 expression in estrogen receptor positive (ER(+))

tumors (43, 51–54). Long noncoding (LncRNA) MRPS30-
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divergent transcript (DT) is overexpressed in breast carcinoma

and its knockdown significantly reduced cell proliferation and

invasion in breast cancer cell lines (55). In two independent

studies, overexpression of the MRPL13 gene is proposed as a

possible prognostic biomarker and correlated with unfavorable

clinical outcomes of breast cancer patients (56, 57). Similarly, the

overexpression of the MRPS6 and MRPS23 genes affected

tumorigenic cellular processes in breast cancer and their

knockdown decreased proliferation, expression of select

mesenchymal marker and increased expression of tumor

suppressor genes (58–60). On the other hand, the reduced

stability of MRPS23 by its methylation at arginine R21 has

been shown to promote breast cancer metastasis through

inhibiting OXPHOS subunit expression (61).

As summarized above, the altered gene expression for MRPs

such as, DAP3, MRPS6, MRPS18A, MRPS18B, and MRPS23 has

been detected in highly proliferative and aggressive forms of

breast cancers (40, 45, 46, 48, 50, 60); however, their steady-state

protein expressions have not been studied in relation to neither

OXPHOS subunit nor the mitochondrial translation component

expressions in the majority of these studies. Quantitative

analyses of protein expression in breast cancer and its

subtypes in an unbiased manner have been greatly facilitated

by mass spectrometry (MS)-based proteogenomic studies

(62–65).

In this study, we have used 26 ER/PR(+) biopsies from breast

cancer patients and shown that the altered MRP expression was

correlated with reduced mitochondrial translation and

OXPHOS subunit expression. The mining of the breast cancer

proteomics data published by the Clinical Proteomic Tumor

Analysis Consortium (CPTAC) also supported our findings on

the heterogeneity of OXPHOS subunit and MRP expression in

breast cancer. These observations suggest that defects in

mitochondrial translation components play an important role

in the remodeling of the energy metabolism by altering

OXPHOS subunit expression, and possibly, mitochondrial

apoptotic pathways in ER/PR(+) breast cancer. The alterations

in mitochondrial translation and its components could serve as

diagnostic markers in determining heterogeneity of ER/PR(+)

subtypes and predicting disease prognosis.
Materials and methods

Breast tissue biopsies

Twenty-six treatment-naïve de-identified ER/PR(+) tumor

(invasive ductal carcinoma) and normal breast tissue biopsies

were removed by surgical excision from patients treated at the

Marshall University Edwards Comprehensive Cancer Center,

Huntington, WV. Tumor characteristics of biopsy samples are

given in Table S1. Breast cancer subtypes were determined by
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immunohistochemistry, immunofluorescence, and fluorescence

in situ hybridization techniques by the Edwards Comprehensive

Cancer. Tissue protein lysates were prepared by resuspension

and sonication of biopsies in RIPA buffer containing 1% SDS

and NP40. Protein concentration was determined by the

bicinchoninic acid (BCA) assay (Pierce, Rockford, USA).
Cell culture and pulse labeling

Human breast cell lines MCF10A, MCF7, and MDA-MB-

231 cell lines were purchased from the American Type Culture

Collection (ATCC). The MCF 10A cell line was cultured in

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12

(DMEM/F12 (1:1)) as recommended by ATCC. Monolayer

cultures of MCF7 and MDA-MB-231 cell lines were

maintained in DMEM (HyClone, Thermo-Scientific, Waltham,

MA) containing 10% fetal bovine serum (FBS) (Rocky Mountain

Biologicals, Missoula, MT), 4 mM glutamine, 1 mM pyruvate,

and 1% penicillin/streptomycin (Corning Cellgro, Manassas,

VA). The cells were grown in a humidified incubator at 37°C

with 5% CO2.

The expression of the 13 mt-encoded subunits of OXPHOS

complexes was determined by 35S-Met pulse labeling described

previously (66). Pulse labeling experiments were performed with

breast cancer cell lines grown to 60-70% confluency. After

arresting cytosolic protein synthesis by emetine, cells were

incubated in 0.2 mCi/mL of [35S]-methionine (Perkin Elmer)

containing media for 2h. Cells were lysed in RIPA buffer

supplemented with protease and phosphatase inhibitors (Sigma-

Aldrich). Whole cell lysates (30 mg) were electrophoresed through
13% SDS-PAGE. The gels were dried on 3MM chromatography

paper (Whatman), and the signal intensities of the bands were

quantified by ImageJ.
Immunoblotting analyses

Tissue lysates obtained from biopsies and cell lines were

either diluted further or lysed in RIPA buffer containing 50 mM

Tris-HCl (pH 7.6), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,

1% NP40, 0.1% SDS, 0.5% deoxycholate, and protease and

phosphatase inhibitor cocktails. Protein concentrations were

determined using BCA assays (Pierce, Rockford, USA). The

protein lysates (usually 15-30 µg) were then separated on 12%

SDS-PAGE, transferred to nitrocellulose membranes

(Amersham, GE Healthcare, Pittsburg, PA), stained with

Ponceau S to ensure equal protein loading. The antibodies

were commercially obtained as follows: Human OXPHOS

antibody cocktail and SDHA from Abcam (Eugene, OR);

MRPS30, MRPL11, and MRPS18B antibodies from Sigma

Aldrich (St. Louis, MO); DAP3 (or MRPS29) antibody from

BD Biosciences (San Jose, CA); mitochondrial Citrate synthase
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(CS), DAR2, TSFM, TUFM and TFAM; antibodies from Santa

Cruz (Dallas, TX); and the loading control antibody GAPDH

from Fitzgerald (Acton, MA). The secondary anti-rabbit and

mouse HRP-conjugate antibodies from (Pierce, Rockford, USA).

The protein immunoreactivity was detected using the ECL

Western blotting kit from Amersham (GE Healthcare, UK)

and the membranes were developed per the manufacturer’s

protocol. Immunoblotting signal intensities were quantified by

ImageJ (67) and UN-Scan-It (Silk Scientific, Inc, Orem, UT) and

normalized to Ponceau S stained membranes. Relative protein

expression detected by immunoblotting analyses was

normalized to protein loading adjusted by Ponceau S staining

and the average of protein expression detected by the same

antibody in all biopsies. Normalizing the expression of a protein

in each tumor biopsy to the average of the expression of the same

protein in tumor biopsies was also used in proteomics studies of

breast cancer by CPTAC (65). Due to the differences in breast

tumor and normal tissue albumin expression, relative protein

expression was only compared in ER/PR(+) tumor biopsies to

prevent unequal protein loading (Supplementary Figures 1, 2).
Mitochondrial complex IV activity assays

Breast tissue biopsies and breast cancer cell lines were

homogenized by sonication in Complex IV assay buffer (10

mM Tris-HCl, pH 7.0, 120 mM KCl, 250 mM sucrose, 1 mM n-

Dodecyl-b-D maltoside). Protein concentration was determined

by BCA assay. Complex IV activity was measured kinetically by

oxidation of reduced ferrocytochrome c at 550 nm as previously

described (68). Specific activities were calculated from the linear

region of the kinetic measurements and normalized to the

protein amounts using the Ponceau S staining (Supplementary

Figure 3). The data are expressed as the mean ± SD of at least

three independent experiments of triplicates.
Quantitative reverse transcription
polymerase chain reaction

Total RNA was extracted from breast tumor biopsies in the

presence of TRIzol (Invitrogen, Carlsbad, CA) and converted to

cDNA with the High-Capacity cDNA reverse transcription kit

using random primers (Applied Biosystems, Inc., Foster City,

CA). Quantitative real-time PCR (qRT-PCR) was carried out

using the PowerUp SYBR green master mix (Applied

Biosystems, Inc.), and samples were run on an Applied

Biosystems Step One Plus instrument. The relative expression

values were calculated using the DDCt method for both

biological and technical replicates (33). Relative mRNA

expression levels were calculated using GAPDH as endogenous

control and MCF10A values as calibrator. The following forward

and reverse primers were used for quantitative real-time PCR.
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Fron
GAPDH5' GTCTTCACCACCATGGAGAAGG 3' (FW)

5' ATGAGGTCCACCACCCTGTTGC 3' (REV)

ND65' CTCACCAAGACCTCAACCCC 3' (FW)

5' ATTGTTAGCGGTGTGGTCGG 3' (REV)

COI5' TTCGCCGACCGTTGACTATT 3' (FW)

5' GGGGGCACCGATTATTAGGG 3'(REV)

DAP35' AATCCCACTCAGTCAGAGCC 3' (FW)

5' CCAGTGGATGGAGTTGCCTT 3'(REV)

MRPL115' AAGCAGAGGGGGTTAGTGGT 3' (FW)

5' TGGGGGTTGTCTAGGATGGT 3' (REV)

MRPS18B 5' TCCTGACGTTACATTGTCCCC 3' (FW)

5' AGTCAGAGCCACCAGGTACA 3'(REV)
Statistical analysis

Statistical and graphical analyses were performed using

Excel and GraphPad Prism 9.3. All the values were in

triplicates wherever possible and expressed as mean ± SD,

unless otherwise described.
Results and discussion

Heterogeneity of mitochondrial energy
metabolism in ER/PR(+) breast cancer

Increased energy metabolism, specifically OXPHOS, is

implicated in the progression and metastasis of breast tumors

and is suggested to cause resistance to endocrine treatment (47,

69). Studies revealing the heterogeneity of OXPHOS and the

underlying factors can be essential to develop alternative

treatment options and prognostic markers for ER/PR(+) breast

cancer. To evaluate the modulation of mitochondrial energy

metabolism and biogenesis, we obtained 26 treatment-naïve ER/

PR(+) invasive ductal carcinoma biopsies. The tumor

characteristics and stages of invasive ductal carcinoma biopsies

are given in the Table S1 and the majority of these biopsies were

classified as ER/PR (+) subtype.

One of the convenient and effective ways to determine the

changes in expression of proteins involved in OXPHOS is to

detect steady-state expression of OXPHOS subunits by

immunoblotting using an antibody cocktail that recognizes at

least one subunit from each complex. The cocktail is a mixture of

five antibodies generated against four of the nuclear-encoded

subunits of complex V (ATP5A1), III (UQCRC2), II (SDHB),

and I (NDUFB8) and a mt-encoded subunit of complex IV (MT-

COII). We first compared OXPHOS subunit expression using

equal protein loading in tumor and adjacent normal tissue
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biopsies for each patient. Due to the high albumin content

detected by the Ponceau S staining in normal tissue biopsies,

equal protein loading was not sufficient to demonstrate the

changes in OXPHOS subunit expression in tumor biopsies

relative to the normal tissue lysates. Clearly, the OXPHOS

subunit expression was at least 2-3-fold higher in tumor

biopsies (Supplementary Figure 1). This observation supports

the increase in epithelial cell content in breast tumors and makes

the interpretation of the increased mitochondrial energy

metabolism in breast tumors relative to normal tissue

more challenging.

To evaluate the changes in mitochondrial energy

metabolism in tumor biopsies, equal amounts of tumor lysates

were separated on 12% SDS-PAGE and the same membrane blot

was probed with OXPHOS, SDHA, and GAPDH antibodies

(Figure 1A and Supplementary Figure 2). Relative expression of

each OXPHOS subunit was quantified by normalizing protein

loading to Ponceau S staining and the average signal detected by

the corresponding antibody in all the tissues. Using this analysis,

we were able to quantify OXPHOS subunit expression in ER/PR

(+) tumor biopsies (Figure 1B). The change in expression of

complex I and IV subunits, NDUFS8 and MT-COII,

respectively, were more drastic than that of complex V, III,

and II subunits (shown by arrows in Figure 1A). Although the

NDUFB8 is a nuclear-encoded complex I subunit, its expression

is highly sensitive to the reduced expression of seven mt-

encoded complex I subunits which are shown to be critical for

defining an aggressive phenotype in breast cancer (70).

The changes in MT-COII expression imply a defect in

mitochondrial biogenesis as it is one of the three mt-encoded

subunits of complex IV. To correlate the changes in MT-COII

protein expression to complex IV activity, assays were

performed using biopsies chosen from groups expressing

varying steady-state levels of MT-COII (Figure 1A). Here, the

complex IV activity assay serves as a measure of defects caused

by MT-COI, MT-COII, and MT-COIII and other nuclear-

encoded subunits of complex IV. The complex IV subunit

expression and activity is determined to be the rate-controlling

step in breast cancer (71). Not to our surprise, we also observed a

direct correlation between the subunit expression (shown in

Figure 1A) and the complex IV activities when biopsy samples

from the same patient were compared (Figure 1C). Hence, the

decrease detected in MT-COII expression is directly

proportional to complex IV activities in these biopsies. Taken

together, these observations suggest that the ER/PR(+) breast

cancer can be further sub-classified into tumors with high,

medium, and low OXPHOS activities in ER/PR(+) subtypes.

Recent proteogenomic studies by the CPTAC have provided

MS-based quantitation of proteins expressed in various breast

cancer subtypes (64, 65). The data mining studies of these

proteomics data repositories allowed us to compare the

expression of the same nuclear- and mt-encoded OXPHOS
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subunits in breast cancer luminal A and B subtypes which

mainly correspond to the ER/PR(+) subtype that we analyzed

in this study. Additionally, the expression of nuclear-encoded

subunits SDHA, ATP5A1, UCQRC2, and SDHB displayed more

variability while the mt-encoded subunit MT-COII and
Frontiers in Oncology 05
NDUFB8 expressions were lower in more than half of the

tumor tissues analyzed by the CPTAC (Figure 1D and Table

S2). The agreement between the data from the breast cancer

CPTAC proteomics analyses and our immunoblotting studies

imply that the reduced steady-state expression of complex I and
A

B

D

C

FIGURE 1

OXPHOS subunit expression heterogeneity in ER/PR(+) breast cancer. (A) The expression of OXPHOS subunits, including ATP5A1 (Complex V),
UQCRC2 (Complex III), SDHA and SDHB (Complex II), MT-COII (Complex IV), and NDUFB8 (Complex I),were detected by immunoblotting in ER/
PR(+) invasive ductal carcinoma biopsy lysates. Approximately, 20 mg of protein lysates obtained from tumor tissues was separated by 12% SDS-
PAGE, and equal protein loading was evaluated by GAPDH antibody and Ponceau S staining (see Figure S2). (B) Quantitation of OXPHOS subunit
expression in patient tumor biopsies by normalizing average signal intensities for each antibody to protein loading. AU; arbitrary units. (C)
Complex IV specific activity was determined by measuring the rate of cytochrome c oxidation at 550 nm using equal amounts (~20 mg) of
biopsy lysates selected from patients expressing high, medium, and low levels of MT-COII as shown in panel A. Results represent the mean ±
SD of at least three experiments. (D) Heatmap representation of log2 ratios of OXPHOS subunit expression in luminal A and B subtypes of breast
cancer detected by MS-based proteomics published by Krug et al. (65) (Table S2). Only the ER/PR(+) luminal A and B subtypes analyzed by the
CPTAC used in the figure. The expression of OXPHOS subunits is ranked from high (red) to low (blue) MT-COII log2 ratios.
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IV subunits, NDUFB8 and MT-COII, respectively, contributes

to the heterogeneity of energy metabolism in ER/PR(+)

breast cancer.
Modulation of OXPHOS by mitochondrial
translation in ER/PR(+) breast cancer

Based on our studies of mitochondrial translation over the

decades, one of the most obvious causes for the reduced

expression of mt-encoded subunits of complex IV such as

MT-COI and MT-COII is a defect in the translation

machinery including ribosomes and translation factors. For

this reason, we carried out immunoblotting analyses of several

MRPs associated with breast cancer as well as mitochondrial

translation and transcription factors in tumor biopsies for their

impacts on OXPHOS subunit expression. As shown in

Figure 2A, the changes in the small (28S) and the large (39S)

ribosomal subunit proteins, DAP3 (MRPS29), MRPS18B,

MRPS30, and MRPL11, reflected the changes observed in MT-

COII and NDUFB8 expressions obtained for the same patient

(Figures 1A, 2A). The other translation-related proteins
Frontiers in Oncology 06
mitochondrial translation elongation factor Ts (TSFM) and

mitochondrial aspartyl-tRNA synthetase (DARS2) also

followed a relatively similar pattern to MRP, MT-COII, and

NDUFB8 expressions when compared to the same patient. This

observation allowed us to correlate MRP expressions to

OXPHOS subunit expression and group their expressions as

high, medium, and low in 26 ER/PR(+) biopsies (Figures 1B, 2B

and Supplementary Figure 3). On the other hand, neither

nuclear and mitochondrial transcription factors, PGC1a and

TFAM, respectively, nor VDAC and CS protein expressions

could be correlated to OXPHOS subunit expression in tumor

biopsies (Figure 2A). Therefore, this led us to suggest that

mitochondrial translation is one of the major determinants of

the energy metabolism in a significant number of ER/PR(+)

biopsies analyzed by immunoblotting in our studies.

The correlation observed between the MRP and

mitochondrial translation factor expressions in ER/PR(+)

tumor biopsies was also assessed using the CPTAC breast

cancer proteomics data published by Krug et al. (65). The heat

map analysis of MRPs and various mitochondrial translation-

related proteins factors also verified the reduced expression of

these proteins in the majority of the ER/PR(+) luminal A and B
A

B

FIGURE 2

Mitochondrial translation and transcription related protein expression in ER/PR(+) breast cancer. (A) Relative expression of the mitochondrial
small (28S) and large (39S) subunit proteins DAP3, MRPS18B, MRPS30, and MRPL11 were detected by immunoblotting analyses. TSFM and
DARS2 are the two other mitochondrial translation related factors. Mitochondrial transcription related proteins, TFAM and PGC1a, as well as
VDAC are also detected by immunoblotting of tumor lysates. Approximately 20 mg of lysates were separated by 12% SDS-PAGE and equal
protein loading was evaluated by probing membranes with Ponceau S staining and GAPDH (data not shown). (B) Expression of various MRPs in
the CPTAC data (65) set as described in Figure 1D legend. DAP3 expression in luminal A and B breast tumors is ranked from high (red) to low
(blue) expression to show the correlation between the MRPs and the translation related factors DARS2 and TSFM.
frontiersin.org

https://doi.org/10.3389/fonc.2022.897207
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Koc et al. 10.3389/fonc.2022.897207
subtypes (Figure 2B and Table S2). Moreover, the majority of the

small and large subunit MRP expressions followed a consistent

pattern patient to patient in all the breast cancer subtypes

(Figure S4). Another significant observation was the reduced

expression of MRPs seen in over 70% of the ER/PR (+) luminal

A subtype. The CPTAC proteomics data and our results suggest

that the MRP and/or mitochondrial translation-related protein

expression can be used as prognostic markers of tumor

metabolism in ER/PR(+) breast cancer and its subtypes.
Expression of epithelial-mesenchymal
transition markers and metalloprotease-
2 in ER/PR(+) breast cancer

Epithelial to mesenchymal transition (EMT) is associated

with metastatic characteristics of tumors as well as their

resistance to therapy. In many cases, this transition occurs

through a hybrid state identified by the expression of many

different markers for the epithelial, hybrid, or mesenchymal

states (72). The best predictors for these states are determined by

vimentin (VIM) and E-cadherin (CHD1) gene expression ratio

combined with claudin 7 (CLDN7) expression using the TCGA

breast cancer datasets (73) as well as the correlation of MMP2
Frontiers in Oncology 07
expression to the progression of breast cancer to bone metastasis

(74). Overexpression of the two mitochondrial proteins, citrate

synthase (CS) and complex V subunit, ATP5C1 (or ATP5F1C),

are described as markers for aggressiveness in triple negative

breast cancer (75, 76).

The EMT status of the ER/PR(+) breast tumor biopsies was

evaluated by immunoblotting analyses of VIM, CHD1, and CS

expressions. As anticipated, the majority of the biopsies

expressed high levels of VIM while half of the samples

expressed both VIM and CHD1 (Figure 3A). Expression of

both VIM and CHD1 is interpreted as the hybrid state as

often observed in the TCGA breast tumor data sets (73).

There was no correlation between the tumor stages and high

VIM and CS expressions; however, some of the biopsies still

preserved the CHD1 expression (Figure 3A). When the

expression of EMT markers was compared to OXPHOS

subunit expression for the same patient, the patients with high

to moderate OXPHOS subunit expression, specifically the MT-

COII, with the CHD1 expression suggesting a hybrid EMT state

for the patient (Figure 3A).

Although immunoblotting analyses were not directly

comparable due to different signal intensities, ER/PR(+) breast

tumor proteomics data allowed us to correlate mitochondrial

energy metabolism and translation to EMT status further. The
A

B

FIGURE 3

Expression of epithelial-mesenchymal transition markers in ER/PR(+) breast cancer. (A) Expressions of vimentin (VIM), E-cadherin (CHD1), and
citrate synthase (CS) were detected by immunoblotting using 20 mg of patient biopsies as described in Figures 1A and 2A. Relative VIM, CHD1,
and CS expressions were quantified by normalizing antibody signal intensities to protein loading. (B) Expression of VIM, metalloprotease-2
(MMP2), CHD1, and claudin-7 (CLDN7) was compared to MT-COII and NDUFB8 log2 expression ratios to demonstrate the changes in EMT and
metastatic markers using the CPTAC data set (65) (see text for the discussion). VIM expression is ranked from high (red) to low (blue). Increased
VIM and MMP2 expression in majority of the luminal A and B biopsies correspond to the decreased OXPHOS subunit expression (MT-COII and
NDUFB8) and epithelial markers (CHD1 and CLDN-7).
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log2 protein expression values for OXPHOS subunits and

mitochondrial translation components used in Figures 1D, 2B,

respectively, were compared to VIM, CLDN7, and MMP2

expression going from high to low VIM expression (Figure 3B

and Table S2). The VIM and MMP2 expression trends were in

agreement while CLDN7 expression increased as VIM and

MMP2 decreased. In the majority of the luminal A and B

biopsies with high VIM and MMP2 expression, both MT-

COII and NDUFB8 decreased (Figure 3B). This tendency was

also observed in mitochondrial translation components (Figure

S5). As seen in immunoblotting analyses of ER/PR(+) biopsies,

the OXPHOS subunits, specifically the MT-COII and NDUFB8,

expressions were proportional to the changes in mitochondrial

translation components rather than the mitochondrial

transcription related factors TFAM and PGC1a (Figures 1A,

2A). Moreover, other mitochondrial proteins involved in breast

cancer aggressiveness, such as ATP5C1 and CS did not show any

specific tendency or change with increased VIM and MMP2

expressions in luminal A and B breast cancer subtypes

(Figure 3B). Therefore, the modulation of mitochondrial

translation and/or expression of its components could be

significant in remodeling of energy metabolism and EMT

transition in ER/PR (+) breast cancer.
Defects in OXPHOS and mitochondrial
translation in breast cancer cell lines

Previously, mtDNA mutations, low copy numbers, and

reduced mitochondrial transcript levels were associated with

increased metastasis and poor prognosis in breast cancer (6–9).

The results presented in Figures 1, 2 also clearly demonstrated

that the ER/PR(+) breast tumor biopsies have a high degree of

OXPHOS heterogeneity supported by the changes in MRP

expression or reduced protein synthesis in mitochondria. The

majority of the biopsies had medium or low OXPHOS levels,

while OXPHOS and MRP expression levels were significantly

increased in the remainder. It is then highly likely that the low

OXPHOS levels are due to the defects in mitochondrial

biogenesis including mitochondrial translation and

transcription in the ER/PR(+) biopsies. To recapitulate these

observations, we first determined the OXPHOS subunit

expression in a non-tumorigenic epithelial breast cell line

MCF10A, ER/PR(+) MCF7, and triple-negative MDA-MB-231

cell lines by immunoblotting (Figure 4A). Similar to the patient

biopsies, complex I and IV subunit expressions were more

variable than the complex II, III, and V subunits specifically in

MCF7 and MDA-MB-231 cell lines (shown by arrows in

Figure 4A). The variation at the steady-state nuclear and

mitochondrial-encoded protein OXPHOS subunit expression

was also reflected in OXPHOS activities in these cell lines (4).

We next investigated the role of mitochondrial translation

on reduced OXPHOS subunit expression and complex IV
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activities in breast cancer cell lines. For this purpose, [35S]-Met

pulse-labeling of de novo synthesized mt-encoded proteins was

performed in the presence of emetine, an inhibitor of cytosolic

protein synthesis (66). In this analysis, [35S]-Met is only

incorporated into the 13 mt-encoded OXPHOS subunits by

the mitochondrial translation machinery (Figure 4B). The de

novo protein synthesis relative to that of the MCF10A non-

tumorigenic epithelial breast cell line was reduced by about 50%

and 70% in MCF7 and MDA-MB-231 cell lines, respectively

(Figures 4B). The effect of reduced OXPHOS subunit expression

shown in Figures 4A, B also was observed in complex IV assays

performed using MCF7 and MDA-MB-231 cell lysates. The de

novomitochondrial protein synthesis in MDA-MB-231 cells was

approximately 50% of the protein synthesis in MCF7 cells

(Figure 4B). This reduction was in agreement with the

complex IV activities determined in MCF7 and MDA-MB-231

cells (Figure 4C).

The defect observed in mitochondrial translation could be

due to defect(s) in the expression of mitochondrial translation

components or their transcription. In order to assess their effect

on OXPHOS subunit expression, we performed immunoblotting

and qRT-PCR analyses in these cell lines. Quantitation of

immunoblots showed a clear reduction in several MRPs, such

as DAP3 and MRPS30, as well as mitochondrial transcription

factor TFAM in ER/PR(+) MCF7 cell lines (Figure 4D). A clear

reduction at the steady-state expression of MRPs was not

observed in our analyses of MDA-MB-231 cells; however,

decreased expression of MRPS23, one of the 30 mitochondrial

small subunit ribosomal proteins, and as well as its methylation

at Arg and Lys residues have shown to inhibit OXPHOS and

promote the aggressive and metastatic types of breast cancer

(61). At the transcription level, 16S rRNA and DAP3 transcripts

were reduced in both MCF7 and MDA-MB-231 cell lines

(Figure 4E). The other MRP transcripts on the other hand did

either not significantly change or increased 2-3 folds possibly to

compensate for the reduced synthesis of MRPs, TFAM, or

TUFM in these cell lines (Figure 4E). The 50% decrease

observed in de novo protein synthesis in MCF7 cell lines could

be caused by defects in mitochondrial translation and

transcription (Figure 4B). The only factor that decreased in the

MDA-MB-231 cell line was the mitochondrial translation factor

TUFM. The four-fold reduction in mitochondrial translation

cannot only be explained by the 35% reduction in TUFM

expression in MDA-MB-231 (Figures 4B, D). MDA-MB-231

has relatively high mitochondrial heteroplasmy associated with

higher invasion and metastatic capabilities supported by the

glycolytic energy metabolism rather than OXPHOS compared to

the MCF7 cell lines (77). In fact, the MS-based proteomics

studies performed in our laboratory clearly show that the

expression of glycolytic enzymes increased significantly in

MDA-MB-231 cells relative to that of MCF7 cell lines (Table

S3). The changes determined in the de novo protein synthesis

and in expression of mitochondrial translation components in
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FIGURE 4

Altered OXPHOS subunit expression and mitochondrial translation in breast cancer cell lines. (A) The OXPHOS subunit expression was detected
by immunoblotting of approximately 30 mg lysates obtained from breast cancer cell lines MCF10A (10A), MCF7 (MCF7), and MDA-MB-23 (MDA)
as described in Figure 1A. The relative quantitation of OXPHOS subunit expression represent the mean ± SD of at least three experiments with
MCF10A subunit expression adjusted to 100%. (B) Mitochondrial translation is determined by 35S-Met pulse labeling of 13 mt-encoded OXPHOS
subunits in breast cancer cell lines. The 13 mt-encoded complex I subunits ND1-ND6; complex III subunit cyt b; complex IV subunits COI-
COIII; and complex V subunits ATP6 and ATP8 are labeled on the autoradiography of the 13% SDS-PAGE. Total protein loading (30 mg) is
visualized by Coomassie Blue staining of the 13% gel. Relative quantitation of mitochondrial translation in MCF10A, MCF7, and MDA-MB-231
cells represents the mean ± SD of the pulse labeling of 13 mt-encoded proteins. (C) The complex IV specific activity was determined using
(~20 mg) of MCF7 and MDA-MB-231 cell lysates as described in Figure 1C. (D) Immunoblotting analyses of MRPs (DAP3, MRPS18B, MRPS30, and
MRPL11) and mitochondrial translation (TUFM) and transcription (TFAM) related proteins in breast cancer cell lines. Equal protein loading was
determined by probing membranes with GAPDH and Ponceau S staining (data not shown). Results represent the mean ± SD of at least three
experiments. (E) Relative changes in mt-encoded ribosomal large subunit rRNA, 16S rRNA, and the MRP mRNAs, DAP3, MRPS18B, and MRPL11
were determined by quantitative RT-PCR in the MCF10A, MCF7, and MDA-MB-231 cell lines. Results represent the mean ± SD of at least three
experiments adjusted to MCF10A mRNA expression as the 100%.
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these cell lines could also be correlated to alterations observed in

26 ER/PR(+) breast tumor biopsies.
Conclusions and future directions

Evidence suggests that the mutations and defects in mtDNA

and the proteins supporting OXPHOS and apoptosis alter

mitochondrial function in disease, specifically in cancer.

Undeniably, mitochondria play a key role in these processes;

however, we are far from understanding the cellular and

molecular mechanisms maintaining this balance. In this study,

we investigated the changes in the expression of OXPHOS

subunits and MRPs responsible for the synthesis of 13 mt-

encoded subunits in 26 ER/PR(+) biopsies. Alterations in the

expression of MRPs and mitochondrial translation-related

proteins directly influenced the expression of complex I and

IV subunits, NDUFB8 and MT-COII, in the majority of the

biopsies. The strong agreement between the OXPHOS subunit

expression analysis by immunoblotting and the MS-based

proteogenomic studies by the CPTAC have provided

confidence in our hypothesis given above. Although we were

not able to associate tumor stages and OXPHOS subunit

expression, the reduced OXPHOS and MRP expression in the

majority of the ER/PR(+) biopsies is noteworthy.

With the metabolic heterogeneity of tumor cells in mind, one

of the controversies that need to be resolved is the contribution of

OXPHOS to aggressiveness and development of chemo-resistance

and recurrence in breast cancer. At large, defects and mutations in

mtDNA and other OXPHOS components are known to induce

invasiveness and recurrence in breast cancer (12, 13, 47). In

several histopathological and patient-derived primary cell

studies, the increased mitochondrial mass has been shown to

develop cancer stem-like cells, which are more chemo-resistant,

resulting in tumor recurrence, and distant metastasis (12, 16, 42).

In conclusion, further elucidation of mitochondrial transcription

and translation machineries supporting OXPHOS is necessary to

identify the mechanism(s) fueling breast cancer invasiveness,

metastasis, and chemo-resistance.
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