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The roles of the microbiome in human beings have become clearer with the

development of next-generation sequencing techniques. Several pieces of

evidence showed strong correlations between the microbiome and human

health and disease, such as metabolic disorders, infectious diseases, digestive

system diseases, and cancers. Among these diverse microbiomes, the role of

bacteria in human cancers, especially in cancer cells, has received extensive

attention. Latest studies found that bacteria widely existed in cancers, mainly in

cancer cells and immune cells. In this review, we summarize the latest

advances in understanding the role of bacteria in human cancer cells. We

also discuss how bacteria are transported into cancer cells and their

physiological significance in cancer progression. Finally, we present the

prospect of bacterial therapy in cancer treatment.
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Introduction

Human microbiome is composed of bacteria, viruses, eukaryotic fungi, and protozoa

(1). The roles of the microbiome in humans have become clearer with the development of

next-generation sequencing techniques (2, 3). In healthy conditions, the human host and

microbiome are symbiotic. The human host can provide a nutritious microenvironment

for microbiome to help the human host with the metabolism and digestion process (4, 5).

Several pieces of evidence showed strong correlations between the microbiome and

human disease, such as metabolic disorders (6), infectious diseases (7), digestive system

diseases (8), and cancers (9). Many microorganisms were related to the development of

human cancers, such as bacteria and viruses, including human papillomavirus (HPV),

hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV) (9), and

human endogenous retroviruses K (HERV-K) (10). There are three trillion bacterial
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members in human bodies, which can regulate the

comprehensive interplay of physiological processes and disease

susceptibilities (11). The high genetic diversity of bacteria

encodes excellent mechanistic and metabolic competences that

not only influence their own microbial niche but also regulate

host tissue-specific and immune cell functions (12). Bacteria

may also have health benefits, such as producing metabolites to

fight cancers (13, 14). Butyrate, which is metabolized by

intestinal bacteria, provides energy sources for colonocytes and

suppresses inflammation and carcinogenesis by affecting

immunity, gene expression, and epigenetic modification (14).

Some bacteria, such as Lactococcus, Clostridia, Shigella,

Bifidobacteria, Listeria, Vibrio, Salmonella, and Escherichia,

have demonstrated significant potential for invasion and

colonization in tumors sites, thereby leading to tumor

clearance and retardation of neoplasm growth. Moreover,

some bacteria such as Clostridia strains and Bifidobacterium

longum are able to survive and colonize in the hypoxic condition

of the tumor to destroy it (15, 16).

Recently, the role of bacteria in cancer development has

drawn more attention (17). A well-established link between

bacteria and human cancer is Helicobacter pylori and gastric

cancer (18). The cytotoxin-associated gene A (CagA) produced

by H. pylori is one of the first bacterial proteins identified to

promote human cancer. CagA could activate the oncogenic

signal transduction pathways, interfere with cell cycle and cell

death, and increase the risk of gastric cancer (19, 20). Currently,

only 11 organisms have been formally linked as potential causes

of human cancers, including H. pylori (21), the only bacterium

recognized by the International Agency for Research on Cancer

(IARC). Despite the recent advances in microbiological and

microbiome research, the protumorigenic microbe list by

IARC has not been updated for more than one decade. Recent
Frontiers in Oncology 02
studies suggested that dozens of bacteria could modulate or

contribute to cancers other than H. pylori (22), as shown in

Table 1. Mechanically, bacteria can cause malignant tumors

through the deleterious alterations in the physiological processes

of the host, such as 1) chronic inflammation (38, 39), 2) antigen-

driven lymph proliferation (40), 3) induction of hormones that

increase the proliferation of epithelial cells (19, 20), 4) directly

affecting oncogenesis through changing the cell transformation

(41), or 5) interrupts the cellular signal by the production of

carcinogenic metabolites or toxic substances, therefore,

interfering with the regulation of cell growth (14, 42).

Bacteria were first discovered in human cancers about 100

years ago (43). All of the above studies described the role of

extracellular bacteria in human cancers. The characterization of

bacteria in human cancers has not been well studied due to their

low biological expression. A recent report comprehensively

analyzed the microorganisms in seven human cancers and

demonstrated that the bacteria in cancers are primarily located

in cells, including cancer cells and immune cells (44). Moreover,

Livyatan et al. (45) also verified that bacteria were alive in cancer

cells, but not bacterial components.

In this review, we summarize the latest progress in

understanding the role of bacteria in human cancer cells and

discuss how bacteria are transported into cancer cells and their

physiological significance in cancer progression. Finally, we

present the prospect of bacterial therapy in tumor treatment.
Bacteria inside human cancer cells

The microbiome of human cancer and its adjacent normal

tissues was analyzed in more than 1,500 samples, and a bacterial

catalog of seven different cancer types was generated (44). Cancer
TABLE 1 Cancer-associated bacteria.

Bacteria Cancer Expression Mechanism Function References

Helicobacter
pylori

Gastric
cancer

High Wnt/b-catenin pathway Regulating cellular
turnover and apoptosis

(23)

Correa pathway Chronic inflammatory
response

(24, 25)

Fusobacterium
nucleatum

CRC High Invasion of CRC cells Influencing CRC
development

(26)

OSCC High Invasion of OSCC cells Pro-inflammatory
cascades

(27)

Escherichia coli CRC Imbalance Inducing inflammation, oxidative stress, changes in the cellular niche,
interference and manipulation of the host cell cycle

Promoting cancer
formation

(28, 29)

Bacteroides
fragilis

CRC High Inducing chronic
intestinal inflammation and tissue damage

Promoting colon
tumorigenesis

(30–33)

Activation of Wnt/b-catenin, NFkB pathway, and Th17 adaptive immunity Promoting colon
tumorigenesis

(30, 34–36)

Salmonella
enterica

Gallbladder
cancer

High Activation of MAPK and AKT pathways Cancer tumorigenesis (37)
fr
CRC, colorectal cancer; OSCC, oral squamous cell carcinoma; MAPK, mitogen-activated protein kinase.
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microbiome showed distinct microbial characteristics across

different cancer types and even different subtypes (44).

Visualization method showed that bacteria in cancers were

mainly located in cancer and immune cells, not in the

extracellular compartment (44, 45). Bacterial lipopolysaccharide

(LPS) and lipoteichoic acid (LTA) were detected by

immunohistochemistry (IHC) to label Gram-negative and

Gram-positive bacteria, respectively (46). RNA fluorescence in

situ hybridization (FISH), with a universal probe against bacterial

16S ribosomal RNA (rRNA), was used to detect bacterial RNA in

cancer tissues (47). The examination of LPS, LTA, and bacterial

16S rRNA was performed in different cell types across 459, 427,

and 354 cancer cores, respectively (44). It was found that LPS and

16S rRNA were mainly located in cancer cells and immune cells.

In cancer cells, bacterial 16S rRNA was detected mostly in the

cytoplasm, whereas LPS was detected in both the cytoplasm and

the nucleus. LTA was only detected in macrophage cells but rarely

in cancer cells and immune cells (44). To further verify the

presence of bacteria inside cancer cells, the bacteria were found

in close proximity to the nuclear membrane in four human breast

cancer tissues by correlative light and electron microscopy

(CLEM) (44). The bacteria were not detected in the nucleus,

indicating that the appearance of LPS nuclear localization in some

cancer cells was probably the staining of cytoplasmic perinuclear

bacteria (44).

While positive FISH staining of bacterial 16S rRNA

confirmed the diffused signal inside cancer cells, typical

bacterial rods or cocci were rarely detected. Notably, no cell

wall polymer LTA was detected in cancer cells, but many Gram-

positive bacteria in human cancers were detected by 16S rDNA

sequencing, suggesting that bacteria in human cancer cells may

alter their envelope, perhaps result in a cell wall-deficient state,

such as L-forms (48). Cell wall-deficient bacteria were only

found inside cells (49, 50). In breast cancer, many intracellular

cell wall-deficient bacteria were indeed found (44). Bacteria in

the cytoplasm of breast cancer cells were also confirmed in the

study by Fu et al. (51).
How are bacteria transported into
human cancer cells?

There are more than 1,000 different species totaling 1,014

microorganisms of the human intestinal microbiome. The

microbiome is involved in the important normal physiological

activities of the intestine, such as energetic metabolism,

proliferation of epithelial cells, and resistance of pathogens

(52). Fusobacterium nucleatum is an opportunistic commensal

anaerobe in the oral cavity, implicated in various forms of

periodontal diseases. Outside the oral cavity, it is one of the

most prevalent species in extraoral infections. F. nucleatum was

highly expressed in colorectal cancer (CRC) and was related to
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CRC development (26), indicating that an oral pathogen

associated with oral squamous cell carcinoma (OSCC) might

also be related to distant cancers (26, 53). Additionally, F.

nucleatum was also associated with liver metastasis, further

suggesting its role in cancer development (54). F. nucleatum

adheres to and invades endothelial and epithelial cells via FadA

to get systemic transmission (27, 55). This leads to the

internalization of pathogens and mediated the pro-

inflammatory cascade by the induction of nuclear factor (NF)-

kB (NFkB) and interleukin-6, constituting a possible way by

which F. nucleatum invades OSCC cells (55, 56). FadA is highly

conserved among F. nucleatum and was expressed on the

bacterial surface (57). It can specifically bind to the EC5

region of E-cadherin on CRC cells to attach to and invade

CRC cells, which was also demonstrated in HEK293 cells (58). F.

nucleatum is also highly expressed in esophageal squamous cell

carcinoma (ESCC) tissues (59) compared with their adjacent

non-tumor tissues. Recently, it was also observed by

transmission electron microscopy that it has the ability to

invade ESCC cells (59). But how are bacteria transported into

cancer cells was not reported in detail. Combined with previous

reports, we speculated that bacteria might transfer to distant

cancer cells by the digestive tract (direct diffusion), lymph, or

blood pathway (60). The proposed mechanisms of how bacteria

invade cancer cells are shown in Figure 1.
What roles do bacteria play in
human cancer cells?

The study by Rubinstein et al. (58) demonstrated that FadA

can bind to E-cadherin expressed on CRC cells and mediate F.

nucleatum attachment and cell invasion. Then, FadA activates b-
catenin signaling, leading to increased expression of

transcription factors, oncogenes, Wnt genes, and inflammatory

genes to promote CRC cell proliferation (58). Furthermore,

FadA directly regulates Wnt and oncogene activation upon

binding to CRC cells , but clathrin-mediated FadA

internalization is also required for the inflammatory gene

activation (58). In mice, CRC cells with F. nucleatum infection

can increase their proliferation, invasive activity, and the ability

to form xenograft cancers (58, 61). Another study demonstrated

that F. nucleatum could activate toll-like receptor 4 signaling to

MYD88, resulting in activation of the nuclear factor NFkB and

elevated expression of miR21, which reduced the expression of

the RAS GTPase RASA1 (61). In ESCC, F. nucleatum was

associated with poor survival and promoted cancer cell

growth, migration, and invasion. It can invade ESCC cells and

induce the NFkB pathway through the nucleotide-binding

oligomerization domain-containing protein 1 (NOD1)/

receptor interacting serine threonine kinase 2 (RIPK2)

pathway, leading to tumor progression. With the help of a
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murine spontaneous breast tumor model, it can be found that

after clearing the bacteria in cancer cells, tumor weight was not

affected, but lung metastasis decreased significantly. This shows

that the intracellular bacteria are likely to affect the metastasis

process rather than the growth of breast cancer (51). After

bacteria invaded breast cancer cells, RhoA-ROCK signaling

pathway can be activated to reorganize the cytoskeleton and

help breast cancer cells resist the pressure from blood vessels and

avoid damage during metastasis. Therefore, breast cancer cells

carrying bacteria have a stronger ability to reach distant tissues

for metastasis (51).
Bacteria in cancer treatment

The usefulness of eukaryotic and prokaryotic expression

systems in delivering therapeutic payloads has been explored,

including cytotoxic agents (62, 63), prodrug invertase (64, 65),

immunomodulators (66), tumor matrix-targeting molecules (67,

68), and siRNA (68). Prokaryotic expression systems discussed

above are themost commonly usedmethods. They encode targeted

genes depending on bacterial prokaryotic plasmids (67, 69).

Eukaryotic expression systems involve the transduction of host

cells, such as immune cells or tumor cells, with the eukaryotic

plasmids encoding the cDNA of target genes (70).

F. nucleatum is highly expressed in CRC tissues. Treatment

with the antibiotic metronidazole can reduce F. nucleatum
Frontiers in Oncology 04
amount, cancer cell proliferation, and cancer growth in F.

nucleatum-positive CRC (54). Therefore, bacteria may become

therapeutic targets in cancer treatment. Mycobacterium bovis

strain bacillus Calmette–Guérin (BCG) was first used in bladder

perfusion therapy in the 1970s for the prevention and treatment

of non-muscle-invasive bladder cancer (NMIBC). Intravesical

instillation of BCG can significantly reduce cancer recurrence in

NMIBC patients (71).

Despite being therapeutic targets in cancer treatment,

bacteria can also regulate the effect of chemotherapy.

Escherichia coli could influence the chemotherapy effect in

gemcitabine and CB1954 by inducing drug resistance and

activating cytotoxicity, separately (72, 73). As a cell taxon in

pancreatic tumors, gammaproteobacteria can express an isoform

of cytidine deaminase that inactivates gemcitabine, thereby

reducing the concentration of gemcitabine in tumors and

developing chemotherapy resistance (73). The number of F.

nucleatum increased in CRC patients who relapsed after

chemotherapy compared with those who did not relapse after

chemotherapy (74). In CRC, F. nucleatum can biologically

control chemotherapy resistance by coordinating TLR4-

MyD88, miR18a and miR4802 and ULK1/ATG7 autophagy

networks (74). This helps us to propose an important clinical

question: are the conventional chemotherapy regimens

including capecitabine plus oxaliplatin suitable for CRC

patients with high expression of F. nucleatum? We suggest

that chemotherapy regimens of patients with a high expression
FIGURE 1

Overview of proposed mechanisms that Fusobacterium nucleatum invading cancer cells. F. nucleatum is a common bacterium in the oral
cavity. F. nucleatum invades ESCC cells and CRC cells. F. nucleatum may transfer through lymph, vessel, or direct diffusion. F. nucleatum
promotes ESCC progression by the NOD1/RIPK2/NFkB pathway. FadA is highly conserved among F. nucleatum and expressed on the bacterial
surface. FadA binds E-cadherin on CRC cells to attach and invade CRC cells. Then, NFkB signaling and b-catenin signaling are activated to
induce a pro-inflammatory cascade to promote CRC progression. ESCC, esophageal squamous cell carcinoma; CRC, colorectal cancer; Fn,
Fusobacterium nucleatum; NOD1, nucleotide-binding oligomerization domain-containing protein 1; RIPK2, interacting serine threonine kinase
2; NFkB, nuclear factor-kB.
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of F. nucleatum can be combined with anti-F. nucleatum

treatment or autophagy inhibitors. A serious adverse reaction

of irinotecan in cancer treatment is high intestinal toxicity.

SN38, the active metabolite of irinotecan, is subsequently

conjugated to SN38-G by hepatic UDP-glucuronyltransferase.

SN38-G, an inactive metabolite of irinotecan, is excreted into the

small intestine and then discharged from the body. The b-
glucoronidases generated from intestinal bacteria can

transform SN38-G into SN38, causing direct damage to the

intestinal mucosa (75). Chemotherapy and associated mucosal

damage may also affect the composition of the intestinal

microbiome. Moreover, 5-fluorouracil (5-FU) can regulate the

oral and fecal microbiome of laboratory animals by increasing

Gram-negative anaerobic bacteria (76).

There was also an interaction between radiotherapy and

ecological imbalance of intestinal flora. After radiotherapy, the

imbalance of intestinal microbiota is characterized by the

reduction of the abundance of symbiotic bifidobacteria, fecal

bacilli, and Clostridium and the increase of Bacteroides and

Enterococcus (77, 78). In vitro studies have shown that oral

vancomycin induces the reduction of Gram-positive bacteria in

the intestine and is associated with the enhanced efficacy of

radiation therapy in melanoma, lung cancer, and cervical

cancer models, which may possibly be through interferon-g
and CD8 T cell-dependent mechanisms (79). On the contrary,

in the mouse model of breast cancer radiotherapy, antibiotics

induced the decrease of Clostridium and the increase of

intestinal yeast, promoting a macrophage-mediated tumor

response (80). Intestinal bacteria may also be translocated

through the damaged intestinal barrier, thereby regulating

radiation toxicity, further contributing to uncontrolled

intestinal immune response and tissue damage (81).

Compared with most other traditional drug delivery

systems, bacteria have unique capabilities as drug carriers for

cancer treatment. They can overcome physical barriers to target

and accumulate in cancer tissues and initiate an anticancer

immune response (82). The new discovery that bacteria exist

in cancer cells (44) can promote the hypothesis that bacterial

carriers can accurately deliver drugs to cancer cells.

In addition, bacteria can be genetically and chemically

modified to produce and deliver anticancer agents to cancer

tissues, thus improving the safety and effectiveness of cancer

treatment while reducing the cytotoxicity to normal cells.
Conclusions and prospects

In this review, we briefly summarize the recent progress in

understanding the development or correlation between bacteria

and cancers and the future research approaches beneficial to this

field, including carrying drugs to help kill cancer cells.

Visualization method showed that bacteria in cancers were

primarily located in cancer and immune cells, rather than in
Frontiers in Oncology 05
the extracellular compartment (44, 45). The bacteria were found

in close proximity to the nuclear membrane in human breast

cancer tissues (44). The correlation between F. nucleatum and

CRC has been extensively demonstrated. Targeting this

bacterium in the gastrointestinal tract and the potential

development of bacteria-targeted therapy against F. nucleatum

are promising research approaches. FadA could specifically bind

to the EC5 region of E-cadherin on CRC cells to attach to and

invade CRC cells (58). Then, FadA can activate the b-catenin
signaling to promote CRC cell proliferation (58). F. nucleatum

can also invade ESCC cancer cells and promote cancer

progression through the NOD1/RIPK2/NFkB pathway. This is

a specific study of how bacteria entered tumor cells and played

their roles (Figure 1).

Studying the causal relationship and molecular interaction

between bacteria and cancers promises to provide new clues for

the development, progression, and treatment response of human

cancers. In addition to trying to understand bacterial

associations and causality in cancer, such research also faces

arduous challenges related to sample allocation, processing,

sequencing, and data analysis. Despite these challenges, the

contribution of bacteria to cancer biology may occupy a

central position in cancer research over the next decade,

making more contributions to cancer diagnosis, patient

stratification, and treatment.
Limitation

However, the way other bacteria enter cancer cells and how

diseases affect tumor progression in which way still require

further study. There are still many questions that need to be

explored. What is the origin of bacteria in cancer? Does the

composition of the bacteria change with cancer progression? Do

bacteria “travel” with cancer cells to metastatic sites? Are there

any bacteria at metastasis sites more relevant to the new

location? We should focus on exploring and solving the above

problems to better contribute to the treatment of cancers.
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