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Ultrasound-based radiomics
XGBoost model to assess the
risk of central cervical lymph
node metastasis in patients with
papillary thyroid carcinoma:
Individual application of SHAP
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Yingbin Chen4, Fang Sun1, Zhi Yang1, Guanghe Cui1,
Xijun Zhu1, Xu Cui1 and Feifei Liu1,5*

1Binzhou Medical University Hospital, Binzhou, China, 2First Teaching Hospital of Tianjin University
of Traditional Chinese Medicine, Tianjin, China, 3National Clinical Research Center for Chinese
Medicine Acupuncture and Moxibustion, Tianjin, China, 4Nanjing No. 1 Hospital, Nanjing, China,
5Peking University People’s Hospital, Beijing, China
Objectives: A radiomics-based explainable eXtreme Gradient Boosting

(XGBoost) model was developed to predict central cervical lymph node

metastasis (CCLNM) in patients with papillary thyroid carcinoma (PTC),

including positive and negative effects.

Methods: A total of 587 PTC patients admitted at Binzhou Medical University

Hospital from 2017 to 2021 were analyzed retrospectively. The patients were

randomized into the training and test cohortswith an 8:2 ratio. Radiomics features

were extracted from ultrasound images of the primary PTC lesions. Theminimum

redundancy maximum relevance algorithm and the least absolute shrinkage and

selection operator regression were used to select CCLNM positively-related

features and radiomics scores were constructed. Clinical features, ultrasound

features, and radiomics score were screened out by the Boruta algorithm, and the

XGBoost model was constructed from these characteristics. SHapley Additive

exPlanations (SHAP) was used for individualized and visualized interpretation.

SHAP addressed the cognitive opacity of machine learning models.

Results: Eleven radiomics features were used to calculate the radiomics score.

Five critical elements were used to build the XGBoost model: capsular invasion,

radiomics score, diameter, age, and calcification. The area under the curve was

91.53% and 90.88% in the training and test cohorts, respectively. SHAP plots

showed the influence of each parameter on the XGBoost model, including

positive (i.e., capsular invasion, radiomics score, diameter, and calcification) and

negative (i.e., age) impacts. The XGBoost model outperformed the radiologist,

increasing the AUC by 44%.
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Conclusions: The radiomics-based XGBoost model predicted CCLNM in PTC

patients. Visual interpretation using SHAP made the model an effective tool

for preoperative guidance of clinical procedures, including positive and

negative impacts.
KEYWORDS

radiomics, lymphatic metastasis, papillary thyroid carcinoma, ultrasound,
machine learning
Introduction

Central cervical lymph node metastasis (CCLNM) is a

critical factor affecting prognosis and recurrence in papillary

thyroid carcinoma (PTC) patients (1). Therefore, preoperative

prediction of CCLNM in an accurate and non-invasive manner

is important. Ultrasound is the preferred method for evaluating

PTC according to American Thyroid Association (ATA)

guidelines (2). However, ultrasound shows limitations for

assessing central cervical lymph nodes because of the

interference from gas in the esophagus and trachea.

Ultrasound only detects 20-31% of CCLNM preoperatively

and only alters the surgical procedure of 20% of patients (3).

Radiomics mine quantitative image features from medical

imaging in a high-throughput manner to improve predictive,

diagnostic, and prognostic accuracy (4). Radiomics has shown

clinical importance in breast (5), thyroid (6), bladder (7), and

colorectal cancers (8). Ultrasound-based radiomics can assess

lymph node metastasis in PTC patients to some extent (9, 10).

Previous studies were primarily based on radiomics features, and

logistic regression analysis was used to construct a nomogram

for clinical prediction. The logistic model has good

interpretability, and its model coefficient represents the

importance of features to the prediction results. However,

some variables with a causal relationship with the output

variables may not be statistically significant (11). If variables

are excluded only from statistical assumptions, available

information will be reduced and features of improving

prediction ability may be missed.

Machine learning is widely used in the medical field and has

a high predictive accuracy (12). However, this model is a

complex nonlinear relationship and the limitation of its

application in clinical practice is caused by the inexplicability

of the model. Several classification algorithms were used to

compare diagnostic performance, such as eXtreme Gradient

Boosting (XGBoost), deep learning, and transfer learning (6,

13, 14). However, these algorithms all have the “epistemic

opacity” problem. The SHapley Additive exPlanation (SHAP)

concept was introduced to solve the inexplicability bug (15).
02
SHAP was successfully used to assess mortality in patients with

gastrointestinal bleeding (16), prognosis of COVID-19 (17), and

mortality in critically ill influenza patients (18).

Here, we constructed a radiomics-based machine learning

model based on the ultrasound features of primary PTC lesions.

We examined whether SHAP could perform interpretation of

CCLNM. The purposes were as follows: to extract the critical

features for predicting CCLNM; to establish radiomics-based

machine learning model based on key features for CCLNM

prediction; and use SHAP to complete the individualized

visual interpretation.
Materials and methods

Patients

The pathological records of 704 PTC patients at Binzhou

Medical University Hospital, Shandong, China (2017–2021)

were retrospectively analyzed. Exclusion criteria were neck

surgery or radiation therapy; history of other malignancy;

measuring lines on the ultrasound images; nodules too large to

obtain images covering the complete outline of the nodules, even

after adjusting the scanning section position; and lacking

complete clinical information. All patients were older than 18

years old with complete ultrasound image data. On the other

hand, skip metastases are defined as lateral lymph node

metastasis without the involvement of CCLNM in PTC. For

such patients, although there was no CCLNM, the presence of

metastatic lymph nodes in the lateral cervical region may also

affect the model we constructed, so we excluded the patients with

skip metastasis. Finally, the study included 587 PTC patients.

Scikit-learning frame (Python programming language, version

3.7.9) was used to divided the patients into the training and test

cohorts at a ratio of 8:2 randomly (Figure 1). CCLNM was

diagnosed by pathological evaluation. The principles of

operation for PTC patients are shown in Appendix 1. This

study was approved by the institutional ethics committee of

Binzhou Medical University Hospital (No. LW-024). Given the
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retrospective nature of the study, the requirement for written

informed consent was waived.
Ultrasound image acquisition
and analysis

Data were scanned with three different Doppler ultrasonic

diagnostic apparatuses (Appendix 2). The diagnostic criteria of

PTC on ultrasound were based on ATA guidelines. Ultrasound

image analysis methods are shown in Appendix 3 and Appendix

Figure 1. Ultrasound parameters included diameter, location

(right lobe, left lobe, or isthmus), composition (mixed or solid),

echogenicity (hyper/isoechoic, hypoechoic, or very hypoechoic),

shape (wider-than-tall or taller-than-wide), margin (smooth, ill-

defined, or lobulated/irregular), calcification (none,

macrocalcification, rim calcification, or microcalcification),

vascularization, and capsular invasion.
Radiomics workflow and score

Original images were exported from the ultrasound imaging

workstation in digital imaging and communications in medicine
Frontiers in Oncology 03
(DICOM) format and imported into ITK-SNAP (version 3.8.0).

The polygon tool was used to sketch along the nodule edge to

generate regions of interest. The original and segmented images

were saved in NRRD format. Histogram equalization was used to

preprocess the segmented images (Appendix 4 and Appendix

Figure 2). Shape, first-order, texture, wavelet, square root,

logarithm, gradient, square, and exponential features were

automatically extracted using open-source software

(Pyradiomics; http://pyradiomics.readthedocs.io/en/latest/

index.html). To ensure the reliability and accuracy of the

results, zero-mean normalization (z-score) was performed for

data normalization to eliminate index dimension differences of

data (19). Features with missing values were deleted; the

moderated t-test method was used for difference analysis of

the remaining elements. Interclass correlation coefficient (ICC)

was used to assess the interobserver agreement of the feature

extraction; ICC greater than 0.75 was excellent. A minimum-

redundancy maximum relevance (mRMR) was used to remove

redundant features. The least absolute shrinkage and selection

operator (LASSO) logistic regression method using 10-fold

cross-validation was applied to select the most useful

predictive CCLNM status-related features from the training

cohort. A radiomics score was generated per patient using a

linear combination of the chosen features weighted by the

LASSO algorithm (Figure 2).
FIGURE 1

Flowchart of patient selection and group allocation for the study.
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Boruta algorithm: Key features selection

Previous screening methods based on the feature importance

of decision trees tended to overestimate the importance of high

frequency or high cardinality variables. Therefore, we used the

Boruta algorithm, which is suitable for random forest and

XGBoost classifiers, to filter out all feature sets used to predict

CCLNM status (20). A Boruta algorithm incorporating the

independent ultrasound variables, clinical factors, and

radiomics score selected the final predictors for CCLNM.
Establishment and validation of the
XGBoost model

Imbalanced data problems significantly degrade the

classification performance in machine learning (21). Therefore,

we applied the synthetic minority oversampling technique

(SMOTE), an oversampling method that randomly generates

new instances of minority classes to balance the number of

categories (22), during the training process. We used the

SMOTE method to generate a perfectly balanced dataset with

the same number of instances based on the primary group.

The XGBoost model was constructed based on the final key

features screened by the Boruta algorithm. The XGBoost

algorithm is described in Appendix 5. After the XGBoost

model training, a 10-fold cross-validation grid-search method

was used to fine-tune the XGBoost algorithm. The balanced

accuracy (BA), F-score, Matthew’s correlation coefficient

(MCC), precision, recall, and area under the receiver operating

characteristic (ROC) curve (AUC) were applied to assess the

XGBoost model. The model accuracy was evaluated and is

presented as root mean square error and coefficient of
Frontiers in Oncology 04
determination (R2). Unsupervised cluster analysis (K-means

algorithm) was performed for risk stratification. Decision

curve analysis was conducted to estimate net benefits of the

XGBoost model at different threshold probabilities. We

compared the CCLNM status predicted by the XGBoost model

with the status assessed by the radiologist.
SHAP

SHAP provides a powerful method to measure the

importance of features (23, 24) and is introduced to solve the

inexplicability bug of machine-learning models. SHAP calculates

each variable’s contribution value to the XGBoost model. The

SHAP value corresponds to the measure of additive feature

attributions. Therefore, the XGBoost model can be visually

interpreted globally and locally using SHAP, thus solving the

artificial intelligence “black-box” problem.
Principal components analysis (PCA)

To determine the reliability and reproducibility of the

XGBoost model, we assessed potential sources of error during

data collection. We assessed the batch effect of ultrasound

scanner types on XGBoost using PCA.
Performance comparison with traditional
machine learning models

Six machine learning classifiers, including random forest

(RF), artificial neural network (ANN), support vector machine
FIGURE 2

Flowchart of the study.
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(SVM), decision tree (DT), naive Bayesian (NB), and logistic

regression analysis (LRA), were established by the scikit-learn

Python library (version 0.24.1). A brief description of these

machine learning classifiers is shown in Appendix 6. The

performance of the XGBoost model was compared with the

above six classifiers.
Statistical analysis

Statistical analyses were performed using R software 4.0.5

and Python Programming Language (version 3.7.9; Python

Software Foundation, Wilmington, DE, USA). R software,

GraphPad Prism 9.0.0, MedCalc 18.2.1, OriginPro 9.1, and

Python were used to create the graphs. A p-value less than

0.05 was considered statistically significant. The consistency of

PTC ultrasonic image features was evaluated by two radiologists

using Kappa. LASSO was performed by R software (glmnet

package). Boruta algorithm was operated by R software (Boruta

package), and SMOTE was performed by Python imbalanced-

learn 0.8.0. The scikit-learn Python library (version 0.24.1) and

XGBoost frame (version 1.0.0) were used to establish the

XGBoost model in Python. The SHAP Python frame (version

0.39.0) was used to perform SHAP algorithms.
GitHub

The design code of this study by R software and Python is

available on GitHub (https://github.com/shi4180/RadProject).
Results

Patient demographics

The baseline epidemiologic and ultrasound image

characteristics of the training and test cohorts are listed in

Table 1. Among the 469 patients in the training cohort, 121

had CCLNM and 348 did not have CCLNM. Of the 118 patients

in the test cohort, 32 patients had CCLNM. The Kappa

coefficients of the categorical variables were all greater than 0.8

in the consistency analyses; the ICC of diameter was over 0.9

(Appendix Table 1).
Radiomics feature screening and
radiomics score

In the training cohort, 939 features were extracted from the

original ultrasound images, including 9 shape features, 18 first-

order features, 75 texture features, 372 wavelet features, 93

squareroot features, 93 logarithm features, 93 gradient features,
Frontiers in Oncology 05
93 square features, and 93 exponential features. We removed 143

invalid features, and 424 features were screened out from the

remaining 796 features after difference analysis (Appendix

Figure 3). The mRMR algorithm was used to select the 100

most critical features (Appendix Figure 4). Next, 11 potential

features were chosen among 100 elements in the training cohort

with nonzero coefficients in the 10-fold cross-validation LASSO

logistic regression model (Appendix Figure 5 and Appendix

Table 2). These 11 features were used to calculate the radiomics

score. The radiomics scores of CCLNM (+) were 0.36 ± 0.15 and

0.35 ± 0.14 in the training and test cohorts and 0.22 ± 0.09 and

0.23 ± 0.09 for CCLNM (-) patients in the training and test

cohorts, respectively (Table 1 and Appendix Figure 6). The

performance of CCLNM evaluated by the radiomics score is

shown in Appendix Table 3.
Development and performance of the
XGBoost model with risk stratification

Five key features were selected by the Boruta algorithm:

capsular invasion, radiomics score, diameter, age, and

calcification (Figure 3 and Appendix Table 4). The XGBoost

model was established based on these five key features.

The performance of the XGBoost model is shown in Table 2.

The AUC values of the preoperative assessment of CCLNM in the

training and test cohorts were 91.53% and 90.88%, respectively

(Figure 4A); the BA was over 80% andMCCwas more than 60% in

the two cohorts. The XGBoost algorithm reflected a good learning

curve in the training dataset (Figure 4B). The two curves

representing the training and test cohorts converged to 0.85,

indicating that the XGBoost model effectively prevented

overfitting. The detection error tradeoff curves showed that the

curves of the two cohorts concentrated in the third quadrant,

indicating that the false rejection rate and false acceptance rate

were both low (Figures 4C, D). The decision curve revealed that if

the threshold probability of a physician was over 8%, more

advantages would be added by using the XGBoost model to

estimate CCLNM in PTC patients (Appendix Figure 7).

Compared with the radiologist, the XGBoost model showed

an increased AUC value by 44%. The sensitivity and specificity

were also improved to varying degrees (Appendix Figure 8 and

Appendix Table 5). The diagnostic sensitivity of the radiologists

was only 33.33%, that is to say, many occult metastatic lymph

nodes were ignored, and the sensitivity and specificity of the

XGBoost model were greatly improved, especially the sensitivity.

Therefore, to a certain extent, XGBoost model could spot occult

metastatic lymph nodes that cannot be assessed by radiologists.

Along with the XGBoost model, we developed a risk

stratification system in the training cohort (Appendix

Figure 9). All patients were grouped into three categories: low-

risk (0-36%), intermediate-risk (37%–58%), and high-risk

groups (59%–100%).
frontiersin.org
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Visual interpretation of the XGBoost
model using SHAP

The Sankey plot (Appendix Figure 10) showed the orientation

of all patients from the predicted CCLNM to the true CCLNM

after shunting by age, diameter, calcification, radiomics score, and

capsular invasion. The results showed that 19 patients with a

predicted negative CCLNM actually had CCLNM. In contrast, 40

patients predicted to have CCLNMwere confirmed to be CCLNM

(-) based on postoperative pathology (Appendix Figure 11).
Frontiers in Oncology 06
The classified bar chart of the SHAP summary plots was

obtained by extracting the average absolute value of SHAP for

each parameter, including capsular invasion, radiomics score,

diameter, age, and calcification, to show the global significance

(Figure 5A). The scatter plot of the SHAP summary plot reflects

the relationship between the five key parameters and predicted

probability through the color, including the positive and

negative effects (Figure 5B). Radiomics score > 0.3, presence of

capsular invasion, diameter > 1.56 cm, male sex, and presence of

microcalcification played a positive role in assessing CCLNM.
TABLE 1 Demographics and ultrasound image characteristics in the training and test cohorts.

Training cohort (N = 469) Test cohort (N = 118)

CCLNM (-) CCLNM (+) p CCLNM (-) CCLNM (+) p
(n = 348) (n = 121) (n = 86) (n = 32)

Age 48.4 ± 15.7 43.4 ± 16.0 0.003 51.0 ± 14.0 44.2 ± 13.9 0.021

Sex 0.010 0.127

Female 229 (65.8) 63 (52.1) 58 (67.4) 16 (50.0)

Male 119 (34.2) 58 (47.9) 28 (32.6) 16 (50.0)

Diameter (cm) 1.18 ± 0.73 2.06 ± 1.41 <0.001 1.03 ± 0.55 2.30 ± 1.14 <0.001

Location 0.396 0.910

Right lobe 31 (8.91) 16 (13.2) 8 (9.30) 4 (12.5)

Left lobe 157 (45.1) 52 (43.0) 39 (45.3) 14 (43.8)

Isthmus 160 (46.0) 53 (43.8) 39 (45.3) 14 (43.8)

Composition 0.543 1.000

Mixed 56 (16.1) 16 (13.2) 13 (15.1) 4 (12.5)

Solid 292 (83.9) 105 (86.8) 73 (84.9) 28 (87.5)

Echogenicity 0.449 0.929

Hyper/Isoechoic 21 (6.03) 4 (3.31) 3 (3.49) 1 (3.12)

Hypoechoic 188 (54.0) 64 (52.9) 48 (55.8) 17 (53.1)

Very hypoechoic 139 (39.9) 53 (43.8) 35 (40.7) 14 (43.8)

Shape 0.744 0.929

Wider-than-tall 136 (39.1) 50 (41.3) 35 (40.7) 14 (43.8)

Taller-than-wide 212 (60.9) 71 (58.7) 51 (59.3) 18 (56.2)

Margin 1.000 1.000

Smooth 122 (35.1) 42 (34.7) 34 (39.5) 12 (37.5)

Ill-defined 212 (60.9) 75 (62.0) 49 (57.0) 19 (59.4)

Lobulated/irregular 14 (4.02) 4 (3.31) 3 (3.49) 1 (3.12)

Calcification <0.001 0.001

None 125 (35.9) 38 (31.4) 24 (27.9) 7 (21.9)

Macrocalcification 86 (24.7) 60 (49.6) 18 (20.9) 19 (59.4)

Rim calcification 107 (30.7) 19 (15.7) 33 (38.4) 5 (15.6)

Microcalcification 30 (8.62) 4 (3.31) 11 (12.8) 1 (3.12)

Vascularization 0.261 0.666

No 175 (50.3) 53 (43.8) 46 (53.5) 15 (46.9)

Yes 173 (49.7) 68 (56.2) 40 (46.5) 17 (53.1)

Capsular invasion <0.001 <0.001

No 332 (95.4) 57 (47.1) 81 (94.2) 11 (34.4)

Yes 16 (4.60) 64 (52.9) 5 (5.81) 21 (65.6)

Radiomics score 0.22 ± 0.09 0.36 ± 0.15 <0.001 0.23 ± 0.09 0.35 ± 0.14 <0.001
frontiers
CCLNM, central cervical lymph node metastasis.
Data are shown as n (%) or mean ± standard deviation.
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In contrast, older age had a negative effect; that is, patients ≤ 43

years old were more likely to develop CCLNM than patients 43

years old or older.

The SHAP decision plots (Figures 5C, D) demonstrated how

each critical parameter affected the final decision. Each colored line

on the figure represents the predicted outcome for each patient.

Moving from the bottom to the top, the SHAP of each element was

added to the base value of the XGBoost model, showing how each

feature contributed to the overall prediction, including the positive

and negative effects. Finally, each line touched the X-axis at the top

with its corresponding prediction value, which was the model’s

final prediction probability. Figure 6 shows two examples of the

correct prediction of CCLNM(+) and CCLNM(-).
Evaluation of the XGBoost model
stability and repeatability using PCA

To determine the stability and reproducibility of the

XGBoost model, we evaluated potential errors during data

preparation (25). We assessed the batch effect of ultrasound
Frontiers in Oncology 07
scanner types on the XGBoost and radiomics score. PCA of the

XGBoost for all PTC patients in the training cohort showed no

association with the three ultrasound scanner types. This result

indicates that the XGBoost model was unaffected by the different

types of ultrasound scanners (Appendix Figure 12).
Performance comparison of XGBoost
model with six classifiers

In the training cohort, AUCs for RF, ANN, SVM, DT, NB,

and LRA were 89.13%, 89.48%, 90.14%, 82.12%, 90.01%, and

88.06%, respectively. Thus, the XGBoost model outperformed

other machine learning algorithms in the training cohort

(Appendix Table 6 and Appendix Figure13).
Discussion

In this study, we investigated the feasibility and accuracy of

the radiomics-based XGBoost model for prediction of CCLNM
TABLE 2 Performance of the XGBoost model.

Training dataset (N = 469) Test dataset (N = 118)

BA 84.89% 85.21%

F-score 73.36% 76.06%

MCC 63.68% 66.56%

Precision 63.10% 69.23%

Recall 87.60% 84.38%

AUC 91.53% 90.88%

RMSE 0.4052 0.3796

R2 0.1424 0.2711
XGBoost, eXtreme Gradient Boosting; BA, balanced accuracy; MCC, Matthew’s correlation coefficient; AUC, area under the curve; RMSE, root mean square error; R2, coefficient of
determination.
FIGURE 3

The Boruta algorithm incorporating the independent clinical, ultrasound variables and radiomics score was performed to select the final
predictors for CCLNM. The key features included capsular invasion, radiomics score, diameter, age, and calcification.
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in PTC patients based on ultrasound images of the primary

tumor. Our study has three significant findings. First, capsular

invasion, radiomics score, diameter, age, and calcification were

the key features for predicting CCLNM status. Second, the

radiomics-based XGBoost model based on the key features

showed a favorable ability to discriminate between CCLNM

(+) and CCLNM (-), with AUC values of 91.53% and 90.88% in

the training and test cohorts, respectively. Third, SHAP provided

a reasonable visual interpretation of the prediction, including

positive and negative effects.

Ultrasound features, capsular invasion, diameter, and

calcification were the critical features for predicting CCLNM.

We speculate this may be because of the following reasons.

Tumor cells enter the lymph fluid after breaking through the

thyroid capsule. When metastatic tumor cells invade the capsule

of the lymph nodes, the nodes eventually develop into metastatic

lymph nodes (26). A larger tumor diameter indicates a more
Frontiers in Oncology 08
aggressive tumor. Microcalcification is an indicator of cancer

tissue hyperplasia and rapid proliferation of cancer cells;

microcalcification may thus be a potential promoter of

CCLNM to some extent (27). Previous studies set the age

threshold of the PTC patients to 45 or 55 years old according

to American Joint Committee on Cancer guidelines (28, 29). In

this study, younger age (≤ 43 years) was a key factor for CCLNM,

which indicated that PTC occurs in younger patients in

recent years.

The radiomics score was independently associated with

CCLNM by the Boruta algorithm. Establishing a radiomics

score with LASSO has demonstrated excellent results in

predicting lymph node metastasis in breast cancer (30),

cervical cancer (31), pancreatic carcinoma (32), rectal cancer

(33), and lung cancer (34). Radiomics characteristics are closely

related to the microstructure and biological behavior of the

tumors (31). The radiomics score is based on the high-
A B

DC

FIGURE 4

ROC, learning, and DET curves of the XBoost model. (A) The ROC curves of the XGBoost model in the training and test cohorts for predicting
CCLNM in PTC patients, with an AUC of 0.9153 and 0.9088, respectively. (B) The learning curve in the training cohort of the XGBoost model.
The two curves finally merge near 0.85, indicating that the model is well fitted for training. (C, D) The DET curves of the XGBoost model in the
training and test cohorts. They were both concentrated in the third quadrant, indicating that the false rejection rate and false acceptance rate
were both low.
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dimensional and statistical features, which were extracted from

primary thyroid tumors. In this study, 11 radiomics features

were used to calculate the radiomics score. These features

represent the texture information of tumors, which is highly

associated with tumor heterogeneity (35). For machine learning,

features selection and the reproducibility of the model on

different devices are crucial. The Boruta algorithm was used to

filter the optimal features, and this algorithm has been

recognized by many cutting-edge studies (20, 36). The PCA

method was used to ensure the repeatability between different

devices, and the result was satisfactory. Therefore, the XGBoost

model constructed in this research was also applicable to images

obtained by other ultrasound equipment.

Although some studies have used machine learning to

predict lymph node metastasis in PTC (6, 37), the “black-box”

problem remained to be clarified, that is, an apparent conflict

between the performance of the complex model and the clinical

interpretability. In this study, the XGBoost model provided a

visual interpretation for individual patients using SHAP plots,

including positive and negative effects. SHAP considers the
Frontiers in Oncology 09
impact of a single feature as well as the synergistic effects

between features. The XGBoost model not only predicted the

possibility of CCLNM but it also provided a rational explanation

for the prediction, which may improve clinicians’ confidence in

the model.

At present, there are still some CT-based (38–40) and MRI-

based (41, 42) radiomics models to predict the condition of

cervical lymph nodes in patients with PTC, and they have also

achieved good diagnostic performance. However, CT and MRI

have certain limitations compared to ultrasound-based

radiomics. On the one hand, for CT-based radiomics, tumor

diameters < 0.5 cm were not included because they could not be

reliably identified and segmented on CT images. The usage of

iodinated contrast agents might have the potential to affect the

uptake of iodine during the subsequent radioiodine therapy. The

increased radiation exposure during contrast-enhanced CT scan

should not be ignored. On the other hand, for MRI-based

radiomics, the MRI examination involved various elements,

including the use of a sequence, magnetic field intensity and

some parameters, such as the time of repetition (TR) and the
A B

DC

FIGURE 5

SHAP plots of the XGBoost model. (A) The classified bar charts of the SHAP summary plots show the influence of each parameter on the
XGBoost model. (B) The SHAP summary plot’s scatter plot shows the relationship between the characteristic value and the predicted probability
through colors, including positive and negative predictive effects. (C) SHAP decision plot for all patients with PTC; (D) SHAP decision plot for 10
random patients with PTC, with one misjudgment case (dotted line).
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time of echo (TE). The use of MRI radiomics is still a huge

challenge due to the complexity of MRI signals, which need to be

normalized and standardized.

This study has several limitations. First, this study lacked

external validation in other hospitals. The XGBoost model

cannot be used for performance verification on other

ultrasound equipment. However, we conducted PCA and

demonstrated that different equipment did not affect the

predictive ability of the model. Second, this study was

retrospective in nature. Therefore, we were unable to collect

information on the size and number of metastatic lymph nodes.

A prospective study is required to confirm the accuracy of the

XGBoost model. Third, the peritumoral area was not analyzed,

and this should be examined as it might provide information on

tumor invasiveness and lymph node metastasis (43). Fourth, the

specific location of the lesion, which is close to the upper/lower

pole or the anterior/posterior capsule of the thyroid, may have a

potential impact on cervical lymph node metastasis. Therefore,

the above factors will be included in the next study for in-

depth discussion.

In conclusion, we have proposed a radiomics-based

XGBoost model for predicting CCLNM in patients with PTC
Frontiers in Oncology 10
and showed that the model surpassed the evaluation ability of

the radiologists. The model integrated ultrasound imaging

information with clinical parameters of PTC patients. SHAP

provides a reasonable visual interpretation of the XGBoost

model to predict CCLNM in patients with PTC. We speculate

that the XGBoost model will serve as a promising adjunct in the

preoperative evaluation of CCLNM and help assist clinical

decision-making for patients with PTC, thereby improving

patient prognosis.
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