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Breast cancer (BC) remains the leading malignant tumor type among females worldwide.
The patients with BC are still faced with undesirable metastasis, relapse rate, and drug
resistance. Exosomes are defined as naturally occurring extracellular vesicles (EVs) with
typical biomarkers that reflect the characteristics of the parent cells. Exosomes are crucial
mediators involved in intercellular communication. By transferring multiple cargoes,
represented by proteins, nucleic acids, lipids, metabolites, exosomes contribute to
reshaping the recipient cell function and fate. Growing evidence has documented that
exosomes originating from BC cells are important participants involved in BC progression
and treatments. Nanoparticle-based technology is the cutting-edge field for renewing
pharmaceuticals and has endowed deep improvements in precise BC treatment.
Additionally, due to their perfect features of the low immune prototype, limited adverse
effects, prolongated circulation, and easy modification, exosomes have received much
attention as candidates in nano-medicine of BC. The nanoplatforms constructed by
exosomes have safety, intelligence, biomimetic, and controlled released advantages for
combating BC. Here, we emphasize the multiple exosomes from a variety of cell sources
in constructing nanoplatforms for BC therapy, mainly including exosomes and their
cargoes, genetically engineered exosomes, and exosome-based carriers. This field
would shed light on the promising exosome-based delivery system in BC therapy.

Keywords: breast cancer, exosome, nanoparticle, therapy, drug-resistance
Abbreviations: ADSCs, adipose-derived stem cells; BC, breast cancer; CSCs, cancer stem cells; CARs, chimeric antigen
receptors; circRNAs, circular RNA; CTCs, circulating tumor cells; CBSA, conjugating cationic bovine serum albumin; COX-2,
cyclooxygenase-2; DPSCs, dental pulp mesenchymal stem cells; DOX, doxorubicin; EPR, enhanced permeability and retention;
EGFR, epidermal growth factor receptor; EMT, epithelial to mesenchymal transition; NK-EM, exosome mimetics from NK
cells; ENVs, exosome-like nanovesicles; eNVs-FAP, exosome-like nanovesicles; EVs, extracellular vesicles; FAP, fibroblast
activation protein-a; FA, folic acid; GNV, grapefruit-derived nanovector; HER2,human epidermal growth factor receptor 2;
HUCMSCs human umbilical cord mesenchymal stem cells; HA, hyaluronic acid; HE, hybrid exosomes; lncRNAs, long
noncoding RNAs; MSCs, mesenchymal stem cells; MSLN, mesothelin; MIT, mitoxantrone; MVBs, multivesicular bodies
(MVBs); MDSCs, myeloid-derived suppressor cells;NK, natural killer; PTX, paclitaxel;ROS, reactive oxygen species;Tregs,
regulatory T cells; sEVs, small EVs; TNBC, Triple-negative breast cancer; TME, tumor microenvironment; US, ultrasound.
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INTRODUCTION

Breast cancer (BC) remains the leading cause of cancer-caused
death in females and its incidence is still rising worldwide (1).
Despite the advancement of early diagnosis procedures and mature
therapeutic strategies, such as mastectomy, chemotherapy,
immunotherapy, and combined therapy, BC patients are still
faced with vicious metastasis, relapse rate, and drug resistance (2).
BC is a highly heterogeneous and complex entity. The BC tumor
microenvironment (TME) consists of tumor cells and stromal cells,
soluble cytokines, immune cells, which directly or indirectly impact
tumor behaviors and thus establish tumor-favoring niches for
supporting tumorous growth and colonization (3). It is still a
difficult problem to figure out the detailed mechanism of tumor
occurrence and development and improve the efficiency of tumor
treatment strategies.

Exosomes are defined as naturally occurring extracellular
vesicles (EVs) with approximately 30-150 nm in diameter (4).
Exosomes are originated from endocytic multivesicular bodies
(MVBs) followed by exosome formation and secretion into
extracellular space. In respect of the typical biomarkers,
exosomes are particularly rich in a series of conserved proteins
that reflect the characteristics of the parent cells, including the
tetraspanin transmembrane-4 family (CD9, CD63, and CD81),
Hsp90, caveolins, clathrin, and transferrin receptors (5).
Generally speaking, exosomes serve as a warehouse that stores
a large amount of biologically active molecules, such as lipids,
enzymes, mRNAs, metabolites, and various non-coding RNAs,
represented by miRNAs, long noncoding RNAs (lncRNAs), and
circular RNA (circRNAs) (6). By transferring these cargoes,
exosomes play roles in dynamic intercellular communication
between tumor cells and adjacent stromal compartments in
cancer progression (7). It is well-documented that tumor-
derived exosomal RNAs affect the function of recipient cells in
the neighborhood and distant sites, leading to tumor growth,
metastasis, detection, and drug resistance in BC (8). For example,
Ohno et al. used exosomes to deliver let-7a miRNA, which was
transferred and internalized to epidermal growth factor receptor
(EGFR)-expressing in tumor tissues, exhibiting extraordinary
tumor therapeutic effects (9). Santos et al. reported that miR-155
in exosomes isolated from cancer stem cells (CSCs) and resistant
cells could be transferred to recipient cells (10). This implies that
exosomes may modulate resistance and migration ability to
recipient BC cells partially through exosomal transfer to
sensitive tumor cells.

Nanoparticle-based technology has endowed deep
improvements in precise BC treatment. In consideration of the
excellent biosafety, low immunogenicity, carrier properties, and
nanoscale penetration effect, exosomes have attracted considerable
attention in drug delivery systems for cancer therapy (11). The
reported applications of exosomes mainly vary from enhanced
efficiency in cancer drug delivery, drug-carrying system, to
immunogenicity of cancer vaccines (12). The nanoplatforms
constructed by exosomes possess enhanced functionalities with
safety, intelligence, biomimetic, and controlled released advantages
for combating BC (13). Therefore, this review aims to decipher the
exosome potential serving as therapeutic carriers, hoping for
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offering an in-depth understanding of exosome-based based
nanoplatforms for BC therapy.

To summarize the landscape of the potential applications, we
have searched exosomes, breast cancer, and therapy on Pubmed
over the last 10 years as keywords. These pieces of topically-
relevant literature, involving molecular, cellular, and animal
studies as well as clinical samples, are all included in this review.
EXOSOMES AND THEIR CARGOES

Exosomes in BC Therapy
Mesenchymal stem cells (MSCs) have gained increasing interest
in the field of regeneration and disease treatment due to their
multi l ineage differentiation potential and powerful
immunomodulatory and regenerative functions (14). MSC-
derived exosomes are a new cell-free alternative to MSCs that
has long been a major concern (15). MSC-derived exosomes offer
unparalleled advantages in terms of safety, bioactivity, storage,
and transport compared to previous MSC transplantation (16).
Yu et al. posed that miR-342-3p was down-expressed in
advanced BC patients and was of potential to suppress BC
metastasis, cell survivability, and drug resistance (17). This
result was partially caused by MSC-derived exosome miR-342-
3p through binding ID4. The clinical samples with primary BC
showed poor expression of miR-148b-3p. In both in vitro and in
vitro validation, human umbilical cord mesenchymal stem cells
(HUCMSCs) -derived exosomes carrying miR-148b-3p showed
efficient inhibition of MDA-MB-231 cells (18). This suggested
that miR-148b-3p-containing exosomes might represent an
efficient and facile carrier for BC treatment. In addition,
HUCMSC exosomes harboring miR-3182 could inhibit triple-
negative breast cancer (TNBC) in invasion in vitro ,
demonstrating that miR-3182-containing exosomes may be a
dependable therapeutic option in treating TNBC (19).

Natural killer (NK) cells are intrinsic lymphocytes that play a
key role in tumor immune surveillance and are being actively
investigated for adoptive cell therapies in cancer immunotherapy
(20). NK cell-derived exosomes have a natural and excellent
killing effect on tumor cells. The canine NK-exosomes were
capable of significantly suppressing tumor size and reducing
CD133 expression, representing a promising vehicle for the
treatment in an experimental murine BC model (21). Zhu
et al. separated the exosome mimetics (NK-EM) from NK cells
by extruding NK cells into filters with gradually smaller pore
sizes (22). NK-EM exhibited strong tumor-killing activity against
tumors in mice such as glioblastoma and BC, compared to low or
high doses of NK-Exo.

Exosome Pre-Condition in BC Therapy
Several studies have shown that the use of exosome derivatives or
exosome pre-injection can reduce the accumulation of other
exosomal carriers or nanodrug carriers in the liver and thus more
effectively promote drug enrichment at the target site. Based on
exosomes derived from metastatic 4T1 cells, exosome-like
nanovesicles (ENVs) were developed (23). Pre-treatment with
4T1 ENVs reduced the evasion of Kupffer cell-mediated
April 2022 | Volume 12 | Article 898605
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phagocytosis by DOTAP/DOPE liposomes, thereby promoting
greater recruitments of DOTAP/DOPE carriers to tumor
metastasis, reducing the IC50 of chemotherapeutic drug
doxorubicin (DOX), and avoiding adverse side effects. Besides,
the accumulation of subsequently injected grapefruit-derived
nanovector (GNV) decreased in the lungs, but not the liver,
was increased by prior intravenous injection of peripheral blood-
derived exosomes in mice (24). Meanwhile, the efficiency of
GNV-carrying DOX or paclitaxel (PTX) for the treatment of
lung metastases was improved. Exosome-mediated inhibitory
effects of GNV into hepatic macrophages were dependent on
CD36 and IGFR1 receptor-mediated pathways. Thus, autologous
exosome pre-treatment not only accumulated GNV signals in the
primary tumor, but also improved the therapeutic efficacy
against pulmonary metastases. Melzer et al. treated MSC with
sublethal concentrations of PTX and found that the treated MSC
exosomes had more potent tumor-specific and targeting
properties compared with PTX of equivalent effect (25). In
addition, the distribution of MSC PTX exosomes in major
organs was reduced by approximately 50% and effectively
reduced subcutaneous graft tumor volume by 60%.
GENETICALLY ENGINEERED EXOSOMES

Several features of MSCs may also be transmitted to exosomes,
including weak immunogenicity with lack of MHC-II and co-
stimulatory ligands, multi-organ homing ability mediated by the
expression of specific surface molecules, and high biosafety
characteristics (26). The available reports are controversial as
to whether MSC-derived exosomes are tumor-promoting or
tumor-suppressing in different tumor types. However, MSC-
derived exosomes modified by gene editing can certainly
overexpress a specific therapeutic RNA or protein to exert
tumor-suppressive effects.

MSC exosomes expressing suicide or tumor-killing genes
represent an emerging class of tumor-targeting drugs and
vector models that act within tumor cells for the treatment of
breast tumors (27). Exosomes from generationally modified
MSCs can perform as an effective targeting delivery system to
specifically target HER2+ cell lines, resulting in corresponding
changes in tumor death (28). O’Brien et al. harnessed the tumor
homing ability of MSCs to construct miR-379-enriched MSC-
EVs, which could significantly inhibit BC tumor growth and
promote necrosis , depending on the regulat ion of
cyclooxygenase-2 (COX-2) expression (29). Vakhshiteh et al.
established an ex-novo exosome nanocarrier, which was derived
from miR-34a-overexpressed dental pulp mesenchymal stem
cells (DPSCs), weakened the capability of migration and
invasion in MDA-MB-231 cells (30). MSCs-Exo effectively
transported LNA-antimiR-142-3p to breast CSC-like cells,
thereby reducing miR-142-3p and miR-150 expression (31).
Furthermore, inhibiting oncomiRs by transmitting LNA-
antimiR-142-3p induced a dramatic lowering of clone
formation and tumor initiation capability.
Frontiers in Oncology | www.frontiersin.org 3
Genetically engineered T cells expressing chimeric antigen
receptors (CARs) have become a force to be reckoned with in
tumor immunotherapy (32). Exosomes derived from CAR-T
cells could facilitate BC immunotherapy by providing higher
efficacy and safety (33). Yang et al. successfully isolated exosomes
from mesothelin (MSLN)-targeted CAR-T cells, which
maintained most of the traits of their parental T cells,
including surface expression of CARs and CD3 (34). In
addition, CAR-carrying exosomes significantly suppressed the
growth of MSLN-positive TNBC cells by secreting perforin and
granzyme B, as well as efficiently inhibited the xenograft tumors
without noticeable side effects. Conversion of M2 macrophages
to the M1 phenotype employing miRNA-containing exosomes is
a possible route to inhibit BC tumor invasion and metastasis
(35). By using tumor-derived exosomes as carriers, miR-130 was
transported to M2 macrophages, which in turn impaired the
ability of tumor cells to proliferate, migrate and invade (36). Yue
et al. reported that PGRN-/- TAMs restrained BC cell invasion
and epithelial to mesenchymal transition (EMT) through
releasing their exosomes (37). MiR-5100 upregulation of
PGRN-/- TAMs-derived exosomes might modify CXCL12
expression, thereby dampening the CXCL12/CXCR4 axis and
consequently resulting in BC malignant alteration. Shi et al.
reported the genetically engineered cell-derived platform for
developing targeted BC immunotherapy (38). They constructed
a dual-targeting exosome platform for T-cell CD3 and BC-
specific human epidermal growth factor receptor 2 (HER2)
receptors, which was capable of targeted activation of CD8+ T
cells and potent killing of HER2 tumor cells, demonstrating
promising immunotherapeutic effects.

Adipose-derived stem cells (ADSCs) are considered to be an
important tool for cell therapy and regeneration because of their
abundant source, easy extraction, and ability to multidirectional
differentiation (39). Exosomes are an important bearer form of
the secretory profile of ADSCs. Exosomes are capable of
delivering to recipient cells some nucleic acids, small
molecules, and protein substances that are embedded in MSCs
(40). Shojaei et al. successfully isolated ADSC-exosomes and
found that miR-381 mimics were efficiently conveyed to MDA-
MB-231 cells by ADSC-exosomes (41). Remarkably, ADSC-
exosomes loaded with miR-381 inhibited the growth and
metastasis ability of MDA-MB-231 cells and promoted
apoptosis in vitro, showing the excellent RNA therapy
potential of ADSC-exosomes. Sheykhhasan et al. constructed
miR-145-overexpressing exosomes from ADSCs via lentivirus
vector (42). These exosomes significantly inhibited tumor cell
growth and metastasis by delivering miR-145.

In addition, the study of Li et al. generated the exosomes
containing siMTA1 by using the electroporation method, which
increased the gemcitabine-mediated inhibition of tumor growth
in vivo by reversing the EMT effect and inhibiting the autophagic
process (43). Limoni et al. transduced HEK293T cells with a
lentiviral vector bearing LAMP2B-DARPin G3 chimeric gene for
targeting HER2-specific tumors (44). Then, the exosomes
generated from these cells were isolated and then loaded with
TPD52-silencing siRNAs, which were subsequently delivered to
April 2022 | Volume 12 | Article 898605
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SKBR3 cells for reducing tumor. Hu et al. constructed exosome-
like nanovesicles (eNVs-FAP) from fibroblast activation protein-
a (FAP) gene-engineered tumor cells (45). These nanovesicles
facilitated dendritic cell (DC) mature, T cell, and FAP+CAFs
infiltration, and depressed the ratio of immunosuppressive M2,
myeloid-derived suppressor cells (MDSCs), and regulatory T
cells (Tregs). Therefore, it implied that eNVs-FAP was a
promising oncologic vaccine for targeting both the parenchyma
and the stroma of BC tumors.
EXOSOME-BASED CARRIER
CONSTRUCTION

Exosomes Serve as Targeted Coating
Substances
The use of exosomes to carry conventional clinical chemotherapy
drugs can effectively reduce the toxicity of the drugs and improve
the enrichment effect of targeted sites (46). Exploiting the
targeting capability of BC cell exosomes can empower the
homing ability of the nanoplatforms to target homologous
tumor cells. Therefore, exosomes of tumor cells or other
functional cells can serve as targeted coating substances in
nanoplatforms. For example, Chen et al. prepared the smart
bionanodrug EXO-GO-CO-g-PGA-MIT for delivering
mitoxantrone (MIT) by exploiting the targeting properties of
BC cell-originated exosomes (47). This nanodrug possesses slow-
release, tumor aggregation, and enhanced pro-tumor apoptotic
ability of MIT. Ghavami et al. established a radiolabeled
exosome-based tracer [111In]In-oxine-T-exos, which was
markedly internalized by HER2-positive cells for imaging
HER2-expressing tumor (48).

Interestingly, a bioactivated exosome-based nanoplatform
(EMPCs), was formulated by reactive oxygen species (ROS)-
reactive thioether-linked paclitaxel-linoleic acid conjugates
(PTX-S-LA), and cucurbitacin B (CuB) was co-loaded in
polymeric micelles, with exosome-decorated membranes (49).
EMPCs not only displayed enlarged prodrug function, increased
blood circulation, the targeted capability of homozygous tumor
cells, and improved tumor penetration, but also inhibited BC
metastasis through circulating tumor cells (CTCs) elimination
and FAK/MMP pathway modulation. Li et al. developed an
engineered macrophage exosome to encapsulate poly(lactic-co-
glycolic acid) nanoparticles and modified with c-Met-targeting
peptide on the exosome surface for tumor targeting (50). This
exosome nanocomplex (MEP-D), exhibited significant tumor
targeting and tumor killing functions. Zhao et al. designed the
CBSA/siS100A4@Exosome by conjugating cationic bovine
serum albumin (CBSA) and siS100A4 followed with exosome
membrane encapsulation (51). CBSA/siS100A4@Exosome
possessed a higher binding affinity to the lung and superiorly
exhibited metastasis-associated protein S100A4 expression,
showing great inhibition potential in malignant BC growth and
lung metastasis. ID@E-MSNs was a tumor cell-derived exosome-
mimetic porous silica nanoparticles as an integrated drug
delivery platform for carrying both indocyanine green (ICG)
Frontiers in Oncology | www.frontiersin.org 4
and DOX (52). In 4T1 tumor-bearing mice, the nanoparticles
were able to enrich at the tumor site and promote ICG thermal
effect-induced drug release and tumor ablation under 808 nm
NIR irradiation, thus enabling combined chemotherapeutic
BC treatment.

Exosomes Serve as Drug Delivery Carriers
The carrier properties of exosomes can be directly used to load
chemotherapeutic drugs, photosensitizers or antitumor drugs.
Exosomes are natural nanocarriers that can target the cancer-
sensitizing agent indocyanine green (ICG) in a biosafe manner.
FA-ExoICG was an engineered exosome that possessed tumor-
targeting ligand folic acid (FA) and internally loaded ICG (53).
Significant inhibition of MCF-7 tumor growth in mice was
observed by a single intravenous injection of FA-ExoICG with
followed ultrasound (US) irradiation, with a favorable biosafety
profile. Tran et al. innovatively used a one-step strategy of
loading amorphous nanomatrix formation into exosomes, such
as encapsulation of aspirin into exosomes, which could
effectively improve the efficiency of drug dissolution and
homing targeting effect (54). This compound displayed toxic
and killing effects on BC cells and colon cancer cells. Yu et al.
developed a nano-carrier Erastin@FA-exo containing erastin-
loaded exosomes labeled with FA (55). The results showed that
Erastin@FA-exo targeted and inhibited the proliferation and
migration of MDA-MB-231 cells and promoted the depletion
of intracellular glutathione and activation of ROS to induce
ferroptosis. Kalimuthu et al. synthesized personalized exosome
mimics (EMs) loaded with PTX, termed PTX-MSC-Ems (56).
The exosome carrier significantly inhibited the growth and
tumor progression of MDA-MB-231 cells, and was regarded as
a powerful drug delivery carrier for BC. Li et al. incorporated
Dox in milk exosomes (mExo) and modified with specifically
CD44-targeting hyaluronic acid (HA), named HA-mExo-Dox
(57). This vector effectively targeted CD44-expressed BC cells
and induced cell death in vitro. Gong et al. generated a
biomimetic delivery system using A15-Exo to package
cholesterol-modified miR-159 and chemotherapeutic agent
DOX (58). In vivo, this delivery system effectively reduced the
TCF-7 gene and exhibited potent anti-cancer effects without side
effects. Thus, this study demonstrated the synergistic effect of
exosomal transport carriers for the co-delivery of gene drugs and
chemotherapeutic agents in TNBC treatment.

Immune cell-derived exosomes have parental cell properties
and can be used to mimic immune cell targeting of cancer (59).
By hybridizing sEV from mouse macrophages with synthetic
liposomes, vesicles smaller than 200 nm in size can be designed
to mimic the size of exosomes, denoting as hybrid exosomes
(HE). The established HE maintained the good property of small
EVs (sEVs) with higher colloidal stability, drug carrier feature,
and durable release of DOX in response to pH, for killing 4T1
cells. Tian et al. established a well-characterized tool of exosome
carrier by an av integrin-specific iRGD peptide to mouse
immature dendritic cells (imDCs) (60). These iRGD-expressing
imDCs actively targeted BC tissues with high expression of
integrin receptors, leading to significant tumor growth
inhibition with limited systemic toxicity.
April 2022 | Volume 12 | Article 898605
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DISCUSSION

Due to the heterogeneity and biological barriers of tumors,
conventional drugs for combating tumors are often difficult to
achieve the balance between optimal drug effectiveness and
minimum side effect. The majority of anti-cancer agents in
clinical practice are toxic to cause adverse damage to normal cells
with poor bioavailability, and insufficient in vivo stability.
Nanoparticle-based technologies provide exciting approaches to
BC diagnosis and therapeutics. Novel dosage forms represented
by nanoplatforms are a cutting-edge way to improve the delivery
efficiency of therapeutic agents. In addition to uploading drugs, the
active targeting capability of nanoplatforms is also a factor that
cannot be ignored. In terms of diagnosis, it is also worth mentioning
that the exosome-related detection still has certain advantages, with
non-invasive, high sensitivity and disease specificity, long
circulation and stability. Specifically, exosome isolation methods
mainly include ultracentrifugation techniques, polymer
prec ipi tat ion, s ize-based isolat ion, immunoaffinity
chromatography, other isolation techniques. Each method has its
own advantages and disadvantages. A more suitable separation
method should be selected for different targets. In terms of
identification, transmission electron microscopy (TEM)
observation and nanoparticle tracking analysis (NTA) are
commonly used to identify single exosomes with a diameter of
30-150 nm.Western blot detection can verify specific markers (such
as CD63/CD81/CD9/TSG101/Alix), which can also be detected
indirectly by immunofluorescence and flow cytometry (FCM). In
addition, exosomes are a promising cell-free therapy, and the
currently applied protection technologies mainly include freezing,
freeze-drying, and spray-drying. In general, the isolation, extraction,
identification and preservation technologies of exosomes are
relatively mature, but the transformation and efficiency of
exosomes are still relatively insufficient.

Currently, tumor targeting of nanoplatforms ismainly achieved
via enhanced permeability and retention (EPR) effect in tumor
internals or receptor-ligand interplay via adhering to overexpressed
antigens on the tumor cell surface. In developing precisely targeting
approaches, exosomes have emerged as ideal drug carriers due to
their unique carrier properties and biosafety. In this review,
exosome-related nanoplatforms are used for BC treatment,
mainly including three aspects, exosomes and their cargoes,
genetically engineered exosomes, and exosome-based carrier
construction. Specifically, some cell-derived exosomes, or key
components of exosomes themselves inhibit tumor proliferation.
The genetically editing methods enable researchers to accurately
manipulate theoverexpressionorknockdownof specific genes, thus
facilitating the production of anti-tumor exosomes (Table 1).
Notably, MSCs might secret a considerable amount of
functionalized exosomes and are common gene-editing cell tools
for yielding expressive-specific exosomes. In nanocarrier
construction, surface modification of exosomes can increase
specific target recognition and enhance recruitment and
abundance at tumor sites. Encapsulation of nanomaterials by
exosomes can prolong metabolic cycling, reduce clearance levels,
and avoid drug degradation or inactivation. Exosomes can also be
Frontiers in Oncology | www.frontiersin.org 5
used as delivery platforms for carrying chemotherapeutics or other
therapeutic agents suchasphototherapyandphotothermal therapy.
Therefore, exosomes are also efficient multimodal synergistic
vehicles for BC therapy. In addition, not only for treating BC,
exosome carriers are also novel transport means investigated other
tumors, including glioma, liver cancer, gastric cancer, and so on.

Most studies suggest that tumor-associated exosomal
components are a cancer-promoting factor. Reducing the
release of tumor-associated or stromal cell exosomes also
enhances the treatment efficacy. However, tumor-associated
exosomal components can also act as important antigenic
components to activate immune effects (61). At the same time,
exosomes are capable to minimize the expression of drug
resistance genes by delivering anti-miRNAs. Exosome-
originated from MCF-7/ADR cells could promote active drug
sequestration and induce drug resistance phenotypes by
delivering resistance-related genes MDR-1 and P-glycoprotein
(62). By reducing the resistant exosome formation and secretion,
psoralen could reverse the development of drug resistance in BC
cells. Also, there are some emerging novel exosome
nanoplatform that have been developed for BC therapy. For
instance, some novel T-cell-based vaccines are expected to
perform the excellent tumor-killing function, by equipping
polyclonal CD4+ T cells with antigen-specific exosomes (62).
Exosomes derived from other cells, especially immune cells with
tumor-killing effects, are also expected to be used as formulations
for tumor therapy. In vitro studies have shown that tumor cells
become more capable of activating T cells after DC-Exo uptake,
thus potentially producing a more effective anti-tumor immune
response, suggesting that DC-derived exosomes are also an
effective exosome-related therapeutic tool (63). Or, combine
with other treatment modes, exosomes as multifunctional
carriers can be fully utilized. For example, heat stress increased
the number of doxorubicin-containing exosomes in tumor cells
and enhanced the antitumor effect of exosomes from
doxorubicin-treated tumor cells (64). This suggests the
potential for synergistic kill-expanding effects of combining
chemotherapy and heat therapy for BC.

At present, although exosomes provide a variety of
comprehensive and desirable properties for drug delivery, there
are still many obstacles to be faced in this field. Firstly, there are
many sources of cells currently used for exosome delivery, and it
is hard to ensure the consistency and stability of the results of
different research groups. The isolation and preparation of large
amounts of engineered exosomes, including exosome
purification, synthesis, stabilization, identification, and drug
loading, remains a significant and complex step for BC tumor
therapy. Secondly, when exosomes are coupled to nanoparticles
or encapsulated with drugs, the metabolic kinetics of exosomes
in vivo are worthy of further study. When circulating in the body,
there may be a large number of liver retention or drug off-target
phenomena, which will affect the efficiency of drug delivery.
Finally, the current researches are preliminarily at the preclinical
level, mostly at the level of cell and animal research. Due to the
strict control of clinical trials and the complex nature of exosome
components, exosome-based breast tumor therapy still has a
April 2022 | Volume 12 | Article 898605
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long way to go. In order to finally achieve clinical application, it is
necessary to carry out in-depth explorations on the preparation
of exosome carriers, the real efficacy in the human body, and the
control of side effects to determine the unification of the safety
and effectiveness of exosome delivery.
CONCLUSION

The naturally occurring exosomes, exosomes released by engineered
or modified cells, exosomes that upload other substances, or
exosomes that act as targeted coating substances, are several
common forms of exosome-associated nanoplatforms for effective
Frontiers in Oncology | www.frontiersin.org 6
therapeutic carriers. Therefore, the comprehensive understanding of
exosome biogenesis and the progress of efficient exosome
engineering techniques will promote the clinical application of
exosome-related drug nanoplatforms for combating BC.
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