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Colorectal diseases are threatening human health, especially inflammatory

bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic,

recurrent and incurable disease, which may affect the entire gastrointestinal

tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated

process, which is mainly regulated at the level of gene transcription and mRNA

translation. Protein translation in tissue is associated with a sequence of steps,

including initiation, elongation, termination and recycling. Abnormal regulation

of gene expression is the key to the pathogenesis of CRC. In the early stages of

cancer, it is vital to identify new diagnostic and therapeutic targets and

biomarkers. This review presented current knowledge on aberrant expression

of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein

synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be

potential targets for CRC treatment.
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Introduction

Colorectal cancer (CRC) is the third highest morbidity rate worldwide. It is also the

second most common cause of cancer-related death (1). The incidence and fatality rate of

CRC had increased in recent years, especially in developing countries (2). Even though

many CRC patients are diagnosed early and undergo therapeutic surgery, chemotherapy

and radiation therapy, the metastases and relapses still occurred in many patients (3, 4).
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Inflammatory bowel disease (IBD) is an idiopathic, chronic

inflammatory disorder of uncertain etiology with an underlying

genetic predisposition. It includes Crohn’s disease (CD) and

ulcerative colitis (UC) (5, 6). Although some intrinsic factors,

such as host genetics, dysregulated immune responses, and

microbial dysbiosis have been identified, the pathogenesis of

IBD remained unclear (7–9). Nevertheless, there are unequivocal

evidences of an association between IBD and CRC. A chronic

inflammatory process is one of the responsible causes for the

development of CRC (10).

Protein translation comprises several steps: initiation,

elongation, termination and ribosomal recycling (11).

Eukaryotic initiation factors (eIFs) played an essential part in

the initiation of translation. The eIF signaling cascade is mainly

influenced by the PI3K/AKT/mTOR pathway, regulating cell

growth and proliferation (12–14). Eukaryotic elongation factors

(eEFs) are active during protein chain elongation. They had been

reported to be aligned by aminoacyl-tRNAs via their specific

codons in mRNA (decoding), peptide bond synthesis, and

movement of the mRNA associated with ribosome

translocation. eEF1a, eEF1bg and eEF2 facilitate these

processes on the ribosome. Finally, the termination process is

a release of the completed polypeptide chain, which requires

eukaryotic release factors (eRFs).

Deregulation of protein synthesis results in abnormal gene

expression, possibly bringing about uncontrolled cell growth,

cancer development and progression (15). Deregulation of

translation is related to colorectal pathogenesis of IBD and

CRC. Previous studies had shown that dysregulation of eIFs,

eEFs and eRFs is associated with cancer progression and

malignant transformation (16, 17). Here, we reviewed the

current research findings about eIFs, eEFs and eRFs, to

demonstrate that they may be potential targets for IBD and

CRC treatment.
Eukaryotic translation
initiation factors

Eukaryotic translation initiation factor 1

eIF1 is a universally conserved translation factor with 113

amino acid (AA) and an important intermediary for initiating

codon recognition in negative regulation. eIF1a is a 144AA long

protein encoded on the X chromosome. eIF1a together with

eIF2, 3, 4A, 4B and 4F triggers preinitiation complex formation.

eIF1 and eIF1a have synergistically effects. Translation initiation

induced by eIF1 had been shown to occur independently of p53.

eIF1 was found to be increased a series of disease risks, such as

aneurysmal bone cyst (18), Parkinson’s disease (19),

hepatocellular carcinoma (HCC) (20), breast cancer (21) and

ductal adenocarcinoma (22).
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Enhanced expression levels of eIF1 indicates poor prognosis

of CRC patients (14). eIF1 gene knockdown led to a significantly

reduced proliferation rate and clonogenicity. eIF1 protein was

overexpressed in low-grade and high-grade colon cancer (CC),

and eIF4B protein was elevated in low-grade CC. The mRNA

and protein expression level of eIF1 was significantly increased

in rectum carcinoma (RC) tissues compared to normal

colorectal mucosa tissues and low-grade CC. Although IBD is

also closely associated with an increased risk of CRC, the

relationship between eIF1 and IBD remained elusive.
Eukaryotic translation initiation factor 2

eIF2 is a ternary complex involved in the formation of the

eIf2-Met-tRNAi-GTP complex. At the initial stage of translation,

the eIf2-GTP is hydrolyzed to eIF2-GDP. Then, the eIF2 gene,

called eIF2AKs, is phosphorylated by four stress-responsive

kinases. These include double-stranded heme-regulated kinase

(HRI, also known as EIF2AK1), RNA-induced protein kinase

(PKR, EIF2AK2), PKR like endoplasmic reticulum kinase (PERK,

EIF2AK3) and control non-repressed two kinases (GCN2,

EIF2AK4) at Ser51.

These four kinases phosphorylate eIF2 upon different events.

eIF2B levels are lower than eIF2 in cells, so partial

phosphorylation is sufficient to attenuate the initiation of

protein synthesis. The mRNAs of a series of stress responses

are resistant or stimulated by decreased the eIF2-GTP/Met-

tRNAi ternary complex levels. The response is often been

called the integrated stress response (ISR), and aberrant ISR

has been linked to many human diseases (23, 24). eIF2a was been

found differentially expressed in gastrointestinal cancer and

lymphoma subtypes (25, 26).

PRK was found to play a critical role in inflammasome

activation, and interact with multiple inflammasome

components, including the pyrin domain-containing 3

(NLRP3) of NLR family. The NLRP3 inflammasome is

involved in the pathogenesis of IBD (27). Previous studies had

shown that overexpression of EIF2AK2 could increase the

activity of NLRP3 polymorphism during the development of

IBD (28, 29). GCN2 is one of the vital coordinating factors of

ISR. Researches reported that GCN2 has a protective effect on

DSS-induced colitis in mice by inducing autophagy (30).

Phosphorylated eIF2a had been reported to promote

translation of the activating transcription factor 4 (ATF4) (31).

PERK was known as one of the sensors of the ISR. Regulation of

the PERK-eIF2a-ATF4 signaling pathway by inhibiting the

dephosphorylation of eIF2a improves the clinical and

histological effects of DSS-induced colitis in mice. PERK-

eIF2a-ATF4 signaling pathway is a potential therapeutic target

for IBD therapy (Figure 1) (28, 32). PERK activation had been

shown to play an essential part in chemically induced apoptosis

and contributes to G2/M arrest (33). The small-molecule PERK
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inhibitor may be used to activate the proapoptotic processin

CRC cells (34). In addition, the study had shown that SPARC

combined with GRP78 makes CRC cells sensitive to PERK/

eIF2a and IRE1a/XBP-1 UPR signals by interfering with ER

stress, resulting in the death of CRC cells (35). Smad7 knockout

was related to inactivation of small eIF2 cells, decreased

CDC25A expression, and partial reduction of proliferative cells

in human CRC explants, as well as reduction numbers of

intestinal tumors in Apc(min/+) mice (36).
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Eukaryotic translation initiation factor 3

eIF3 is the largest and most complex translation initiation

factor in mammalian cells, with a molecular weight of about 550-

800kDa. The eIF3 complex consists of 13 subunits, called EIF3A-

M, and members of eIF3 family undertake various tasks during

translation initiation.

The overexpression of eIF3a had been reported in several

cancers, such as breast (37), lung (38), esophagus (39) and
FIGURE 1

Schematic representation of PERK-eIF2a-ATF4 signaling pathway. It’s sensitive to ER stress, so PERK is activated. PERK activation leads to
phosphorylation of the eIF2a ring, which inhibits protein translation. Phosphorylated eIF2a enhances the translation of ATF4, a transcriptional
activator of genes associated with metabolism and nutrition, cellular redox status, and apoptosis regulation. ATF4 mediates the production of
transcriptional factor CHOP, and the upregulation of CHOP can aggravate the development of colitis.
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cervical cancer (40). eIF3a may play an important part in colon

epithelial cell differentiation (41). The expression of eIF3a was

also increased in CRC (42). eIF3a binds to phosphorylated

eIF4b, facilitating the translation of IRES dependent proteins

such as myc. The adenomatous polyposis coli (APC) gene

mutations are tightly related to CRC (43). eIF3b was

overexpressed in pancreatic Cancer (44), gastric cancer (45), as

well as chronic myeloid leukemia (46). Overexpressed eIF3c was

found in cholangiocarcinoma, lung adenocarcinoma and

prostate cancer (47, 48). eIF3d is responsible for protein

synthesis, which had been reported to play a carcinogenic part

in CRC. eIF3d knockout significantly induced more HCT116

cells to accumulate in the sub-G1 phase, suggesting apoptotic

cells increased after eIF3d knockout (49). eIF3e, also termed

INT6, interacts with the interferon-induced protein P56. It

reported that overexpression of eIF3e promoted CRC cell

proliferation and decreased the overall survival of CRC

patients (50). Decreased expression of eIF3e was also reported

in breast (51) and lung cancer (52). eIF3f may be a vital regulator

of cell migration, invasion, bioenergetics and metastasis. It is

downregulated in cancers exemplified in melanoma, lung cancer

and pancreatic cancer (53). A study showed that eIF3g is a

targeted regulator of CRC chemotherapeutic resistance (54). A

variant of eIF3h (rs16892766) was discovered to be associated

with higher CRC risk (55). eIF3i is a proto-oncogene that causes

CRC by directly upregulating the synthesis of COX-2 protein,

activating the b-catenin/TCF4 signaling pathway (56). eIF3m is

considered an indicator of poor prognosis in patients with CRC

(57, 58).
Eukaryotic translation initiation factor 4

eIF4 is a protein complex that promotes mRNA recruitment

to a preassembled 43S preinitiation complex. eIF4 complex is

composed of eIF4b and eIF4F complex, which is composed of

eIF4a, eIF4e and eIF4g (59, 60). The presence of eIF4F complexe

is critical for cap binding and subsequent RNA helicase activity

that leads to protein translation. eIF4a is independent of the

eIF4F complex, which stimulates eIF4a activity and promotes

mRNA recruitment to the ribosome. eIF4b and eIF4e are

regulated by the PI3K/AKT/mTOR signaling pathway. eIF4b

activates S6K kinase, which is responsible for the

phosphorylation of eIF4b at Ser-422120. The ability of eIF4E

recognizing caps is regulated by binding to eIF4E binding

proteins (4E-BP). Phosphorylation mediated by mTORC1

inhibited the activity of 4E-BP. When the binding of 4E-BP1

to eIF4e was weakened, subsequently the release of eIF4e was

weakened (61–63). The result suggested that increased

expression of eIF4E may be a vital factor for development of

breast cancer (64). A case-matched and sex-matched

transcriptome screening identified that eIF4E and eIF5 act as

potential prognostic markers for male breast cancer (65). Studies
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had shown that targeting MUC1-C by GO-203 can inhibit the

AKT-S6K-eIF4A pathway and block the proliferation and

survival of CRC cells (66). Overexpression of eIF4e was

reported to associated with poor prognosis in CRC patients

(67, 68).
Eukaryotic translation initiation factor 5

eIF5 is the GTPase activating protein (GAP) of eIF2 and

plays a vital role in the initiation of translation, which may

inhibit the guanine nucleotide exchange factor eIF2B (69).

eIF5A, containing the unusual amino acid hypusine, which

had been shown to stimulate ribosomal peptidyl activity and

promote prolonged translation (70, 71). Overexpression of

eIF5A may cause increased expression of p53 targets as well as

p53-dependent apoptosis, so it was described as positive

regulator of p53 (72).

In a recent study of Golob-Schwarzl and colleagues,

overexpression of eIF5 was observed in CC and RC, and

associated with survival rate (14). The overexpression of eIF5A

had also been reported to be associated with poor prognosis in

CRC (73). eIF5a was showed to induce apoptosis in CRC cells

(HTC116 and HT29) and was associated with response of

nucleus to tumor necrosis factor (TNF) signaling (74). The

study had shown that upregulation of eIF5A2 could enhance

epithelial mesenchymal transition (EMT) in CRC cells (HCT116

and HT29), and downregulation of eIF5A2 enhanced the

chemosensitivity to doxorubicin in eIF5A2-positive cells (75).

Deletion of eIF5B led an increase in ATF4 transcriptional

translation through another mechanism. eIF5B silencing

increased the expression of an ATF4-luciferase translational

reporter by a mechanism requiring the repressive uORF2 (76).

The ATF4 level was found reduced in the inflammatory

intestinal mucosa of patients with IBD, so ATF4 plays a

crucial role in maintaining intestinal homeostasis (77).
Eukaryotic translation initiation factor 6

eIF6 is an anti-association factor in translation initiation, by

binding to 60S subunits. It prevents premature connection of

40S and the interaction of 60S and 40S subunit, thus preventing

the initiation of translation (78). eIF6 was phosphorylated by the

complex of RACK1-PKCbII and thus cascaded by Ras. Another

studies found that gene transcription of encoding eIF6 was

regulated by the receptor Notch-1, which is a key downstream

medium of oncogenic Ras (79–82). eIF6 was overexpressed in

gallbladder cancer, head and neck cancer, non-small cell lung

cancer and ovarian serous adenocarcinoma (12, 83–85),

particularly in metastatic CRC (86). eIF6 plays a role in

downstream protein synthesis of PI3K/AKT/mTOR (12).

Overexpression of eIF6 increased cancer cell motility and
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invasion in CRC, in turn silencing of eIF6 significantly reduced

the proliferation rate and the clonogenicity in HCT-116 CRC

cell lines (12). A recent study by LJ found that eIF6 activated a

variety of AKT-related cancer signaling pathways, such as p-

AKT\MMP1\cyclinD1\Bcl2. Therefore, eIF6 could regulate cell

proliferation, invasion, cell cycle and apoptosis under the

background of CRC (87).
Eukaryotic elongation factors

Eukaryotic elongation factor 1

eEF1 is a complex factor composed of multiple subunits,

responsible for binding to aminoacyl-tRNAs and transferring it

to the A-site of ribosomes (88). Ras-driven cancers utilize

methyltransfer-like 13 demethylations of eEF1A Lysine55 to

increase translation output and promote tumorigenesis in vivo

(89, 90). eEF1A1 and eEF1A2 can control cell motility, growth

and death (91). Overexpression of eEF1A1 and eEF1A2 was

related to a few different cancer types, such as plasmacytomas

(92), HCC (93), clear cell renal cell carcinoma (94), breast cancer

(95), gastric cancer (96), prostate cancer (97), ovarian cancer

(98) and CRC (99). At the genomic level, a significant higher

frequency of EEF1A2 copy number variation was found in

patients with metastatic than non-metastatic CRC (99).

Pellegrino found that EEF1A2 mediated the expression of

PI3K/AKT/mTOR axis stabled oncogene MDM4 in HCC

(100). eEF1G was found overexpressed in CRC (101).
Eukaryotic elongation factor 2

eEF2 is answerable for the ribosomal translocation at the

elongation stage of a polypeptide chain. Another important

extension regulator is eEF2K. eEF2K is a Ca2+/calmodulin

(CaM)-dependent kinase and a negative regulator of protein

synthesis. eEF2 is overexpressed in lung cancer, esophageal

squamous cell carcinoma, head and neck squamous cell

carcinoma, pancreatic cancer, breast cancer, prostate

cancer, non-Hodgkin’s lymphoma, melanoma, GBM and

other human cancers (102, 103). It had been reported that

in gastric cancer and CRC, overexpression of eEF2 could

promote G2/M progression and cell growth in vitro and in

vivo (104). Vasamsetti found that Muscarinic acetylcholine

receptor (mAChRs) promoted the synthesis of the global

p ro t e in o f SNU-407 CC ce l l s . mAChR-med ia t ed

dephosphorylation of eEF2 is regulated by the MEK1/2-

ERK1/2 and the PKC pathway (105). mTORC1 gained

power from eEF2K to promote translation elongation

through S6K (106). mTORC1 had been shown to be an
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important downstream effector of Wnt signaling in the

intestinal tract. The intestinal cell proliferation associated

with Wnt signaling requires the mTORC1-S6K-eEF2K-eEF2

axis. eEF2K plays an important role in controlling the

in i t i a t ion o f in te s t ina l cancer and adenoma ce l l

proliferation (107). eEF2K was downregulated in CRC,

which was independently associated with poor overall

survival in CRC patients (108). eEF2K acts as a tumor-

suppressor in CRC. By contrast, it is established as an

oncogene in other cancer entities like HCC, lung cancer, or

triple-negative breast cancer (109).
Eukaryotic releasing factors

The termination process of protein synthesis involves the

hydrolysis of the final peptide-tRNA bond and the release of the

nascent polypeptide. The reaction is mediated by eukaryotic

releasing factor 1 (eRF1) and eRF3 proteins. In eukaryotes, when

the eRF1-eRF3-GTP ternary complex binds to the termination

codon of the ribosome A site, translation terminates (110). eRF1

is responsible for terminating protein biosynthesis by

recognizing stop codon, binding ribosome and stimulating

peptidyl-tRNA bond (111). eRF3 is a small GTPase that

enhances the activity of eRF1. eRF3 is involved in key cellular

processes, such as cell cycle regulation, cytoskeleton and

apoptosis (112, 113). The N-terminal region of eRF3 contains

polyglycine amplification encoded by a stable (GGC) channel in

the eRF3/GSPT1 exon 1 gene. Overexpression of GSPT1 mRNA

had been reported to be connected with gastric and breast cancer

(114, 115). Malta-Vacas found that the GGC12 was present in

2.2% of CRC patients, but not in the CD cases (116).

Ribosome recycling usually occurs after a regular

termination triggered by a termination codon. Recycling

enables ribosomes and mRNAs to participate in more than

one translation (117). ATPase ABCE1 had been shown to be a

major ribosome recycling factor, while ABCE1-mediated post-

TCs recycling is dependent on the presence of eRF1 at site A

(118). eIF3 plays an important part in the post-TCs recycling of

eukaryotic cells, promoting ribosome division into 40S subunits

of 60S subunits and tRNA-and mRNA-bound after termination.

eIF1 also mediates the release of tRNA at the P site, while eIF3j

ensures subsequent mRNA dissociation (119).
Conclusions

The occurrence and development of IBD are affected by

many factors, such as host genetic susceptibility, intestinal flora,

environmental factors and host immune system. Chronic

inflammation may significantly increase the risk of cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2022.898966
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2022.898966
Elevation levels of inflammation-related factors may also

interfere with the control of cell proliferation.

eIFs, eEFs and eRFs play major roles in protein synthesis

steps. Investigating the details of the eIF2 complex reveals that

different eIF2 subunits play important roles in IBD. PRK plays

an important part in inflammatorome activation and interacts

with a variety of inflammatorome components, including

NLRP3. The PERK-eIF2a-ATF4 signaling pathway is a

potential therapeutic target for IBD. eIF2a was found

overexpressed in gastrointestinal cancer. On the other hand,

ATF4 plays a vital role in maintaining intestinal homeostasis,

and the loss of eIF5B leads to increased translation of ATF4

transcripts through some mechanisms. There may be an

association between eIF5B and IBD. eIFs may represent a new

set of players associated with IBD and CRC, opening the door to

an new area of GI tract research.

Changes in the expression of eIFs, eEFs and eRFs had been

reported in a wide range of tumors, which played different roles

in cell proliferation and tumorigenesis. Some of them may act as

tumor suppressors, while others may contribute to the

occurrence and progression of tumors. The effects of eIFs,

eEFs and eRFs on CRC were shown in Table 1. These studies

suggested that eIFs, eEFs and eRFs play a key role in CRC

development and may be potential targets for CRC therapy.

mTOR, RAS signaling pathways and cell cycle regulation are

critical for CRC development. RAS/MAPK and PI3K/AKT/

mTOR pathways play key roles in promoting cel l

proliferation from membrane receptors to the nucleus. 4E-BP1
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is one of the downstream molecules that receive signals from

several intracellular pathways, including PI3K/AKT/mTOR and

RAS/MAPK. 4E-BP1 is phosphorylated by AKT and MAPK.

Phosphorylation induced by mTOR at 4E-BP triggers the release

of eIF4e, enabling it to cooperate with the eIF4F complex and

activate translation initiation. Vascular endothelial growth factor

(VEGF) is a translation target for the upregulation of eIF4e,

which is targeted directly or via Ras activation. VEGF is highly

correlated with the neovascularization often observed in

malignant tumors. Phosphorylation of eIF4b increases

translation efficiency and binding affinity with eIF3a, which in

turn promotes IRES dependent translation of proteins such as

myc. Myc activates the transcription of eIF4e through a feedback

mechanism, thereby increasing myc expression. The APC gene

mutations had been observed in up to 80% of sporadic CRCs,

and it plays a role in transcription regulation. Due to APC

absent, c-myc expression was upregulated. In addition,

mTORC1 had been shown to be an important downstream

effector of Wnt signaling in the intestinal tract, while intestinal

cells proliferation associated with Wnt signaling requires the

mTORC1-S6K-eEF2K-eEF axis (Figure 2).

Recent research had found that dysregulation of protein

translation may be one of the causes of cancer. Dysregulation

translation results in abnormal gene expression, which was also

found involved in cell proliferation or apoptosis, leading to

abnormal cell growth and malignant transformation. Some

abnormalities of the mRNA and protein levels of eIFs, eEFs and

eRFs in colorectal diseases had been published. For example, eIF2a
TABLE 1 The eIFs, eEFs and eRFs play a role in CRC.

Factor Function in CRC

eIF1 Overexpressed in CRC, oncogenic, linked to poor survival (14).

eIF2a Overexpressed in CRC, important role in chemical-induced apoptosis and contributes to G2/M arrest (33).

eIF3a Overexpressed in CRC, up-regulates normally translationally repressed proteins (41).

eIF3b Overexpressed in CC, acts as oncogene in CC (44).

eIF3d Play an oncogenic role in CC (49).

eIF3e Overexpressed in CRC, interacts with the interferon-induced protein p56, plays potential integrated role in cell growth, development, and tumorigenesis (50).

eIF3g Overexpressed in CRC, acts as oncogene, promotes metastasis and chemoresistance (54).

eIF3h rs16892766 was identified as a CRC susceptibility SNP (55).

eIF3i Proto-oncogene. The synthesis of COX-2 protein was up-regulated and the catenin/TCF4 signaling pathway was activated (56).

eIF3m Overexpressed in CC, acts as oncogene, is linked with poor prognosis (57, 58).

eIF4A Targeting MUC1-C with GO-203 inhibits the AKT-S6K-elF4A pathway by blocking cell proliferation and survival (67).

eIF4e Over expressed in CRC, acts as oncogene, is linked with poor prognosis (68).

eIF5A Overexpressed in CRC, acts as oncogene, is linked with poor prognosis (73).

eIF6 Overexpressed in CRC. Activates the multiple AKT-related cancer signaling pathways in CRC cells, thereby regulating cell proliferation, invasion, cell cycle and
apoptosis (87).

eEF1 Overexpressed in CRC, acts as oncogene, promotes tumor growth and metastasis (99, 101).

eEF2 Overexpressed in CRC, acts as oncogene, Promotes G2/M progression and cell growth (104).

eEF-2K Downregulated in CRC, acts as tumor suppressor, low expression is associated with short overall survival (108).
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is overexpressed in IBD, most isoforms of eIFs and eEFs are

overexpressed in CRC. In contrast, eEF-2K downregulation in

CRC was associated with reduced overall survival.

Recent findings of protein translation based drugs, such as

thymoquinone rapamycin, rapalogs and imatinib, may be

available in the treatment of cancer. To sum up, these studies

suggested that protein translation plays an important part in

IBD and CRC development, and may be a potential therapeutic

target for them.
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FIGURE 2

Interplay of mTOR signaling through protein translation. (A) The mTOR signal either goes through the 4eBP bound to eIF4e or through the S6K.
mTOR phosphorylation of 4E-BP triggers the release of eIF4e and activates translation initiation. Upregulation of eIF4e triggers direct or Ras-
induced VEGF translation. Activation of S6K leads to phosphorylation of eIF4b, which increases the binding affinity to eIF3a and thus promotes
the translation of IRES dependent proteins such as myc. Myc in turn promotes the expression of eIF4e at the transcriptional level. S6K can affect
the change of elongation. eEF2K is a negative regulator of eEF2, giving mTORC1 the ability to promote translation elongation through S6K. (B)
Akt is a downstream molecule of eEF2, which regulates its activity. On the one hand, Akt activates the mTOR signaling pathway by inactivating
the upstream regulator of mTOR, TSC2. On the other hand, Akt mediated eEF2 promotes G2/M progression through CDC2 activation.
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