
Frontiers in Oncology | www.frontiersin.org

Edited by:
Holger W. Auner,

Imperial College London,
United Kingdom

Reviewed by:
Paula Saavedra Garcı́a,

VIB KU Leuven Center for Cancer
Biology, Belgium
Sarah Gooding,

University of Oxford, United Kingdom
Michaela Ruth Reagan,

Maine Medical Center Research
Institute, United States

*Correspondence:
Lenka Besse

Lenka.besse@kssg.ch

Specialty section:
This article was submitted to

Cancer Metabolism,
a section of the journal
Frontiers in Oncology

Received: 18 March 2022
Accepted: 25 April 2022
Published: 26 May 2022

Citation:
Schwestermann J, Besse A,

Driessen C and Besse L (2022)
Contribution of the Tumor

Microenvironment to Metabolic
Changes Triggering Resistance of

Multiple Myeloma to
Proteasome Inhibitors.

Front. Oncol. 12:899272.
doi: 10.3389/fonc.2022.899272

REVIEW
published: 26 May 2022

doi: 10.3389/fonc.2022.899272
Contribution of the Tumor
Microenvironment to Metabolic
Changes Triggering Resistance
of Multiple Myeloma to
Proteasome Inhibitors
Jonas Schwestermann, Andrej Besse, Christoph Driessen and Lenka Besse*

Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen,
Switzerland

Virtually all patients with multiple myeloma become unresponsive to treatment with
proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied
by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse
proteomic and metabolic alterations, and profound changes of the bone marrow
microenvironment. However, the molecular mechanisms that drive resistance to
proteasome inhibitors within the context of the bone marrow microenvironment remain
elusive. In this review article, we summarize the latest knowledge about the complex
interaction of malignant plasma cells with its surrounding microenvironment. We discuss
the pivotal role of metabolic reprograming of malignant plasma cells within the tumor
microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon
treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment.
At the same time, mutual interaction of plasma cells with the surrounding tumor
microenvironment drives multiple metabolic alterations in the bone marrow. This
provides a tumor-promoting environment, but at the same time may offer novel
therapeutic options for the treatment of relapsed/refractory myeloma patients.

Keywords: multiple myeloma, tumor microenvironment, proteasome inhibitors, resistance, metabolism
INTRODUCTION

Multiple myeloma (MM) is a plasma cell (PC) malignancy that is characterized by clonal expansion
of malignant PCs inside the bone marrow (BM). Excessive production of monoclonal
immunoglobulins (Igs) together with complex interactions with other members of the BM
microenvironment (BMM) lead to pathological complications including bone lesions,
hypercalcemia, renal failure, cytopenia and immunodeficiency at the time of MM diagnosis (1).
Despite the development of novel and biology-driven anti-MM drugs in the past two decades,
disease heterogeneity, early relapse and treatment resistance still pose major challenges in MM
therapy. Moreover, subclonal heterogeneity of PCs evolves alongside disease progression through
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selection of increasingly drug-resistant as well as genetically and
metabolical ly adapted subclones (2, 3) . Nowadays,
immunomodulatory drugs (IMiDs), immunotherapies based
on monoclonal antibodies (mABs), and proteasome inhibitors
(PIs) constitute an integral part of MM treatment regimens and
have considerably improved patient prognosis. However,
patients who are triple-class refractory towards IMiDs, mABs
and PIs only have 5.6 months median overall survival (4),
emphasizing the need to understand the underlying
mechanisms that mediate (multi-)drug resistance in MM.

Since MM PCs secrete immense amounts of Igs, they are
highly dependent on their ability to dispose of misfolded proteins
via proteasomal degradation. Approximately 90% of total
protein degradation occurs via the ubiquitin-proteasome
system. In addition, MM PCs heavily rely on the unfolded
protein response (UPR) and the endoplasmic reticulum (ER)-
associated degradation (ERAD) machinery to ensure adequate
protein folding and turnover to maintain cellular proteostasis
(5). Proteasomes are proteolytic complexes that degrade
ubiquitinated proteins and are composed of a 20S core
catalytic particle and a 19S regulatory particle. The 20S particle
has three distinct catalytic sites: the chymotrypsin-like site (b5
subunit), the trypsin-like site (b2 subunit) and the caspase-like
site (b1 subunit) (6). PIs, such as Bortezomib (BTZ), Carfilzomib
(CFZ), and Ixazomib, are selective inhibitors that by design bind
to the b5 catalytically active site of proteasomes and inhibit its
activity (7). Notably, at higher concentrations, BTZ also co-
inhibits the b1 subunit, whereas CFZ co-inhibits the b2 subunit
(6, 7), thus providing a slightly different scenario of proteasome
inhibition, likely contributing to different clinical outcomes of
treatment with the drugs. Proteasome inhibition causes excessive
accumulation of (misfolded) proteins within MM cells, leading to
prolonged and irresolvable ER/proteotoxic stress, and apoptosis
(8, 9). Although the PI drugs are initially very effective, the
evolving resistance and disease progression in relapsed/
refractory MM (RRMM) remains a long-term clinical
challenge. The biology of PI-resistant MM is currently being
dissected in some detail (10–12). Increasing evidence suggests a
metabolic rewiring as a cell biological basis of the adaptation of
MM cells to PIs at the sub-clonal level (13).

In recent years, accumulating evidence has also emphasized
the importance of the BMM for MM pathogenesis, cell growth,
survival, migration, and drug resistance (14). The BMM is
composed of a cellular and a non-cellular compartment and
MM PCs strongly interact with both compartments in a mutual
fashion. Such interactions are regulated in an autocrine and/or
paracrine fashion and induce proteomic and metabolomic
changes in MM and other BM resident cells, thereby creating a
hypoxic , nutr ient depleted , and tumor support ive
microenvironment. Thus, not surprisingly, due to the
supportive and protective contribution of the tumor
microenvironment (TME) and metabolic rewiring of MM PCs,
the therapy of RRMM remains difficult (15–17).

In this review, we summarize the key players involved in
TME-mediated PI resistance and delineate contact dependent
and contact independent interactions between them andMMPCs.
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Moreover, we describe proteomic and metabolomic
reprogramming of MM cells within the TME, elucidate the
metabolic consequences of proteasome inhibition and
metabolism-related factors promoting PI resistance in MM in the
context of the TME and further present potential strategies on how
to overcome TME-mediated PI resistance.
THE TUMOR MICROENVIRONMENT
IN MULTIPLE MYELOMA

Malignant transformation of normal PCs to MM is not only a
result of molecular changes of the cells themselves but is likewise
influenced by the surrounding BMM and its interactions with the
malignant PCs. The BMM surrounding malignant PCs during
active disease, also called a TME, is a sophisticated network of
cells of hematopoietic origin (including myeloid cells, T- and B-
lymphocytes, natural killer (NK) cells, osteoclasts, etc.), or
mesenchymal origin (mesenchymal stromal cells, fibroblasts,
osteoblasts, adipocytes, endothelial cells (ECs)). The non-
cellular compartment comprises the extracellular matrix
(ECM) and the liquid BM milieu, including soluble factors
such as cytokines, growth factors and chemokines, which are
produced and/or affected by the cellular compartment of the
BMM. Malignant PCs constantly interact with their surrounding
TME thereby gaining access to a wide array of TME-derived pro-
survival signals, which help them thrive within the BM niche.
Moreover, molecular changes occurring during the progression
of MM in malignant PCs and within the TME culminate in an
expansion of malignant PCs throughout the BM. At the same
time, soluble factors and physical interaction with other BM-
homing cell types mediate drug resistance of PCs in several
settings. The following sections will shed some light onto key
cellular and soluble compartments of the TME, which are
associated with disease pathogenesis and progression, and their
interaction within the TME.

Key Players of the Myeloma TME
Bone-Marrow Mesenchymal Stromal Cells
BM-derived mesenchymal stromal cells (BMSCs) are
multipotent cells located within the BM stroma that are
required for bone development, homeostatic remodeling, and
repair (18). They can differentiate into various cell lineages, such
as adipocytes, osteoblasts, fibroblasts, ECs, pericytes and
neuronal cells. Together they form the skeletal structure of the
BM and generate a permissive environment that influences the
function and differentiation of hematopoietic cells. In MM,
BMSCs strongly interact with malignant PCs in a reciprocally
supporting manner towards cancer progression (19).

Osteoclasts
Osteoclasts are multinucleated monocyte-macrophage
derivatives that degrade bone, and thus are involved in
periodic repair and remodeling of bone tissue. Osteoclasts
dissolve bone mineral by massive acid secretion and secrete
specialized proteinases to degrade the organic protein matrix,
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which is mainly composed of type I collagen. In myeloma,
osteoclasts are heavily activated due to various soluble factors
secreted by MM cells and BMSCs, which ultimately leads to bone
lesions, a hallmark of MM (20, 21).

Osteoblasts
Osteoblasts are specialized, terminally differentiated BMSCs that
synthesize dense, crosslinked collagen as well as specialized
proteins, such as osteocalcin, osteopontin and hydroxyapatite,
which are essential components of the bone matrix.
Physiologically, osteoblasts and BMSCs both produce
osteoprotegerin (OPG), which counteracts bone resorption and
further prevents osteoclast maturation and activation (22, 23). In
MM, OPG has been shown to be bound, internalized and
degraded by MM cells (24). Thus, MM cells inhibit osteoblast
formation and differentiation, resulting in bone loss (25, 26).

Bone Marrow Endothelial Cells
ECs line the interior surface of blood vessels (vascular ECs) and
lymphatic vessels (lymphatic ECs). ECs form the barrier between
vessels and tissue and allow for the exchange of nutrients,
hormones, or catabolites as well as the transit of white blood
cells into and out of the surrounding tissue. At the same time,
ECs are involved in processes such as inflammation,
angiogenesis, and blood pressure control. BM angiogenesis is a
hallmark of MM progression (27, 28). Induction of pro-
angiogenic genes and secretion of growth factors and matrix
metalloproteinases (MMPs) by MM cells facilitate ECs growth
and neovascularization of the TME (29–32). Moreover, a
progressive increase in BM microvascular density correlates
with the development of PC disorders, ranging from
monoclonal gammopathy of undetermined significance
(MGUS) to smoldering (SMM) and active MM (28).

Bone Marrow Adipocytes
BM adipocytes (BMAds) are derived from BMSCs and constitute
the majority of BM adipose tissue, a type of fat deposit in the BM.
BM adipose tissue expands with aging and obesity, two well-
known MM risk factors, suggesting that BMAds play a role in
MM pathogenesis. BMAds contribute to systemic metabolism
via secretion of circulating adipokines (cytokines secreted by
adipose tissues) as well as free fatty acids and are involved in
processes such as bone remodeling and hematopoiesis.
Specifically, the MM-associated adipocytes exhibit reduced
adipogenic gene expression and lipid loss and support MM cell
growth and resistance to Dexamethasone-induced cell cycle
arrest and apoptosis (33). At the same time, MM-induced
BMAd-derived exosomal lncRNA mediate resistance towards
BTZ, CFZ and Melphalan via apoptosis inhibition (34). The
precise role of BMAds in MM needs to be further elucidated, as
obesity is associated with increased risk of MGUS development
and progression to MM (35, 36); however, being underweight is a
risk factor of mortality in newly diagnosed MM (37).

Bone Marrow Immune Cells
A general alteration of the immune system, a condition termed
immunosuppression, is a common characteristic of MM
Frontiers in Oncology | www.frontiersin.org 3
patients, that has been associated with disease evolution from
its precursor stages (38). In the context of the BM niche, complex
interactions between immune cells and MM PCs shift the
balance towards an immunosuppressive environment (39). It is
characterized by high concentration of immunosuppressive
factors, loss of effective antigen presentation, effector cell
dysfunction and expansion of immunosuppressive cell
populations, such as myeloid-derived suppressor cells
(MDSCs), regulatory T cells (Treg), tumor-associated
macrophages, Th17 cells and T cells expressing checkpoint
molecules, all together promoting myeloma progression (40–
42). Recent studies have shown that malignant transformation of
PCs is associated with altered expression of HLA class I antigen
processing machinery (APM) components, and further
downregulated expression of proteasome subunits (43). These
changes lead to decreased expression of tumor antigen peptides
on the PCs surface, enabling MM cells to evade CD8+ T cell
recognition and killing (44, 45). Whether alterations in the
immune system are responsible for disease progression to MM,
or in contrast, abnormalities in the malignant PCs induce an
immunosuppressive microenvironment, favoring the transition
from SMM to active MM is still a matter of debate.
Interaction of the TME With MM Cells
Contact Dependent Interaction
Cell Adhesion/Cell-to-Cell Interaction
An important aspect of the TME in MM is cellular crosstalk
mediated by cell-to-cell interaction via receptor-ligand binding.
Virtually all cell types present within the BM can interact with
MM PCs and directly support MM growth and metabolism,
immune evasion and therapy resistance (Figure 1). The cellular
interaction induces downstream signaling, ultimately triggering
the release of soluble factors into the TME, or direct exchange of
mitochondria through tunneling nanotubes (TNT).

Interaction With BMSCs. Myeloma cells interact with BMSCs
via binding of very late antigen-4 (VLA-4), also known as a4b1
integrin, to vascular cell adhesion molecule 1 (VCAM1) or via
binding of lymphocyte function associated-1 (LFA-1), also
known as integrin subunit ß2, or Mucin 1 (MUC1, cell surface
associated) to intercellular adhesion molecule 1 (ICAM-1) (46).
BMSC-MM cell-to-cell interaction triggers downstream signal-
ing cascades in both cell types, which ultimately increases MM
cell fitness. Therefore, perhaps not surprisingly, high LFA-1 is
associated with poor prognosis in MM patients and in mice (47,
48), and presence of MUC1 promotes MM proliferation (49).
While in MM this interaction activates nuclear factor kappa B
(NFkB) signaling, a major driver of MM survival and prolifer-
ation (50), in BMSCs, it induces the activation of the mitogen-
activated protein kinase (MAPK), Notch, and phosphoinositide
3-kinase (PI3K) pathways, which leads to the transcription and
subsequent secretion of numerous cytokines (51).

Interaction With ECs. The interaction of MM PCs with ECs is
implicated via P-selectin glycoprotein ligand 1 (PSGL-1) binding
on MM PCs to E- and P-selectins on the surface of ECs, par-
ticularly during early cell adhesion (52, 53). Likewise, expression
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of adhesion molecules VLA-4, LFA-1 and CD44 on MM cells
correlate with increased angiogenesis in active MM (54). Addi-
tionally, MM-associated ECs show elevated membrane expres-
sion of junctional adhesion molecule-A (JAM-A), which
correlates with disease progression through enhancement of
MM-associated angiogenesis. The interaction between MM-
associated ECs and MM PCs increases the expression of JAM-A
also on MM PCs surface (55).

Interaction With Immune Cells. Myeloma cells interact with
surrounding immune cells via CD28 and programmed cell death
1 ligand 1 (PD-L1) molecules. Plasma and myeloma cells express
CD28, a protein known for its role in providing co-stimulatory
signals required for T cell activation and survival. MM cells
retain CD28 expression due to its pro-survival capacity upon
Frontiers in Oncology | www.frontiersin.org 4
binding to CD80/CD86, which is expressed by BMSCs and
dendritic cells (DCs) (56–58). Both CD28 and CD86 are essential
for PCs development, myeloma survival and therapy resistance
(57, 59, 60). At the same time, DCs interact with MM cells via
CD80/CD86–CD28 interaction, promoting a downregulation of
proteasome subunit expression and a consequent escape of MM
cells from CD8+ T cell recognition and killing (45). Moreover,
plasmacytoid DCs promote MM cell growth, survival, and drug
resistance (43) and express high surface levels of PD-L1 con-
ferring T cell and NK cell immune suppression via the pro-
grammed cell death protein 1 (PD-1)–PD-L1 signaling axis (61,
62).

Within the MM-TME, PD-1 has been shown to be strongly
expressed by gd T cells (63) and NK cells (64) and to interact with
PD-L1, expressed by myeloma PCs, DCs, and MDSCs thereby
FIGURE 1 | Contact dependent interactions between MM cells and the TME. MM cells physically interact with various other BM-homing cell types and the ECM
structures via receptor-ligand binding or tunneling nanotubes. Such interactions trigger a plethora of inter- and intracellular signal cascades which support MM cell
growth and metabolism, immune evasion and therapy resistance. BMSC, bone marrow stromal cell; DC, dendritic cell; ECM, extracellular matrix; ICAM-1, intercellular
adhesion molecule 1; JAM-A, junctional adhesion molecule A; LFA-1, lymphocyte function-associated 1; MAdCAM-1, mucosal vascular addressin cell adhesion
molecule 1; MM, multiple myeloma; PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; PSGL-1, P-selectin glycoprotein ligand-1;
RHAMM, receptor for hyaluronan mediated motility; TAM, tumor associated macrophage; TNT, tunneling nanotubes; VCAM1, vascular cell adhesion molecule 1;
VLA-4, very late antigen-4.
May 2022 | Volume 12 | Article 899272

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Schwestermann et al. TME-Driven Resistance in MM
downregulating the immune response. Tumor associated
macrophages are strongly represented in the TME. They have
been shown to increase MM cell survival and protection from
drug-induced apoptosis via contact-dependent interaction with
MM PCs, involving PSGL-1 and ICAM-1 on MM PCs and E-
and P-selectins and CD18 on the cell surface of macrophages
(65–67). Myeloma cells can also directly induce formation of
functional Treg cells in a contact dependent manner, acting as
immature and tolerogenic antigen presenting cells (APCs) (68),
as well as in an independent manner via expression of the
inducible co-stimulator ligand (ICOSL) (69).

A myriad of interactions between immune cells and MM cells
are currently being studied towards identification of novel
therapeutic approaches or are developed in the clinics as
immunotherapy and immune-stimulating drugs (70, 71).

Interaction With Osteoblast Progenitors. MM cells co-cultured
with human osteoblast progenitor cells exert inhibitory effects on
osteocalcin, alkaline phosphatase, collagen I mRNA, protein
expression, and RUNX family transcription factor 2 (RUNX2)/
core binding factor alpha 1 (CBFA1) activity in osteoblast pro-
genitor cells, thereby suppressing osteoblast formation and dif-
ferentiation. Such inhibitory effects are partly driven by physical
interaction between MM cells and osteoblast progenitor cells,
involving the VLA-4–VCAM1 integrin system (25).

Mitochondrial Trafficking
In recent years, several studies have shown the importance of
(bidirectional) mitochondrial trafficking through tunneling
nanotubes (TNT) and partial cell fusions, and its association with
increased growth potential, survival benefits, enhanced
chemoresistance, as well as altered metabolism and functional
properties of tumor cells (72–77). Specifically in MM, MM PCs
endorsemitochondria uptake fromautologousBMSCsonce exposed
to increasing concentrations of different chemotherapeutic drugs,
therebypromotingMMsurvival and increasing the level of adenosine
triphosphate (ATP) (via increased oxidative phosphorylation
(OXPHOS) capacity), while lowering superoxide levels. These
changes were proportional to the amount of incorporated BMSCs-
derived mitochondria as well as the drug concentration but were
independentof the type andmechanismof actionof the applieddrug.
At the same time, autologous BMSCs incorporate the MM cell-
derived mitochondria as well, which leads to increased levels of
intracellular superoxides in BMSCs. In addition, the supportive effect
of stromal cells could be successfully abrogated by the use of
chemotherapeutic agents in combination with Metformin, an
inhibitor of OXPHOS (77). Interestingly, mitochondrial trafficking
appears to be a CD38-dependent process and shRNA-mediated
knockdown of CD38 inhibited the trafficking and TNT formation
in vitro, blocked the trafficking in vivo and improved survival ofNSG
mice that were engrafted with MM cell line with reduced CD38
expression (75).

MM-primed BMSCs have decreased re l iance on
mitochondrial metabolism as compared to healthy BMSCs, and
increased tendency to deliver mitochondria to MM PCs.
Particularly, PC-induced expression of connexin 43 (CX43) in
BMSCs causing expression of C-X-C motif chemokine ligand 12
Frontiers in Oncology | www.frontiersin.org 5
(CXCL12, also known as stromal-derived factor-1 alpha; SDF-
1a) and consequent stimulation of its receptor C-X-C motif
chemokine receptor 4 (CXCR4) on MM cells facilitates
mitochondrial trafficking. An in vitro co-culture experiment
showed that this interaction could be disturbed via selective
inhibition of CXCR4 using Plerixafor, a CXCR4 antagonist,
resulting in decreased mitochondrial transfer. In addition, the
intracellular CXCR4 expression was elevated in CD138+ MM
cells fromMM patients who failed to respond to BTZ, suggesting
that CXCR4 mediates chemoresistance in MM (76).
Contact Independent Interaction
Cytokine Signaling and Soluble Factors
In the context of the TME, the direct ligand-receptor-mediated
crosstalk between MM PCs and BM cellular compartment induces
the release of soluble factors, mainly cytokines, growth factors and
chemokines. Upon binding to their cognate receptors, these factors
trigger intracellular signaling. Since all cells in the BM niche sense
and respond to such stimuli, the soluble factors-mediated
interaction stimulates MM PCs growth and survival, but at the
same time promotes BM neovascularization, bone remodeling and
immune evasion (Figure 2).

Factors Promoting MM Growth and Survival. Physical inter-
action between MM cells and BMSCs via VLA-4–VCAM1
binding induces BMSCs to produce multiple cytokines. One of
them is interleukin-6 (IL-6), which is essential for MM growth,
survival, migration, and drug resistance. It binds to its cognate
receptor (IL-6R) and signals through mitogen-activated protein
kinase (MEK)/MAPK, janus kinase (JAK)/signal transducer and
activator of transcription (STAT), and PI3K/Akt pathways,
leading to increase and stabilization of anti-apoptotic proteins,
such as myeloid leukemia 1 (MCL-1) (50, 78–81). At the same
time, MM PCs uniquely express the signaling lymphocytic
activation molecule family member 7 (SLAMF7) receptor, which
is cleaved via unknown mechanisms and detected as a soluble
form (sSLAMF7) exclusively in the serum of MM patients (82).
sSLAMF7 enhanced the growth of MM cells via homophilic
interaction with surface SLAMF7 and subsequent activation of
the downstream signaling pathways (83).

The BMSCs-derived cytokine B-cell activating factor (BAFF),
a member of the tumor necrosis factor (TNF) family, is either
expressed on the surface of BMSCs or it appears in a cleaved
soluble form. Physiologically, BAFF stimulates B cell growth, and
likewise binding of BAFF to its cognate BAFF-receptor (BAFF-
R) or transmembrane activator and CAML interactor (TACI), on
MM cells leads to increased proliferation and survival of MM
(84, 85). Another BMSC-derived cytokine, a proliferation-
inducing ligand (APRIL) can bind to TACI or B-cell
maturation antigen (BCMA) on MM cells. APRIL and BCMA
positively impact survival and growth of MM via MAPK and
NFkB signaling and further promote immunosuppression via
PD-L1, transforming growth factor-ß (TGF-ß), and IL-10 (86).

TNF-a is a well-described mediator of inflammation, which
has recently been shown to be one of the main drivers inducing
the inflammatory gene signatures in MM-associated BMSCs,
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which further promote MM PCs survival and immuno
modulation within the TME (87). TNF-a has only a modest
impact on the proliferative capacity of MM cells, but it induces
expression of adhesion molecules resulting in a 2 to 4-fold
increase in binding of MM cells to BMSCs (88). Moreover,
TNF-a and IL-6 were significantly increased in the BM
aspirates of patients with active MM. TNF-a triggers NFkB
and MAPK activation, as well as secretion of IL-6 that is
regulated by the JAK/STAT pathway (88, 89).
Frontiers in Oncology | www.frontiersin.org 6
Similarly, MM cells influence BMSCs to produce growth
factors which promote MM growth. A key growth factor
promoting MM proliferation is insulin-like growth factor
(IGF). IGF binds to its tyrosine kinase receptor, the insulin like
growth factor 1 receptor (IGF-1R), and in this way supports MM
growth, anti-apoptotic signaling and drug resistance to cytotoxic
chemotherapy, Dexamethasone, and PIs (90). Moreover, IGF
enhances the ability of MM cells to respond to other cytokines
and to produce pro-angiogenic cytokines (91).
FIGURE 2 | Contact independent interactions between MM cells and the TME. Cellular crosstalk between MM cells and other key players of the TME triggering the
release of soluble factors (mainly cytokines, chemokines, and growth factors, but also extracellular vesicles). Upon binding to their cognate receptors, soluble factors
trigger intracellular signaling pathways, which promote myeloma growth and survival as well as BM neovascularization, bone remodeling and immune evasion.
Ang-1, angiopoietin-1; APRIL, a proliferation-inducing ligand; BAFF(-R), B-cell activating factor(-receptor); BCMA, B-cell maturation antigen; bFGF, basic fibroblast
growth factor; BMSC, bone marrow stromal cell; CCR, C-C motif chemokine receptor; COX-2, cycloxygenase-2; CSF-1, colony stimulating factor-1; CTLA-4,
cytotoxic T lymphocyte antigen-4; CXCL, C-X-C motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; DC, dendritic cell; DKK1, dickkopf WNT signaling
pathway inhibitor 1; EV, extracellular vesicle; FGF-2, fibroblast growth factor-2; HGF, hepatocyte growth factor; HIF-1a, hypoxia inducible factor-1a; HSC,
hematopoietic stem cell; ICAM-1, intercellular adhesion molecule 1; iDC, immature dendritic cell; IDO, indoleamine 2,3-dioxygenase; IFN-g, interferon-g; IGF, insulin-
like growth factor; IGF-1R, insulin-like growth factor 1 receptor; IL, interleukin; JAK2, janus kinase2; LAG3, lymphocyte-activation gene 3; LFA-1, lymphocyte function
associated-1; MF, macrophage; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-1; MDSC, myeloid-derived suppressor cell;
MIP-1a/ß, macrophage inflammatory protein 1-a/ß; MM, multiple myeloma; MMP, matrix metalloproteinase; NFkB, nuclear factor kappa B; NK, natural killer cell;
PAI-1, plasminogen activator inhibitor-1; PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; PDGF, platelet-derived growth factor;
PTHRP, parathyroid hormone-related peptide; RANK(L), receptor activator of NFkB (ligand); ROS, reactive oxygen species; SCF, stem cell factor; sFRP2, secreted
frizzled related protein 2; (s)SLAMF7, (secreted) signaling lymphocytic activation molecule family member 7; STAT, signal transducer and activator of transcription;
TAM, tumor associated macrophage; TACI, transmembrane activator and CAML interactor; TGF-ß, transforming growth factor-ß; TIM-3, T-cell immunoglobulin and
mucin-domain containing-3; TNF-a, tumor necrosis factors-a; VCAM1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor; VLA-4, very late
antigen-4.
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Factors Involved in Bone Remodeling. MM cells directly acti-
vate osteoclasts via secretion of macrophage inflammatory pro-
tein 1-a (MIP1-a), also known as C-C motif chemokine ligand 3
(CCL3), and MIP1-ß. Binding of MIP1-a to C-C motif che-
mokine receptor 1 (CCR1) and CCR5 and likewise binding of
MIP1-ß to CCR5 and CCR8 both induce osteoclast formation
and activity (21, 92, 93). MIP1-a further increases adhesion of
MM cells to BMSCs and disease burden in immunodeficient
mice suffering from MM (92, 93). In return, osteoclasts secrete
IL-6 to stimulate the proliferation and growth of MM cells and
other osteoclasts in an autocrine and paracrine fashion (94).
Upon interaction, osteoclasts upregulate chondroitin synthase 1
(CHSY1), which induces Notch signaling promoting the survival
of MM cells (95).

Apart from osteoclast activation, MM cells inhibit osteoblast
differentiation via increased secretion of activin A into the
microenvironment, leading to suppressed bone formation (96).
Moreover, MM cells secrete cytokines, such as dickkopf WNT
signaling pathway inhibitor 1 (DKK1), which is physiologically
mainly produced by BMSCs and osteoblasts, secreted frizzled
related protein 2 (sFRP2) and IL-3. The first two inhibit the
canonical Wnt/ß-catenin pathway, which is responsible for
osteoblast differentiation (25). IL-3 inhibits basal and bone
morphogenic protein-2 (BMP-2)-stimulated osteoblast
formation and plays an important role in stimulating osteoclast
formation as well (97). Thus, DKK1, sFRP2, and IL-3 contribute
to increased bone resorption in MM.

Beyond MM PCs, BMSCs as well produce osteoclastogenic
cytokines such as IL-1, TNF-a and parathyroid hormone-related
peptide (PTHRP) (20). The VLA-4–VCAM1 interaction also
induces the production of BMSCs-derived receptor activator of
NFkB ligand (RANKL), a membrane-bound or soluble
(sRANKL) cytokine essential for osteoclast differentiation,
which further increases osteoclast activation and bone lysis in
MM. Importantly, the high sRANKL/OPG ratio is a negative
predictor of survival in MM (20, 98) and ist therapeutic targeting
with Denosumab, an anti-RANKL antibody, has been shown to
reduce osteoclastogenesis and bone resorption markers in MM
patients (99). Other factors increasing the sRANKL/OPG ratio
are activin A and sclerostin, both produced by bone tissue (100,
101). Activin A, a member of the TGF-ß superfamily, is stored in
bone tissue and is released from bone upon bone resorption. The
increased level of circulating activin A causes downstream
signaling through numerous pathways to promote osteoclast
differentiation (101). At the same time, sclerostin, a secreted
glycoprotein from the bone tissue, can be targeted therapeutically
by Romosozumab, an anti-sclerostin antibody, which represents
a potential new therapeutic strategy in MM bone disease (102,
103). In addition to increasing the RANKL/OPG ratio, BMSCs
secrete IL-7, which has been shown to decrease RUNX2 activity
and osteoblast differentiation (25, 104). Moreover, the growth
factors produced and secreted by BMSCs, such as TGF-ß,
hepatocyte growth factor (HGF), basic fibroblast growth factor
(bFGF) and vascular endothelial growth factor (VEGF), are all
involved in bone remodeling since they influence osteoclast
activation and angiogenesis (97, 105).
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Factors Promoting Neovascularization. Proliferating MM cells
generate a hypoxic milieu within the TME and produce various pro-
angiogenic modulators including hypoxia inducible factor-1a (HIF-
1a), VEGF, bFGF, HGF, platelet-derived growth factor (PDGF),
angiopoietin-1 (Ang-1), osteopontin, MMPs (MMP-2 and MMP-
9), and heparanase, all of which contribute to EC proliferation and
migration, ECM degradation, and neovascularization (29–32). At
the same time, BMSCs, osteoclasts, osteoblasts and ECs secrete
various pro-angiogenic and other factors, including VEGF, fibro-
blast growth factor-2 (FGF-2), TNF-a, HGF, IL-6 and IL-8,
osteopontin, Ang-1, BAFF, CXCL12, and various Notch family
members. All of these factors are up-regulated by physical and/or
paracrine interactions with MM PCs (106). Heparanase-enhanced
shedding of CD138, also known as syndecan-1 (SDC1), byMMPCs
promotes endothelial invasion and angiogenesis (32). Moreover,
tumor-associated macrophages contribute to MM-associated
neovascularization via vasculogenic mimicry and indirectly via
secretion of pro-angiogenic factors such as VEGF, IL-8, FGF-2,
MMPs, cycloxygenase-2 (COX-2), and colony stimulating factor-1
(CSF-1) (107).

Immunosuppressive Factors Within the TME. The immuno-
suppressive TME in MM patients is caused by multiple immu-
nosuppressive factors secreted by various cell lineages. The
primary suspects, malignant PCs, are known to secrete TGF-ß,
IL-10 and IL-6, all of which have debilitating effects on the
immune system (108). At the same time, the interaction of PCs
with immature DCs (iDCs) stimulates TGF-ß production by
iDCs, subsequently inducing Treg cell proliferation, which further
increases TGF-ß and IL-10 levels within the microenvironment.
Additionally, iDCs produce indoleamine 2,3-dioxygenase (IDO)
that causes anergy in activated T cells (109). It results in
upregulation of exhaustion markers in T cells, such as PD-1,
cytotoxic T lymphocyte antigen-4 (CTLA-4), T cell immuno-
globulin-3 (TIM-3), and lymphocyte-activation gene 3 (LAG3)
as well as high levels of the T cell senescence markers, such as
killer-cell lectin like receptor G1 (KLRG1) and CD160 (110).
Within the TME, elevated levels of IL-6, TGF-ß, and IL-1ß
promote T helper 17 cell (Th17) polarization, inducing the
release of high levels of IL-17 favoring MM PCs growth and
inhibiting the immune system (111–114). IL-17 also plays a role
in osteoclast-mediated bone lysis (112).

MDSCs are known to suppress T cell-mediated immunity and
thus help myeloma cells to escape from immunosurveillance
(115, 116). MDSCs inhibit T cell activation and proliferation by
secreting high levels of arginase, which sequesters L-arginine, an
essential amino acid for T cell activity (117). At the same time,
they induce reactive oxygen species (ROS) formation (118) and
expression of PD-L1 on the surface of MM PCs (119). Moreover,
MDSCs induce anergy of NK cells through membrane bound
TGF-ß (120).

Myeloma-associated functional defects of neutrophils include
reduced lysozyme activity (121) and increased secretion of
arginase (122), which affects the T cells. Additionally, during
disease progression neutrophils secrete increasing amounts of
interferon-g (IFN-g) in response to MM soluble factors, thereby
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increasing MM JAK-2/STAT3 pathway activation that supports
myeloma survival (123).

Adipokines. BMAds contribute to changes in systemic metabo-
lism inMM via enhanced secretion of circulating adipokines (124)
as well as cytokines, which regulate both bone remodeling via the
production of RANKL (125) and hematopoiesis via stem cell factor
(SCF) production (126). BMAd-derived adipokines include TNF-
a, monocyte chemoattractant protein-1 (MCP-1), also known as
CCL2, plasminogen activator inhibitor-1 (PAI-1), IL-6, resistin,
adiponectin and leptin (127, 128). The anti-myeloma and anti-
inflammatory cytokine adiponectin inhibits proliferation and
induces cell death inMM cells (129). To protect themselves against
the effect of adiponectin, MM cells downregulate adiponectin
production via TNF-a secretion (130). On the contrary, leptin,
another adipokine produced by BMAds, increases MM cell prolif-
eration, reduces toxicity of PIs, and also counteracts the anti-tumor
activity of invariant NK T (iNKT) cells, which express the leptin
receptor (131, 132). Moreover, MM-associated adipocytes upreg-
ulate the expression of autophagy proteins in MM cells via leptin,
leading to increased chemoresistance in vitro and in vivo (133).
MCP-1 is involved in transendothelial migration of MM cells and
plays an important role as a chemoattractant essential for BM-
homing (134). Moreover, MCP-1 promotes macrophage-associ-
ated chemoresistance in MM by shifting macrophages towards the
M2-like phenotype (135). Further, it was shown that resistin
induced multidrug resistance in MM by inhibiting cell death and
upregulating the ABC transporter protein expression, leading to
increased drug efflux (136).

Exosomes
Exosomes, a subtype of extracellular vesicles (EVs), are
membranous vesicles (30–100 nm in diameter) of endocytic
origin, which are generated in multivesicular endosomes (MVEs)
and are released upon fusion of MVEs with the cell membrane
(137). Exosomes are secreted by most cell types and act as carriers
for intercellular transfer of nucleic acids, nucleoproteins (RNA,
microRNA, DNA), enzymes, soluble factors, lipids and various
other cytosolic molecules from parent to recipient cells, thereby
inducing phenotypic and/or functional changes in the recipient cells
(138–140). Since exosomes carry information and thus modulate
the behavior of local and distant recipient cells, they are involved in
a variety of physiological and pathological processes, such as
malignant transformation and/or induction of the pre-metastatic
niche (140, 141). Emerging evidence shows that MM-derived
exosomes reprogram recipient cell functions in the BM to
modulate and shape a pro-MM environment capable of
supporting disease progression (140). Exosomes signaling is
bidirectional and BMSC-derived exosomes (BMSC-EXs) have
been found to induce MM growth, survival, and drug resistance
(142). It has been shown that BMSC-EXs obtained from MM
patients promoted MM growth, whereas BMSC-EXs from healthy
individuals inhibited MM proliferation (143). Another study has
shown that BMSC-EXs obtained from MM patients contain
different cargo, such as lower levels of the tumor suppressor
microRNA-15a and higher levels of IL-6, CCL2, and fibronectin,
when compared to BMSC-EXs from healthy individuals. Thus,
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MM-BMSC-EXs, when delivered to MM cells, increase their
proliferative capacity and survival (143). Emerging evidence
shows that BMSCs selectively transfer specific proteins into MM
cells that induce p38, p53, c-Jun N-terminal kinase (JNK), and Akt
pathways to promote MM cell survival (144). It was also reported
that BMSC-EXs (healthy or MM-derived) both induce upregulation
of anti-apoptotic B-cell lymphoma-2 (Bcl-2) and downregulation of
pro-apoptotic Caspase 9 and Caspase 3 in MM cells, thereby
mitigating BTZ-induced apoptosis (144). Moreover, MM-derived
exosomes contain and thus increase the levels of microRNA-146a in
BMSCs, leading to enhanced secretion of several cytokines and
chemokines by BMSCs, including CXCL1, IL6, IL-8, IP-10, also
known as CXCL10, MCP-1, and CCL-5, resulting in enhanced MM
cell viability and migration (145). In recent years, there has been a
growing interest in understanding how exosomes contribute to MM
pathogenesis and to further exploit their potential as prognostic,
diagnostic and/or therapeutic tools in the treatment of MM (142).

The Role of the ECM in MM
The BMM provides a three-dimension structure called the ECM,
which consists of extracellular macromolecules, such as
fibronectin, collagen, osteopontin, hyaluronan, laminin,
enzymes, glycoproteins, and minerals, which provide structural
and biochemical support to surrounding cells (146, 147). The
ECM enables cell adhesion, cell-to-cell communication and
differentiation (148). MM cells bind to ECM structures via
activated VLA-4 and integrin subunit beta 7 (ITGB7), also
known as integrin a4ß1 and integrin ß7, respectively (149,
150). At the same time, binding of VLA-4 to fibronectin
induces activation of NFkB, leading to pro-survival signaling
and cell adhesion mediated drug resistance (CAM-DR) (151).
ITGB7 is constitutively active in MM cells and is essential for
MM cell survival and CAM-DR (150, 152). Other integrins, such
as VLA-5 and neural cell adhesion molecule (NCAM or CD56)
or integrin ß5, are less essential, but still important in MM
progression (149, 153). CD138 (SDC1) is a heparan sulfate
proteoglycan and a surface marker of MM PCs. It binds to
type I collagen and induces expression of MMP-1 to promote
tumor invasion, bone resorption, and angiogenesis (105, 154).
CD138 expression correlates with MM cell survival and growth
and has been shown to promote myeloma progression in vivo
(155, 156). Additional ECM-binding proteins are CD44, receptor
for hyaluronic acid-mediated motility (RHAMM) and CD38, all
of which are receptors for the secreted scaffold protein
hyaluronan. The first two also regulate the CXCL12–CXCR4
signaling axis (157). In summary, adhesion of myeloma cells to
ECM structures has been shown to be important for survival and
CAM-DR, e.g., towards anti-MM drugs such as BTZ, Vincristine,
Doxorubicin and Dexamethasone (151, 157, 158).
CRUCIAL FACTORS INVOLVED IN BONE
MARROW HOMING OF PCS

The homing, lodging and retention of PCs into the BM niche is
primarily mediated by the PC-expressed chemokine receptor
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CXCR4, which interacts with CXCL12, a chemokine highly
expressed in the BMM and secreted by osteoblasts and BMSCs
(Figure 3) (159, 160). The expression of CXCR4 is dynamically
regulated as the PCs move from the peripheral blood milieu to
the BM and significantly decreases upon homing to the BM in
response to CXCL12, which is elevated in the BM in contrast to
the peripheral blood milieu and its levels are significantly
increased in the BM of MM patients (161). CXCL12 induced
signaling enhances MM cell motility, facilitates cytoskeletal
rearrangements, and promotes transient upregulation and
increased affinity of VLA-4 (a4b1) to bind its cognate ligand
VCAM1, which is expressed by BM vascular endothelium (161–
163). These mechanisms are essential for transendothelial
migration of PCs into the BMM and likely play an important
role during MM cell recirculation. VLA-4 has also been reported
to be crucial for anchoring and retention of MM cells to BM
niches (20, 164). Blocking of the CXCL12–CXCR4 interaction
disrupts ties between MM cells and the BMM, thereby
promoting cell mobilization into the circulation (161, 165).
Moreover, in contrast to increased CXCR4 expression, PCs
show decreased CXCR5 and CXCR7 expression, leading to loss
of responsiveness to B and T zone chemokines CXCL13, CCL9
and CCL21 in the secondary lymphoid structures and lymph
nodes (166).

Other crucial molecules involved in PC migration, adhesion
of PCs to vascular endothelium and subsequent homing to the
Frontiers in Oncology | www.frontiersin.org 9
BM are the a4b7 integrin, CD44 and E- and P-selectins and their
ligands (Figure 3) (53, 150). The a4b7 integrin is a receptor that
interacts with mucosal vascular addressin cell adhesion molecule
1 (MAdCAM-1), present mainly in venular endothelium, and
fibronectin in the BM (167). The contribution of E-selectin
during homing of MM to the BM has been shown using
enzyme inhibitors (168) and E-selectin blocking antibodies
(163). After transendothelial migration, PCs upregulate specific
genes with the aim to migrate and adhere to ECM proteins and/
or co-localize with other native BM cells within the stromal
compartment. The adhesion of MM PCs to the BMM is
modulated via membrane-embedded tetraspanins, such as
CD81 and CD82, which negatively affect myeloma invasion,
adhesion, motility, migration as well as secretion of MMP-9 in
human MM cell lines (169). In contrast, the transmembrane
receptor roundabout guidance receptor 1 (ROBO1) was found to
be essential for MM adhesion to BMSCs and ECs and supports
homing and dissemination of PCs to the BM niche (170).
Furthermore, constitutive activation of cyclin D1 causes
increased MM cell adhesion to stromal cells and fibronectin,
stabilized F-actin fibers, and also enhanced chemotaxis and
inflammatory chemokine secretion (171).

Molecular alterations in the homing signaling of MM PCs
lead to dissemination of MM cells outside the BM to the
peripheral blood, where they appear as circulating PCs, or their
homing to other tissues and/or organs. MM PCs rely on
FIGURE 3 | Crucial factors involved in bone marrow homing of plasma cells. PCs express several surface receptors which serve as environmental sensors but
are also crucial for interactions with vascular structures and other components of the BM niche. The homing, lodging and retention of PCs to the BM is primarily
mediated via the CXCL12–CXCR4 signaling axis. BMSC, bone marrow stromal cell; CCL, C-C motif chemokine ligand CCR, C-C motif chemokine receptor;
CXCL, C-X-C motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; MAdCAM-1, mucosal vascular addressin cell adhesion molecule 1; MCP-1,
monocyte chemoattractant protein-1; MIP-1a, macrophage inflammatory protein 1-a; MM, multiple myeloma; PSGL-1, P-selectin glycoprotein ligand-1; ROBO1,
roundabout guidance receptor 1; VCAM1, vascular cell adhesion molecule 1; VLA-4, very late antigen-4.
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functional CCR1 (ligand: MIP1-a/CCL3) and CCR2 (ligand:
MCP-1/CCL2) signaling to regulate PC migration in specific
conditions (172). Under hypoxic conditions, HIF2-a strongly
induces the expression of CCR1 on the surface of MM PCs. The
induced CCR1 signaling abrogates the MM PC homing in
response to CXCL12, thereby driving MM cells to egress from
the BM to the periphery (173). Likewise, neutralizing or shedding
of CD138 increases MM PC motility and rapidly triggers
migration of PCs cells in vivo, which leads to increased
intravasation and dissemination to other bones (174).
Moreover, circulating PCs show overexpression of CD44 and
CD97 (175). Dysregulation of several factors is implicated in the
homing of PCs outside of the BM, where MM cells form
extramedullary disease and/or infiltrate solid organs and
structures. These include deregulation of the CXCL12–CXCR4
signaling axis (176), upregulated surface expression of CD44,
and downregulated CD56 surface expression in extramedullary
PCs (177). The presence of circulating MM cells and
extramedullary disease is associated with high-risk MM, serves
as a poor prognostic factor in MM and is associated with short
overall survival (178).
METABOLOMIC REPROGRAMMING OF
MM WITHIN THE TME

PCs adapt their cellular metabolism to sustain continuous
production of the monoclonal immunoglobulins. This is
ensured by the enlargement of the ER during PC development,
to cope with continuous protein secretion (179). Even in normal
PCs, the massive Ig production comes with excessive amounts of
misfolded proteins, that are not effectively degraded, thus
generating high proteasome load, which may ultimately trigger
apoptosis if it reaches a certain threshold (180). Thus, the
lifespan of antibody-secreting PCs is tightly regulated and may
be rather short. On contrary, MM PCs adapt their protein
synthesis and degradation machinery to sustain high
proteasome load and eventually evade apoptosis. At the same
time, a plethora of anti-apoptotic signals is provided also by the
surrounding TME. To survive such high cellular protein
turnover and to cope with high energy expenditure and
biosynthesis for rapid cell proliferation, MM PCs adapt to their
TME by exploiting the available resources (Figure 4). Increasing
glycolysis and glutaminolysis are two of the most common, but
vital prospects for cancer cells in the TME (181, 182). Moreover,
the metabolic reprogramming shapes the TME towards a
hypoxic, acidic (high lactate levels) and nutrient depleted
milieu, thereby supporting cancer proliferation and metastasis
(183, 184). However, such an environment negatively impacts
anti-tumor immune cell performance (185–187).

Metabolic Changes in MM PCs Allowing
for Their Longevity
Aerobic Glycolysis and Lactate Production
In contrast to normal PCs, which switch from glycolysis to
oxidative phosphorylation (OXPHOS) during differentiation
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into antibody-secreting cells (188), MM PCs rely on both
increased OXPHOS and glycolysis for survival (189). Aerobic
glycolysis is used as a bioenergetic pathway in MM and
conversion of glucose into pyruvate provides carbon building
blocks for growth, proliferation and protein biosynthesis
(190).MM cells display an elevated glycolytic profile and
depend on glucose transporters (GLUT), such as GLUT1 and
GLUT4 (191, 192). At the same time, enhanced aerobic glycolysis
induces the pentose phosphate pathway (PPP) and leads to
increased production of reduced nicotinamide adenine
dinucleotide phosphate (NADPH) and glutathione (GSH),
which both help tumor cells to cope with oxidative stress
(193). Lactate, a product of anaerobic glycolysis, together with
pyruvate can both serve as major carbon sources to fuel the
mitochondrial TCA cycle and thus support OXPHOS as well
(194, 195). Lactate and pyruvate are transported via bidirectional
proton-linked monocarboxylate transporters (MCTs), such as
MCT1 (mainly lactate import) and MCT4 (mainly lactate
export) (196, 197). MM cells, at least partly, depend on lactate
under normoxic conditions and increase the level of MCT1
transporters, whereas they upregulate MCT4 expression under
hypoxic conditions to transport lactate outside of the cell,
suggesting that in aerobic conditions they use the extracellular
lactate as an additional energy source (198).

Glutamine Metabolism
Several studies have emphasized the importance of glutamine
(Gln) in PC metabolism (199–201). Gln is one of the most
abundant free amino acids in the human blood that supports
bioenergetics, biosynthesis, tumor growth as well as the
production of antioxidants through glutaminolysis (202).
During glutaminolysis, Gln is imported into the cell through
glutamine transporters such as solute carrier family 1 member 5
(SLC1A5), also known as ASCT2, and solute carrier family 38
member 1 (SLC38A1), also known as SNAT1. Subsequently, it is
converted to glutamate via glutaminases (GLS1 and GLS2) and
further to a-ketoglutarate (a-KG), oxaloacetate and acetyl-CoA,
thereby fueling the tricarboxylic acid (TCA) cycle (203–207). At
the same time, Gln serves as a major source of nitrogen for
synthesis of nonessential amino acids, nucleotides and
hexoamines (208). Numerous studies have demonstrated the
importance of Gln-derived TCA metabolites in Gln-dependent
cancer cells (209–211). Likewise, hematological cancer cells and
in particular acute myeloid leukemia (AML) blasts (212, 213)
and MM cells (199, 200, 214–216) rely on extracellular Gln
supplementation for their growth. A gene expression profiling
analysis of multiple datasets revealed increased expression of Gln
transporters ASCT2, SNAT1 and solute carrier family 7 member
5 (SLC7A5), also known as LAT1, across the progression of
monoclonal gammopathies. Notably, ASCT2 inhibition in
human myeloma cell lines (HMCLs) considerably decreased
Gln uptake and significantly reduced MM cell growth (199).

Late-stage MM is characterized by strong oncogenic MYC
activity (217), which modulates both glycolysis and
glutaminolysis (218–221). MYC enhances Gln metabolism by
inducing ASCT2 and GLS1 expression to favor glutaminolysis
(222, 223). In addition, MM cells mainly depend on extracellular
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Gln uptake rather than on intracellular Gln synthesis, which is
associated with low glutamine synthetase (GS) expression (199).
Interestingly, a recent in vitro study has shown that Gln
depletion in HMCLs induced rapid MYC and Cyclin D1
protein degradation, resulting in increased apoptosis.
Moreover, decreased MYC protein levels may potentially have
downstream effects which render MM cells more susceptible
towards the activity of immune cells, since MYC also regulates
anti-tumor immunity through CD47 and PD-L1 in vivo (221). At
the same time, Gln withdrawal enhanced the expression and
binding of Bcl-2 like protein 11 (BIM) to BCL-2 in MM PCs,
sensitizing MM cells towards the BH3-mimetic inhibitor
Venetoclax (201).

Molecular Signaling Pathways and
Transcription Factors Involved in
Metabolic Reprogramming in MM
Several signaling pathways are involved in metabolic
reprogramming of malignant PCs. The PI3K-Akt signaling
pathway, which regulates proliferation, growth, survival and
other basic cell functions, is upregulated in MM and can be
activated by various stimuli, including IL-6 (78) and CXCL12
(161). Once activated, Akt signaling promotes the induction of
several glycolytic enzymes, including hexokinase (HK),
phosphofructokinase (PFK) and upregulates GLUT1/4
expression (224). In addition, Akt triggers mechanistic target
of rapamycin (mTOR)/mTOR complex 1 (mTORC1) activation,
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leading to enhanced expression of several glycolytic enzymes
such as phosphofructokinase 1 (PFK-1) and thus promoting a
metabolic shift from physiologically preferred OXPHOS in PCs
towards enhancedglycolysis in malignant PCs (225).

AMP-activated protein kinase (AMPK) is a sensor of cellular
energy levels. When energy is low, AMPK positively regulates
signaling pathways that generate ATP, for example fatty acid b-
oxidation and autophagy, and at the same time inhibits anabolic
processes, such as gluconeogenesis, fatty acid synthesis and
protein synthesis (226). Moreover, activated AMPK can
phosphorylate and activate tuberous sclerosis complex 2
(TSC2), which results in attenuated mTOR signaling, a master
regulator of cellular metabolism (227). It has been shown that
tumor cells, including MM cells (129), downregulate AMPK to
evade its inhibitory effect on cell growth and proliferation (228).

The transcription factors HIF-1a, MYC and P53 also play an
important role during metabolic reprogramming of MM cells.
HIF-1a is highly expressed in MM BM and is an important
regulator of cellular metabolism (229). HIF-1a triggers the
expression of glycolytic genes, including GLUT1, HK2, lactate
dehydrogenase A (LDHA), pyruvate dehydrogenase kinase
(PDK) as well as suppressors of the TCA cycle (230, 231). As
mentioned, c-Myc activity is enhanced in MM and is a master
regulator of genes involved in glycolysis and glutaminolysis
(222). Notably, c-Myc induces transactivation of LDHA (232)
and promotes the expression of glucose transporters and major
rate-limiting enzymes in glycolysis (233). At the same time, c-
FIGURE 4 | Metabolic reprogramming of MM within the TME. Within the TME, MM cells undergo metabolic adaptations and simultaneously drain their microenvironment of
vital resources, such as glucose for glycolysis and/or the pentose phosphate pathway and glutamine for glutaminolysis, allowing for rapid cell proliferation. Concomitantly,
metabolic reprogramming shapes the TME towards a hypoxic, acidic, and nutrient depleted milieu, thereby negatively influencing anti-MM immune cell performance. Acetyl-
CoA, acetyl-coenzyme A; ATP, adenosine triphosphate; BMSC, bone marrow mesenchymal stromal cell; DNAM-1, DNAX accessory molecule-1; Gln, glutamine; GLS,
glutaminase; GLUT, glucose transporter; GS, glutamine synthetase; GSH, glutathione (reduced); GSSG, glutathione (oxidized); IFN-g, interferon-g; IL, interleukin; KLRK1, killer
cell lectin like receptor K1; MF, macrophage; MM, multiple myeloma; MCT, monocarboxylate transporter; NAD(P)+/H, nicotinamide adenine dinucleotide (phosphate)
oxidized/reduced; NK, natural killer cell; OXPHOS, oxidative phosphorylation; PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; PPP,
pentose phosphate pathway; PVR, poliovirus receptor; RAE-1, ribonucleic acid export-1; SLC1A5, solute carrier family 1 member 5; SLC38A1, solute carrier family 38
member 1; TCA, tricarboxylic acid; TCR, T cell receptor; TNF-a, tumor necrosis factor-a.
May 2022 | Volume 12 | Article 899272

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Schwestermann et al. TME-Driven Resistance in MM
Myc regulates cancer cell glutamine metabolism by inducing the
expression of ASCT2 and GLS1 (223). The tumor suppressor P53
is mutated in most cancer types, including MM, and its
mutational status serves as a robust negative prognostic marker
in myeloma (234). P53 suppresses glycolysis and thus favors
OXPHOS via downregulation of GLUT1/4, and at the same time
upregulates phosphatase and tensin homolog (PTEN), a tumor
suppressor gene, which inhibits the PI3K-Akt pathway.
Therefore, defective P53 pushes metabolic rewiring of cancer
cells towards increased glycolysis (235). In summary, altered
activity of the transcription factors HIF-1 a, MYC and P53
results in decreased OXPHOS and simultaneously increased
glycolysis and glutaminolysis, which promotes MM cell growth
and proliferation by providing them with sufficient amount of
carbon building blocks and energy.

The Impact of Metabolic Changes on the
TME and Immunosurveillance in MM
During neoplastic transformation, the malignant PCs rewire
their metabolism which enables them to evade apoptotic
signals and rapidly proliferate. Concomitantly, cells of the
TME adapt their cellular metabolism towards survival in a
hypoxic microenvironment with high concentrations of lactic
acid and low levels of Gln, forming a MM PCs-supporting
milieu (Figure 4).

Hypoxia
Oxygen-deprived conditions promote immunosuppression and
evasion of immune detection. NK cells play an important role in
immune monitoring and anti-tumor activity. The surface
receptors of NK cells killer cell lectin like receptor K1
(KLRK1), also known as NKG2D, and DNAX accessory
molecule-1 (DNAM-1), also known as CD226, are required for
cell-mediated killing via binding to their ligands ribonucleic acid
export-1 (RAE-1) and poliovirus receptor (PVR), respectively,
both of which are expressed by MM cells (236, 237). Notably,
these receptors are strongly decreased on NK cells derived from
MM patients, resulting in impaired NK cell function (42, 238).
Several studies reported that hypoxic environments negatively
impact NKG2D expression on NK cells, partially due to tumor-
derived hypoxic microvesicles (200–1000 nm in diameter) that
contain TGF-b (239, 240).

HIF-1a, stabilized during hypoxia with HIF-1b within the
HIF-1 complex, directly upregulates PD-L1 expression via
binding to the hypoxia-response element (HRE) of the PD-L1
gene promoter, thereby contributing to an immunosuppressive
TME (241, 242). Notably, PD-L1 expression on MM PCs from
minimal residual disease (MRD) positive MM patients is
upregulated, in contrast to PCs from healthy donors (243,
244). Subsequently, NK cells derived from MM patients
express PD-1 whereas normal NK cells do not (64), suggesting
the immunosurveillance to be significantly impaired in patients
with positive MRD.

Lactate Accumulation
Besides serving as an important source of energy, lactate has an
immunomodulatory properties and causes immunosuppression
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by impairing lymphocyte proliferation, cytokine production and
cytotoxic activity (245, 246). Several studies have shown that
tumor-cell derived lactate, which lowers the pH within the TME,
is able to keep the T lymphocytes in an anergic state. These T
cells show reduced cytokine secretion, including IFN-g, IL-2, and
TNF-a, attenuated expression of the T cell receptor (TCR) and
IL-2 receptor CD25, as well as impairment of STAT5 and
extracellular-signal regulated kinases (ERK) activation after
TCR binding (184). Restoring physiological pH levels is able to
reverse T cell anergy (247).

Macrophages have great plasticity and exhibit different
polarization states dependent on stimulatory effects of their
environment. Macrophages can sense the acidity of the TME
via G protein-coupled receptors (GPCRs), which mediate the
expression of inducible cyclic AMP early repressors (ICERs).
Subsequently ICERs inhibit the toll-like receptor (TLR)-
dependent NFkB signaling, thereby preventing macrophages
from polarizing towards a pro-inflammatory and anticancer
M1-phenotype (248). Recently, it has been shown that lactate
can modulate macrophages via epigenetic modification, called
lactylation, thereby promoting the polarization of macrophages
from the pro-inflamatory and anticancer M1-phenotype to the
anti-inflammatory and cancer-promoting M2-phenotype (249).
At the same time lactate was shown to induce PD-L1 expression
in these M2-like tumor-associated macrophages, which blunts
effector T cell function (250).

Glutamine Deprivation
Gln dependency of MM PCs and its preferential uptake, rather
than the de novo synthesis, influences significantly the
concentration of Gln in the BM plasma of MM patients.
There, concentration of Gln was shown to decrease from 0.6 to
0.4 mM, with a concomitant increase of ammonium as compared
with MGUS and SMM patients (199). Such environmental
changes may severely affect surrounding cells in the BM. Gln
scarcity in the BMM impairs BMSC differentiation into
osteoblasts and thus possibly contributes to exacerbated
osteolytic bone disease in MM. In addition, Gln deprivation
induces changes in the expression of BMSC-derived cytokines
and chemokines involved in monocyte recruitment (251) and at
the same time it activates the expression of Gln synthase in
mesenchymal and immune cells, which leads to M2-like
macrophages polarization. Intriguingly, Gln synthase inhibition
skews immunosuppressive M2-like macrophages towards pro-
inflammatory M1-like macrophages in murine models
(252, 253).
METABOLIC ALTERATIONS IN MM PCS
UPON PROTEASOME INHIBITION

Due to their tight balance between protein synthesis and
degradation, MM PCs are exceptionally sensitive to PI-induced
cytotoxicity (254). Proteasome inhibition has a detrimental effect
on protein homeostasis in MM PCs: it, leads to accumulation of
the misfolded proteins, and at the same time limits amino acid
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supply, resulting in cellular starvation (255, 256), which in
combination triggers apoptosis. To cope with the harmful
effect of acute, proteasome inhibition, MM cells trigger a
plethora of molecular mechanisms. These include induction of
the UPR and autophagy, formation of inclusion bodies, synthesis
of the proteasome subunits to build new proteasomes and a
global change in the cellular metabolism (257, 258). These
mechanisms generally serve to adapt to proteotoxic stress via
expansion of the proteosynthetic apparatus, e.g., via stabilization
of terminal nucleotidyltransferase 5C (TENT5C), also known as
FAM46C, a non-canonical poly(A) polymerase, which boosts ER
growth in MM and which is tightly regulated via proteasomal
degradation and autophagy (259).

In the early response to proteasome inhibition, MM PCs
increase expression of factors involved in oxidative stress and
synthesis of GSH, a major cellular antioxidant. These factors
serve as a cellular response to gradually resolve the effects of
proteasome inhibition. At later time points and during recovery
from proteasome inhibition, surviving MM PCs switch their
metabolism from glycolysis to fatty acid oxidation, alter the
mitochondrial metabolism and modulate the levels of several
amino acids, gradually leading to a decrease in mitochondria
metabolism and amino acid supply. In particular the reduced
pool of available intracellular amino acids in the cells recovering
from proteasome inhibition (e.g., lack of glutamine, arginine,
methionine, leucine and lysine) triggers general control
nonderepressible 2 (GCN2)-activating transcription factor 4
(ATF4) signaling, which becomes increasingly activated and
which further leads to activation of AKT and inhibition of
mTORC (260, 261). Thus, the GCN2-ATF4 dependency may
represent a novel therapeutic target in MM PCs recovering from
PI-induced stress (258).

In conclusion, to survive proteasome inhibition, MM PCs
considerably change their metabolism, mitochondria and the ER
to redistribute cellular resources and decrease their fitness
(Figure 5). Consequently, the mechanisms employed by MM
cells to recover from PI-induced stress triggers new and
druggable vulnerabilities.
METABOLIC FACTORS PROMOTING
RESISTANCE TO PI IN MM

PI resistance remains a major obstacle to the successful treatment
of MM. The proteasome is involved in regulation of cellular
metabolism and a short-term proteasome inhibition induces a
global metabolic response during the recovery phase. Perhaps
not surprisingly, adaptive metabolic changes have been shown to
promote resistance to PIs (Figure 5). Although multiple
mechanisms for PIs resistance have been proposed, our
mechanistic understanding of the acquisition of PI resistance
as well as its potential reversal, remains incomplete. Only
recently, the metabolic plasticity of MM PCs that is
potentiated by the surrounding TME, was revealed and
currently represents a major focus of the study of PI resistance.
Frontiers in Oncology | www.frontiersin.org 13
Glycolysis and Lactate Production
Data obtained from cancer cell lines, mouse xenografts and
patient-derived tumor samples all indicate a strong association
between increased mitochondrial metabolism and decreased PI
sensitivity. Notably, when MM cells are forced to use OXPHOS
rather than aerobic glycolysis, they develop PI resistance (189,
262). These findings are supported by studies where MM cells
increase OXPHOSmetabolism when they are forced to survive in
the presence of proteasome inhibitors and with subtotal
functional inhibition of proteasome activity (263).

On the other hand, during hypoxic conditions, higher
glycolytic activity promoted BTZ resistance in MM and
subsequent selective inhibition of LDHA sensitized MM cells
towards proteasome inhibition via by BTZ. At the same time,
HIF-1a knockdown decreased lactate levels and partially
restored the cytotoxic effect of BTZ, thereby suggesting that
LDHA and HIF-1amay be valuable targets in hypoxia-mediated
PI resistance (10). Further work reported increased glucose
uptake and glycolysis in PI-adapted cells, mainly to fuel the
PPP, subsequently leading to increased anti-oxidant capacity that
is essential to maintain a PI-resistant phenotype in MM (11).

Glutamine
The pleiotropic role of Gln in cellular functions has also been
reported to promote PI resistance in MM cells by serving as the
main fuel source to reinforce mitochondrial respiration and
OXPHOS. The same study has demonstrated that targeting
Gln-induced respiration in PI resistant cells, using the GLS-1
inhibitor CB-839, synergized well with PIs, such as CFZ, to
induce severe ER stress and apoptotic cell death in MM cells
(214). More recently, the expression of ASCT2, a Gln transporter
otherwise important for MM PCs survival (199), was studied
with respect to PI resistance. PI-resistant MM depends on
ASCT2 and Gln uptake as well and the combination of ASCT2
inhibitors (ASCT2i) synergistically potentiated the cytotoxicity
of PIs in MM via induction of apoptosis and modulation of
autophagy. Moreover, RNA sequencing of HMCLs treated with
CFZ and ASCTi revealed that the drug combination strongly
reduced Gln metabolism regulators, including MYC and NRAS
and likewise upregulation of Gln metabolism was associated with
advanced disease stage and PI resistance in patients with RRMM
(264). Thus, therapeutic approaches to specifically disrupt Gln
metabolism may be an effective strategy to interfere with cancer
metabolism and tumor progression in combination therapy (199,
214, 265).

Glutathione
Glutathione (GSH),a tripeptide, is one of the most abundant and
effective tools that cells can exploit in detoxification of drugs and
xenobiotics in general. As a potent reductant, it can react with
oxidizing agents before they interact with critical cellular
constituents, such as nucleic acids, proteins, or lipids.
Moreover, it is involved in a plethora of antioxidant reactions,
where it serves as a cofactor and thus may indirectly modulate
cell proliferation, apoptosis, immune function and fibrogenesis
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(266–270). GSH exists in the thiol-reduced form, which accounts
for >98% of total GSH, disulfide-oxidized (GSSG) form or in the
glutathione conjugated form (GS-R) (267, 271). Cellular GSH is
in the cytosol (80-85%), mitochondria (10-15%) and a small
fraction is present in the ER (272–274). A high GSH to GSSG
ratio indicates a good intracellular redox potential, which
represents the ability of a cell to cope with oxidative stress (268).
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Aerobic metabolism produces vast amounts of ROS, which can be
metabolized by GSH peroxidase (GPx), thus reducing ROS,
oxidizing GSH, and generating GSSG. In turn, GSSG can be
reduced back to GSH by GSSG reductase (GR) at the expense of
NADPH, thereby completing the redox cycle (275). In addition,
GSH is able to form disulfide bonds with cysteine residues of
proteins or to protect thiols under oxidative stress in a process
A

B

FIGURE 5 | Metabolic factors promoting resistance to PI in MM. (A) Adaptive cellular responses following acute and short-term PI treatment. (B) Global
cellular adaptation towards PI treatment (emerging as the PI resistance). ATF4, activating transcription factor 4; BiP, binding immunoglobulin protein; CLR,
calreticulin; CNX, calnexin; ER, endoplasmic reticulum; FAM46C, family with sequence similarity 46 member C; G-6-P, glucose-6-phosphate; GCN2, general
control nonderepressible 2; Gln, glutamine; GLS, glutaminase; Glu, glucose; GLUT, glucose transporter; GSH, glutathione (reduced); GSSG, glutathione
(oxidized); GSTP, Glutathione S-transferase P; KLF4, kruppel like factor 4; LC3, protein light chain 3; mTORC, mechanistic target of rapamycin complex 1;
NAD(P)+/H, nicotinamide adenine dinucleotide (phosphate) oxidized/reduced); NRF2, nuclear factor erythroid 2-related factor 2; OXPHOS, oxidative
phosphorylation; PDI, protein disulfide isomerase; 3-PG, 3-phosphoglyceric acid; PHGDH, phosphoglycerate dehydrogenase; PI, proteasome inhibitor; PPP,
pentose phosphate pathway; REDOX, reduction–oxidation; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SLC1A5, solute carrier family 1 member 5;
SLC7A11, solute carrier family 7 member 11; SSG, S-glutathionylation; SSP, serine synthesis pathway; SQSTM1, sequestosome 1; TCA, tricarboxylic acid;
Ub, ubiquitin; UFD1L, ubiquitin recognition factor in ER associated degradation; UPR, unfolded protein response; VCP, valosin-containing protein.
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called via S-glutathionylation (SSG), a redox-regulated post-
translational thiol modification involved in regulation of protein
function (276).

GSH is a major determinant of BTZ cytotoxicity in MM and
likewise proteasome inhibition induces GSH synthesis, thereby
providing the cell with a more robust intracellular buffering
system to protect against oxidative stress while simultaneously
decreasing the amount of misfolded proteins that need to be
ubiquitinated and subsequently cleared by the ubiquitin-
proteasome system (277, 278). Therefore a plethora of
mechanisms of adaptation to PI focus on increased GSH/GSSG
ratio. A recent study has demonstrated that PI resistant MM cells
exhibit increased expression of Glutathione S-transferase P
(GSTP), which mediates SSG of ER resident proteins, such as
binding immunoglobulin protein (BiP), calnexin, calreticulin,
endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase
(SERCA), and other protein-folding and redox-active proteins,
thereby regulating their activities (279–281). Preventing S-
glutathionylation in MM cells using a GSTP specific inhibitor
restored BiP chaperon activity and/or ATPase activities and
reversed resistance towards BTZ (279). Additionally, it was
shown that BTZ-induced cytotoxicity was strongly reduced in
HMCLs, such as ANBL-6 and INA-6, that were supplemented
with cysteine or its derivative GSH. Further mechanistic studies
revealed that increased intracellular GSH levels impaired the
BTZ-induced nuclear factor erythroid 2-related factor 2 (NRF2)-
associated stress response primarily via upregulation of the xCT
subunit of the cystine/glutamate antiporter (SLC7A11). The
inhibition of the xcx

−
c activity increased the BTZ-induced

cytotoxicity in a subset of HMCLs and primary MM cells, and
re-established BTZ sensitivity in BTZ adapted cells (277).
Another study has shown that docosahexaenoic acid (DHA)
and eicosapentaenoic acid (EPA) supplementation of MM cells,
prior the treatment with BTZ, potently decreased cellular GSH
levels and altered the expression of related metabolites and key
enzymes involved in GSH metabolism, suggesting a critical role
of GSH degradation in overcoming BTZ resistance in MM. In
addition, the NRF2–ATF3/AFT4–ChaC glutathione specific
gamma-glutamylcyclotransferase 1 (CHAC1) signaling
pathway was shown to be potentially implicated in DHA/EPA
pretreatment-mediated GSH degradation (282).

GSH can be produced from glutamate, cysteine and glycine.
In addition, cysteine can be intracellularly converted from serine
for GSH synthesis. The serine synthesis pathway (SSP) has been
recently demonstrated to be associated with increased BTZ
resistance in MM (11). Phosphoglycerate dehydrogenase
(PHGDH), the first rate-limiting enzyme in the SSP, was
reported to be significantly elevated in CD138+ PCs derived
from patients with relapsed MM. In addition, MM cells
overexpressing PHGDH exhibited increased cell growth, tumor
formation, and resistance to BTZ in vitro and in vivo, whereas
inhibition of PHGDH caused decreased cell growth and BTZ
resistance in MM cells. Lastly, PHGDH reduced ROS levels via
increased GSH synthesis, thereby promoting cell growth and
likewise BTZ resistance in MM cells (283). Similarly, glycine has
been found to promote MM cell proliferation in vitro and in vivo,
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and GSH synthesis was identified as the main metabolic pathway
contributing to proliferation of MM cells. Thus, pharmacological
blockage of glycine uptake and utilization for GSH synthesis
shows therapeutic potential in MM treatment (284).

In summary, GSH has central role in MM biology and is the
major factor protecting MM PCs from BTZ-induced
cytotoxicity. It does not directly interfere with BTZ-induced
proteasome inhibition (277), but impairs its cytotoxicity
mainly via anti-oxidant defense, protein modification and
reduction of proteotoxic stress.

Specific Metabolic Alterations of PI
Resistant MM
Beyond the major metabolic routes of adaptation described
above, such as high GSH/GSSG ratio, PI-resistant cells show a
global metabolic shift to sustain high protein production and
proliferation, but at the same time to survive the consequences of
proteasome inhibition (Figure 5). Proteomic analysis of PI-
adapted MM cells revealed elevated levels of proteins involved
in metabolic regulation, protein catabolism, fatty acid/b-
oxidation, redox control, protein folding and glutathione
regulation, whereas downregulated pathways comprised DNA
transcription/protein translation, differentiation, lipid
biosynthesis, apoptosis, and structural/cytoskeletal functions
compared to non-adapted control cells. The same study has
further shown increased OXPHOS in PI resistant MM. The in
vitro model of MM cell lines adapted to culture conditions
containing lethal concentrations of BTZ or CFZ (so-called PI-
adapted MM cells) display overexpression of several glycolytic
enzymes, NADPH dehydrogenase and NAD(P)H generating
enzymes, such as enzymes of the oxidative branch of the PPP
and malate dehydrogenase, suggesting that enhanced production
of reducing equivalents as adaptive metabolic responses of MM
cells to sustain proteasome inhibition (12). Importantly, these
reducing equivalents are crucial for the maintenance of redox
balance and neutralization of ROS in the mitochondria, and at
the same time are important for effective protein folding in the
ER. Interestingly, PI-adapted cells also show increased
mitochondrial activity compared to PI-naïve cells, indicating
that enhanced glycolytic flux may play a role in fueling the PPP
and TCA to, among other things, support the production of
reducing equivalents to buffer deleterious effects of proteasome
inhibition. In line with that, PI-adapted cells display increased
expression levels of protein disulfide isomerase (PDI), a key
enzyme that oxidizes reduced thiols (-SH) of cysteine residues in
nascent proteins, thereby catalyzing disulfide bond formation (S-
S) and show more effective protein folding in the ER (285, 286),
compared to control cells not adapted to PI containing growth
conditions (12). Thus, PI adapted MM cells commonly exhibit
lower dependency on proteasome activity, partly owing to an
improved protein folding machinery which allows them to
alleviate PI-induced proteotoxic stress (12). Further mass
spectrometry-based, whole metabolomic profiling combined
with metabolite pathway and metabolite set enrichment
analysis confirmed the proteomic findings and validated the
importance of enhanced antioxidant capacity higher redox
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homeostasis, and NAD(P)+/NAD(P)H levels, all of which
ultimately lead to improved protein folding and thus less
proteotoxic stress in PI resistant MM cells (263). Subsequently,
targeting protein folding as a strategy for the treatment of MM
has been proposed and strategies to inhibit PDI to overcome PI
resistance were shown to effectively and selectively induce
cytotoxicity in MM in vitro and in vivo (287, 288).

An alternative proteolytic pathway to replenish the exhausted
amino acid pool, which is also involved in PI resistance is
autophagy (289–293), a process that regulates sequestration of
cellular components, such as misfolded cytoplasmic proteins,
protein aggregates (aggresomes) or damaged organelles, into a
double-membrane vesicles (autophagosomes). These vesicles
subsequently fuse with a lysosome (autolysosome), which
results in the degradation of its contents by lysosomal
hydrolases, thereby replenishing the cells amino acid pool
(294). Thus, autophagy-dependent nutrient recycling may be
one way for MM cells to alleviate PI-induced proteotoxic stress
and cope with amino acid depletion, thereby increasing PI
resistance (255, 256). Sequestosome 1 (SQSTM1 or p62) is the
autophagy-associated cargo receptor that bridges ubiquitinylated
proteins and autophagosomes and serves as a critical mediator of
autophagy and PI-resistance (292, 293). In CFZ resistant
HMCLs, SQSTM1 is overexpressed via the activation of NRF2
which enhances fatty acid/b-oxidation and in turn increased
intracellular NADPH levels (293) and at the same time via
kruppel like factor (KLF4) which participates in autophagy
pathways activated during stress responses (295).

Additional mechanisms that contribute to increased PI
resistance of MM cells involve the upregulation of the 20S
proteasome subunits (296, 297) and, paradoxically, the
downregulation of 19S proteasome subunits (298). The latter
findings have been confirmed by showing that modest reduction
of the expression of individual subunits of the 19S proteasome
complex, such as PSMC6 increased MM survival and protected
cells from the PI-induced cytotoxicity (299). Underlying
mechanisms included an increased ratio of the 20S to 26S
proteasomes, preservation of protein degradation capacity and
reduced proteotoxic stress (300). Related work from thousands
of cancer cell lines and tumors indicate that suppressed
expression of one or more 19S proteasome subunits led to
intrinsic PI resistance and is associated with poor outcome in
MM patients (301). Of note, depletion of the 19S proteasome
subunits leads to increase in SQSTM1 and proteins maintaining
protein homeostasis and involved in the ERAD: ubiquitin
recognition factor in ER associated degradation (UFD1L) and
the triple AAA ATPase valosin-containing protein (VCP)/p97
(298, 299). At the same time, VCP/p97 has been suggested to be a
regulator of cellular metabolism, as glutamine depletion leads to
increased VCP/p97 expression, whereas VCP/p97 inhibition
perturbs metabolic processes and intracellular amino acid
turnover (302). Subsequently, pharmacological depletion of
VCP/p97 activity with different inhibitors or with approved
drug Disulfiram induced proteotoxic stress and cytotoxicity in
MM, including PI resistant MM (256, 303).
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In conclusion, adaptation to proteasome inhibition in MM
PCs involves a broad network of changes in the ER and
mitochondria, which allows for reduced oxidative and
proteotoxic stress in the cells.
TME-MEDIATED PI RESISTANCE

The metabolic changes previously described highlight PI-
induced adaptations in resistant MM cells that alleviate cellular
and proteotoxic stress. However, adaptation to PI is not
exclusively cell intrinsic, but is supported and potentially even
driven by the surrounding TME as well (Figure 6).

MM cells co-cultured with stromal cells show decreased
apoptosis following exposure to alkylating agents as well as the
PI BTZ. Upon co-culture, stromal cell-derived IL-6 induces
JAK2/STAT3 signaling in MM cells, thereby increasing the
expression of the MUC1 oncogene, a gene known to confer
resistance to apoptotic cell death. In addition, silencing of MUC1
via MUC1-specific shRNA partially reversed stromal cell
induced resistance towards BTZ (304). Related work has
shown that inhibition of the C-terminal transmembrane
domain of MUC1 (MUC1-C) is synergistic with BTZ in
downregulating p53-inducible regulator of glycolysis and
apoptosis (TIGAR) expression, as well as in depleting NADPH
and increasing ROS levels, leading to MM cell death (305).
Moreover, BTZ supplementation to the co-culture of BMSCs
and primary MM cells or HMCLs increased mitochondrial
trafficking, thereby reinforcing bioenergetic plasticity in MM
cells (75). Importantly, resistance to CFZ has been shown to be
mediated by the co-culture with BMSCs in normal and in cyclin
D1 overexpressing MM PCs. However, since cyclin D1
expression enhances MM cell adhesion to stromal cells and
fibronectin, favors cell migration, and increases chemotaxis as
well as inflammatory chemokine secretion, CFZ-mediated
resistance was alleviated particularly in cyclin D1 expressing
cells by the immunomodulatory drugs, which modify MM–TME
interactions, such as CAM-DR (171).

A very recent study has identified PSMA3 and PSMA3-AS1 as
BMSCs-derived exosomal RNAs that are released within the
BMM and are subsequently absorbed by MM cells, leading to
increased PI resistance. PSMA3-AS1 can form an RNA duplex
with pre-PSMA3, which promotes PSMA3 expression by
reinforcing its stability. In xenograft models, intravenously
administered siPSMA-AS1 was found to enhance CFZ
sensitivity. Moreover, elevated levels of plasma circulating
exosomal PSMA3 and PSMA3-AS1 derived from MM patients
were strongly associated with decreased progression-free survival
(PFS) and poor overall survival (OS), suggesting a prognostic
value in clinical settings (306).

Single cell RNA-sequencing (scRNA-seq) data from primary
BTZ-refractory and early relapsed patients revealed hypoxia
tolerance, protein folding, and mitochondrial respiration as
molecular pathways involved in PI resistance in patients.
Those findings have been validated in larger clinical cohorts
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such as the MMRF CoMMpass Study. In addition, the study has
found peptidylprolyl isomerase A (PPIA), a crucial enzyme in
the protein folding response pathway, as a potential new
therapeutic target to overcome PI resistance. Indeed, inhibition
of PPIA using the small molecule inhibitor Ciclosporin or PPIA
gene deletion via CRISPR-Cas9 gene editing significantly
sensitized MM cells towards PIs (13). At the same time,
comparative proteomic profiling of PCs from MM patients
responding to BTZ-containing regimens versus non-responders
has shown that increased levels of proteasome activator complex
subunit 1 (PSME1) and anti-oxidative proteins, such as
thioredoxin (TXN) and thioredoxin domain-containing protein
5 (TXNDC5) play a major role in BTZ resistance in patients
(307). Moreover, analysis of BTZ-induced systemic changes via
proteomic profiling of sera from RRMM patients revealed
elevated levels of apolipoprotein C1 (ApoC1), quiescin
sulfhydryl oxidase 1 (QSOX1) and complement components in
MM patients with lower response rates towards BTZ-containing
regimens. Notably, QSOX1 contains domains of thioredoxin,
confirming previous findings of thioredoxins’ role in ROS
homeostasis and BTZ-therapy resistance (308).

In summary, data from co-culture experiments and MM
patients not responding to PI-based therapy confirm alleviated
oxidative and proteotoxic stress in PCs to be among the most
efficient strategies to withstand PI treatment. These can be
achieved via intrinsic changes in PCs and/or can be promoted
by the surrounding TME.
OVERCOMING TME-MEDIATED
PI RESISTANCE

Advancing our understanding of multi-drug resistance in relapsed
and late-stage MM patients is critical for the development of more
effective therapeutic strategies,which considernotonly intracellular
metabolic alterations in MM cells but also appraise interactions of
MM cells with other members of the TME (Figure 6).

Current clinical practiceusesmonoclonal anti-CD38antibodies,
such as Daratumumab (309, 310) or Isatuximab (311, 312), in
combination with a PI and IMiDs as standard upfront therapy
(313). Given the fact that PI-induced mitochondrial trafficking
between BMSCs and MM PCs is a CD38-dependent process (75),
this provides a solid biological rational for combining PIs in triplet/
quadruplet therapies as per current practice.

Since PI-resistant MM cells exhibit enhanced mitochondrial
metabolism and increased ROS buffering to sustain more
effective protein folding, this characteristic represents a specific
vulnerability that can be targeted therapeutically. Elesclomol may
exploit this unique metabolic characteristic of PI-resistant MM
cells by further increasing oxidative stress levels beyond the
critical threshold and induce MM cell death. Indeed, cancer
cells with increased mitochondrial energy metabolism exhibit
increased sensitivity to Elesclomol due to impaired ability to cope
with oxidative stress (314). Elesclomol directly targets the
mitochondrial reductase ferredoxin 1 (FDX1), which has been
identified as the primary mediator of Elesclomol-induced
Frontiers in Oncology | www.frontiersin.org 17
toxicity, leading to a unique form of copper-dependent cell
death (262, 314). Likewise, Nelfinavir, an HIV-protease
inhibitor, has been shown to impair glucose uptake and
oxidative metabolism in MM and PI resistant MM due to
modulation of lipid bilayer fluidity in mitochondria and
therefore affecting the proper function of the mitochondrial
transition pore (mPTP) (315). These effects of Nelfinavir
together with proteasome inhibition provided by BTZ showed
high efficacy and high response rate in heavily pretreated RRMM
in Phase II studies (316, 317). In a similar fashion to repurpose
Nelfinavir for the treatment of RRMM, the Disulfiram-based
compound CuET is able to overcome the PI resistance in MM
and may therefore represent a promising and readily available
treatment option for RRMM patients (318). Moreover,
modulation of the PI-adaptive metabolism with Metformin or
with a GCN-specific inhibitor after PI exposure in a PI-recovery
state (7 days after the treatment) may overcome the adaptation to
the treatment with PI over time (258).

One of the novel approaches to overcome PI resistance in the
context of TME is targeted delivery of the PI drugs within the
BMM. A new concept of drug delivery used targeted
nanoparticles, which improve specificity and efficacy while at
the same time reducing the toxicity of therapeutic drugs.
Targeting the MM cells within their BMM via PSGL-1-targeted
BTZ, and Rho-associated, coiled-coil containing protein kinase
(ROCK) inhibitor-loaded liposomes is more effective than free
drugs, non-targeted liposomes, and single-agent controls, and
reduces BTZ-induced side effects. These results support the use
of PSGL-1-targeted liposomal BTZ-containing formulations to
overcome drug resistance and improve patient outcomes in MM
(319). Several recent review papers summarize the plethora of
available immunotherapies and their mechanism of action in
MM (checkpoint inhibitors, or T-cell engaging bispecific
antibodies and/or adoptive T-cell/NK cell therapy) (320–322),
therefore we will not cover this topic in the present review.
Targeting the interaction of malignant PCs with the TME may
weaken the TME-mediated drug resistance and/or decrease the
immunosuppressive activity and environment induced by active
MM. Therapeutic targeting of the CXCL12–CXCR4 axis using
CXCR4 inhibitors weakens the adhesion of MM PCs on the
TME, which renders them more sensitive to PI treatment (165).
Likewise, blockade of the CXCL12–CXCR4 axis via monoclonal
antibodies like Ulocuplumab shows promising signals for activity
in combination with BTZ (323). Further, BMSCs and vascular
ECs from MM patients and healthy individuals significantly
inhibit the T cell-mediated MM cell lysis in a cell–cell contact
dependent manner and without substantial T cell suppression,
suggesting the induction of a cell adhesion-mediated immune
resistance (CAM-IR) against cytotoxic T cell lymphocytes.
However, BTZ increased the cytotoxic T cell lymphocyte-
mediated lysis of MM cells. In addition, repression of survivin
using the small molecule inhibitor YM155 synergized with
cytotoxic T cell lymphocytes and abrogated CAM-IR in vitro
and in vivo (324). Recently, cancer-associated fibroblasts were
shown to inhibit CAR T-cell anti-MM activity and to promote
MM progression. At the same time, novel CAR T-cells targeting
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both MM cells and cancer-associated fibroblasts significantly
improved the effector functions of CAR T-cells in MM and
represent novel strategy to overcome CAR T-cell therapy
resistance (325).

Such studies emphasize the importance of understanding
TME-dependent and cell intrinsic metabolic adaptations in PI-
resistant MM PCs, to tailor novel feasible therapies to overcome
PI-resistance in MM patients.
CONCLUSION

In conclusion, PI resistance is a multifaceted phenomenon that
emerges upon long term and sublethal drug exposure, which
allows for a wide metabolic adaptation in MM PCs subclones
over time. Emerging evidence shows that beyond cell intrinsic
changes, malignant PCs shape and fine-tune the BMM according
to their needs to exploit resources that help them to cope with
high energy demands and high redox capacity required for
Frontiers in Oncology | www.frontiersin.org 18
alleviation of oxidative and proteotoxic stress ultimately
leading to increased survival in the presence of PI treatment.
At the same time, therapy persistent MM PCs shape the BMM to
an immunosuppressive state that supports the escape from the
immune surveillance.

Recent studies have shown multiple ways to target RRMM,
either by targeting MM PCs directly, by targeting the
microenvironment, or by strengthening the immune response.
The rise of IMiDs and targeted mABs treatments indicate our
growing understanding of the therapeutic role of targeting the
microenvironment. Overall, advancing our understanding of
multi-drug resistance is critical for the development of more
effective strategies for the treatment of RRMM.
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FIGURE 6 | TME-mediated PI resistance and therapeutic strategies to overcome TME-mediated PI resistance. The complex contact-dependent and contact-
independent interactions of myeloma PCs with the surrounding tumor microenvironment mediate MM adaptation to PI treatment. Black boxes illustrate potential
treatment strategies to overcome TME-mediated PI resistance in MM. ApoC1, apolipoprotein C1; BCMA, B-cell maturation antigen; BMSC, bone marrow stromal
cell; BTZ, Bortezomib; CAF, cancer-associated fibroblast; CAR-T, chimeric antigen receptor T-cell; CAR-NK, chimeric antigen receptor natural killer cell; CXCL, C-X-
C motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; EC, endothelial cell; ER, endoplasmic reticulum; EV, extracellular vesicle; FDX1, ferredoxin 1; IL-
6, interleukin-6; JAK2, janus kinase 2; mAB, monoclonal antibody; mPTP, mitochondrial permeability transition pore; MUC1, mucin 1; NADP(H), nicotinamide adenine
dinucleotide phosphate (reduced); NK, natural killer cell; NPL4, nuclear protein localization 4 homolog; PD-1, programmed cell death protein 1; PD-L1, programmed
cell death 1 ligand 1; PPIA, peptidylprolyl isomerase A; PSGL-1, P-selectin glycoprotein ligand-1; PSMA3, proteasome 20S subunit alpha 3; PSMA-AS1, PSMA3
antisense RNA 1; PSME, proteasome activator subunit; QSOX1, quiescin sulfhydryl oxidase 1; ROS, reactive oxygen species; STAT3, signal transducer and activator
of transcription 3; TIGAR, p53-inducible regulator of glycolysis and apoptosis; TNT, tunneling nanotubes; TNX, thioredoxin; TXNDC5, thioredoxin domain-containing
protein 5.
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