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Objective: Deep learning-based radiomics (DLR) has achieved great success in

medical image analysis and has been considered a replacement for

conventional radiomics that relies on handcrafted features. In this study, we

aimed to explore the capability of DLR for the prediction of 5-year progression-

free survival (PFS) in advanced nasopharyngeal carcinoma (NPC) using

pretreatment PET/CT images.

Methods: A total of 257 patients (170/87 patients in internal/external cohorts)

with advanced NPC (TNM stage III or IVa) were enrolled. We developed an end-

to-end multi-modality DLR model, in which a 3D convolutional neural network

was optimized to extract deep features from pretreatment PET/CT images and

predict the probability of 5-year PFS. The TNM stage, as a high-level clinical

feature, could be integrated into our DLR model to further improve the

prognostic performance. For a comparison between conventional radiomics

and DLR, 1,456 handcrafted features were extracted, and optimal conventional
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radiomics methods were selected from 54 cross-combinations of six feature

selection methods and nine classification methods. In addition, risk group

stratification was performed with clinical signature, conventional radiomics

signature, and DLR signature.

Results: Our multi-modality DLR model using both PET and CT achieved

higher prognostic performance (area under the receiver operating

characteristic curve (AUC) = 0.842 ± 0.034 and 0.823 ± 0.012 for the

internal and external cohorts) than the optimal conventional radiomics

method (AUC = 0.796 ± 0.033 and 0.782 ± 0.012). Furthermore, the multi-

modality DLRmodel outperformed single-modality DLRmodels using only PET

(AUC = 0.818 ± 0.029 and 0.796 ± 0.009) or only CT (AUC = 0.657 ± 0.055 and

0.645 ± 0.021). For risk group stratification, the conventional radiomics

signature and DLR signature enabled significant difference between the high-

and low-risk patient groups in both the internal and external cohorts (p <

0.001), while the clinical signature failed in the external cohort (p = 0.177).

Conclusion: Our study identified potential prognostic tools for survival

prediction in advanced NPC, which suggests that DLR could provide

complementary values to the current TNM staging.
KEYWORDS

radiomics, deep learning, nasopharyngeal carcinoma, PET/CT, progression-
free survival
Introduction

Nasopharyngeal carcinoma (NPC) is a malignant epithelial

cancer. The GLOBOCAN 2020 estimates that there are

approximately 133,354 new NPC cases and 80,008 NPC-related

deaths worldwide in 2020 (according to the International Agency

for Research on Cancer (IARC)) (1). NPC mainly arises from the

nasopharynx epithelium, especially the fossa of Rosenmuller (2),

and can be pathologically divided into keratinizing differentiated

tumor, non-keratinizing differentiated tumor, and non-keratinizing

undifferentiated tumor. Due to its unique anatomical structure and

radiosensitivity (3, 4), the primary therapeutic regimen for NPC is

radiotherapy, with or without chemotherapy, targeted therapy, and

immunotherapy. Survival prediction is a major concern in clinical

cancer research, as it provides early prognostic information that is

needed to guide the therapeutic regimen. In clinical practice, the

tumor, node, metastasis (TNM) stage is widely used as an indicator

for survival prediction according to the American Joint Committee

on Cancer (AJCC)/Union for International Cancer Control (UICC)

staging system. However, for patients classified into the same TNM

stage, their prognoses may differ widely, and their 5-year survival

rates range from 10% to 40% for advanced NPC (5–7). This may be

attributed to the fact that the TNM stage only takes into account the
02
anatomical information, e.g., size, number, border, and location.

Therefore, the TNM stage can provide limited benefit for prognoses

in patients with advanced NPC (8).

Many clinical biomarkers, such as age, serum lactate

dehydrogenase (LDH), body mass index (BMI), and Epstein–

Barr virus (EBV), have also been reported as individual

prognostic indicators for survival prediction in advanced NPC

(9–11). However, these indicators are not specifically relevant to

the disease and can be influenced by other indicators, thus failing

in repeatability and practicability (12, 13). Non-invasive image-

derived biomarkers have also shown good prognostic

performance for survival prediction in advanced NPC (14–16).

However, conventional imaging modalities, such as computed

tomography (CT) and magnetic resonance imaging (MRI), only

provide the tumor’s anatomical information. Multi-modality

imaging of positron emission tomography/CT (PET/CT)

provides both anatomical (from CT) and metabolic (from

PET) information about the tumor. However, conventional

parameters derived from PET/CT, including standardized

uptake value (SUV), metabolic tumor volume (MTV), and

total lesion glycolysis (TLG), failed to represent intra-tumor

information such as tumor texture, intensity, heterogeneity, and

morphology (14, 15, 17, 18). Therefore, prognostic indicators
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https://doi.org/10.3389/fonc.2022.899351
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2022.899351
that can better represent the tumor characteristics, especially in

intra-tumor information, can more accurately predict survival.

Radiomics, as a widely recognized computational method for

prognosis, exploits quantitative features (indicators) extracted from

medical images to represent tumor characteristics (19). It has drawn

much attention among clinical oncologists due to its ability to

provide comprehensive representations of tumor characteristics,

including intra-tumor information (20). Conventional radiomics

refers to the extraction and analysis of high-dimensional

handcrafted features from medical images. Through high-

throughput feature extraction and statistical machine learning

methods, radiomics can extract and analyze tumor characteristics

and has been widely used in many clinical applications (20). Zhang

et al. (21) performed radiomics-based prediction of local failure and

distant failure in advanced NPC from MRI images. They

experimented with 54 cross-combinations derived from six

feature selection methods and nine classification methods, and

they identified optimal combinations in terms of area under the

receiver operating characteristic (ROC) curve (AUC) and testing

error. Lv et al. (22) extracted shape, SUV/Hounsfield unit (HU),

and texture features from PET and CT images separately and
Frontiers in Oncology 03
demonstrated that these features could improve prognostic

prediction for NPC patients. Xu et al. (23) partitioned the

primary tumor of NPC from PET/CT images into different

subregions and then separately extracted handcrafted features

from these subregions. Yang et al. (24) evaluated the robustness

of the handcrafted features extracted from tumor volumes on PET/

MR of NPC patients. Conventional radiomics has also been studied

in other cancers, such as other head and neck cancers (25) and lung

cancer (26). A research of Lv et al. (27) demonstrated that multi-

level multi-modality fusion radiomics-based model derived from

PET/CT outperformed single-modality models in prognostic

prediction for head and neck cancer patients. These studies

demonstrated the capabilities of radiomics for prognosis and

identified the optimal conventional radiomics methods for their

clinical targets through comprehensive comparisons. However,

since conventional radiomics is heavily dependent on human

prior knowledge, such as handcrafted feature extraction and

manual tuning of many model parameters, its limitations in

bringing a source of human bias and lacking the ability to

understand high-level semantic information have been well

recognized (28, 29).
A

B

FIGURE 1

An illustration of radiomics process. (A) Conventional radiomics consisting of four steps: image acquisition/reconstruction, ROI segmentation,
feature extraction, and statistical analysis/modeling. (B) DLR, its feature extraction and analysis are jointly learned using a deep neural network.
The dotted arrow indicates the optional ROI segmentation operation. ROI, region of interest; DLR, deep learning-based radiomics.
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Recently, deep learning, which leverages deep neural

networks to learn deep representations (features) of patterns

within images, has achieved great success in medical image

analysis and inspired trends toward deep learning-based

radiomics (DLR) (30). Compared to conventional radiomics,

which normally consists of four separate steps (Figure 1A), DLR

adopts a deep neural network to directly predict patient

outcomes from the preprocessed image data (Figure 1B). DLR

can take segmented regions of interest (ROIs) as input, but this is

optional, with some pipelines that exclude ROI segmentation

(30). DLR’s feature extraction and feature analysis are jointly

learned, in an end-to-end manner, which thereby removes the

reliance on time-consuming handcrafted feature extraction, and

allows for automatic learning of relevant and robust features

without human intervention (28). In other words, DLR can

remove the human bias brought by handcrafted features and

potentially discover high-level semantic features that may be

overlooked by manually defined feature extraction.

DLR has been widely used in the studies of many cancers,

including glioma (31), lung cancer (32), breast cancer (33), renal

tumor (34), and NPC (35–38). Peng et al. (35) proposed one of

the earliest studies where DLR was introduced into the prognosis

of NPC. They used pre-trained convolutional neural networks

(CNNs) to extract deep features from PET and CT images

separately and then fed the deep features, as well as

conventional handcrafted features, into a Cox proportional

hazards regression model to establish a prognostic nomogram.

Their study suggested that deep features can serve as reliable and

powerful indicators for prognosis, but their feature extraction

and analysis were not jointly learned in an end-to-end manner.

Existing end-to-end DLR studies (31–34, 36–38) are limited by

the following: 1) they were mainly designed for a single imaging

modality such as MRI and CT, so their DLR models cannot
Frontiers in Oncology 04
derive complementary features from multi-modality PET/CT

images; 2) they had limited comparison to the conventional

radiomics methods (e.g., only a few conventional radiomics

methods were included for comparison), which undermines

the reliability of their conclusions.

In this study, we aimed to develop an end-to-end multi-

modality DLR model to directly predict 5-year progression-free

survival (PFS) from pretreatment PET/CT images and perform a

comprehensive comparison with conventional radiomics

methods. Our DLR model is a 3D CNN that was purposely

optimized for multi-modality PET/CT images and can

simultaneously extract complementary deep features from

both PET and CT images. Our DLR model can integrate the

TNM stage as a high-level clinical feature, and this has been

demonstrated to further improve prognostic performance.
Material and methods

Patients and PET/CT image data

From November 2009 to May 2019 and June 2014 to May

2019, the medical records of 281 NPC patients from Fudan

University Shanghai Cancer Center (FUSCC) and 178 NPC

patients from Shanghai Proton and Heavy Ion Center

(SPHIC) undergoing PET/CT were retrospectively screened,

respectively. The eligibility criteria were as follows: i) TNM

stage III or IVa according to the 8th edition of AJCC

guidelines, ii) the follow-up time of patients without

progression of more than 5 years, and iii) available clinical

data and PET/CT imaging data. Finally, 170 patients from

FUSCC and 87 patients from SPHIC were enrolled in this
FIGURE 2

The flowchart of patient inclusion and exclusion. NPC, nasopharyngeal carcinoma; FUSCC, Fudan University Shanghai Cancer Center; SPHIC,
Shanghai Proton and Heavy Ion Center.
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study (Figure 2). All patients received therapeutic regimens at

FUSCC or SPHIC according to the National Comprehensive

Cancer Network (NCCN) guidelines. The detailed therapeutic

regimen is presented in the Supplementary Material.

After completion of initial treatment, physical examination,

imaging examination, and nasopharyngoscopy were performed

every 3 months in the first 2 years, then every 6 months in the

third to fifth year, and once a year thereafter. Treatment responses

were identified by imaging examination according to Response

Evaluation Criteria in Solid Tumors (RECIST) 1.1 (39). The

following endpoint was set as PFS, defined as the time from

randomization to disease progression (locoregional or distant) or

death (3). Themedian follow-up time was 89months (range, 61–149

months) for FUSCC and 65 months (range, 29–92 months) for

SPHIC. FUSCC and SPHIC Ethical Committee approved this study,

and informed consent was obtained from all enrolled patients.

All patients underwent 18F-fluorodeoxyglucose (18F-FDG)

PET/CT (Siemens Biograph 16HR, Knoxville, TN, USA) prior to

treatment within 4 weeks. Detailed data acquisition and

reconstruction were recorded in the Supplementary Material.
Problem definition

We aimed for long-time survival prediction in patients with

advanced NPC using pretreatment PET/CT images. In this

study, we mainly focused on 5-year PFS and regarded the

survival prediction as a binary classification problem.

Specifically, the patients with PFS ≤ 60 months (5 years) were

labeled as 1, while other patients (PFS > 60 months) were labeled

as 0. Then, the objective of this study was to classify patients into

these two classes (0 or 1) using pretreatment PET/CT images.
Internal and external cohorts

The 170 patients acquired from FUSCC were assigned to an

internal cohort, while the 87 patients acquired from SPHIC were

assigned to an external cohort. The internal cohort was used for

the establishment and internal validation of all prognostic

methods. Specifically, each method was trained and validated

using fivefold cross-validation within the internal cohort, and all

hyper-parameters were decided based on the internal validation.

For external validation, the five models of each method,

established at the fivefold cross-validation, were validated on

the external cohort. It should be noted that the external cohort is

completely independent of the model establishment.
Data preprocessing

All PET/CT images were preprocessed through the following

steps: 1) primary tumors were segmented on PET and CT images
Frontiers in Oncology 05
simultaneously using a semi-automatic segmentation algorithm,

which is available with the ITK-SNAP software (version 3.8.0,

http://www.itksnap.org). The semi-automatic segmentation

results were then manually adjusted and refined by a senior

nuclear medicine physician (SL-S) to ensure reliability. 2) PET

images were normalized based on body mass. The derived body

mass was applied to convert PET images into SUV maps. 3)

PET/CT images and tumor segmentation masks were resampled

into isotropic voxels of unit dimension to ensure comparability,

where 1 voxel corresponds to 1 mm3. Specifically, PET/CT

images and segmentation masks were resampled via linear

interpolation and nearest-neighbor interpolation, respectively.

4) PET/CT images were multiplied with the binary masks of

tumor segmentation to extract ROI and then were cropped into

three-dimensional patches with a size of 80 × 80 × 64 voxels. The

patch size was selected to ensure that the whole segmented

tumor can be included and the tumor center aligned with the

patch center. 5) The patches were then normalized to the range

[0, 1] individually using the 99th percentile pixel value and 0 as

upper and lower limits, respectively. The pixels whose values are

higher/lower than the upper/lower limit were cut off to be 1/0.
Conventional radiomics analysis

For performing a comprehensive comparison between

DLR and conventional radiomics, we first followed the

analytic scheme proposed by Zhang et al. (21) to identify the

optimal conventional radiomics methods for our research

objective, and then the optimal methods were chosen as

benchmarks and compared to our DLR model in the

following analysis. Specifically, a total of six feature selection

methods based on statistical approaches were used in the

analysis: L1-Logistic Regression (L1-LOG), L1-Support

Vector Machine (L1-SVM), Random Forest (RF), Distance

Correlation (DC), Elastic Net Logistic Regression (EN-LOG),

and Sure Independence Screening (SIS). For classification

methods, we investigated nine machine learning classifiers:

L2-Logistic Regression (L2-LOG), Kernel Support Vector

Machines (KSVM), Linear-SVM (LSVM), Adaptive Boosting

(AdaBoost), Random Forest (RF), Neural Network (Nnet), K-

nearest neighborhood (KNN), linear discriminant analysis

(LDA), and Naive Bayes (NB). A total of 54 cross-

combinations can be derived from the six feature selection

methods and nine classification methods. All conventional

radiomics methods were implemented using the R package

(version 3.6.3, http://www.R-project.org). The following R

packages were used for feature selection methods: ‘SIS’ (SIS),

‘VSURF’ (RF), ‘LiblineaR’ (L1-LOG and L1-SVM), ‘Energy’

(DC), and ‘glmnet’ (EN-LOG). Additionally, the following

packages were used for classification methods: ‘e1071’

(KSVM), ‘LibLineaR ’ (LSVM and L2-LOG), ‘adabag ’
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(AdaBoost), ‘randomForest’ (RF), ‘nnet’ (Nnet), ‘knn’ (KNN),

‘MASS’ (LDA), and ‘e1071’ (NB).

We extracted handcrafted radiomics features for each patient,

including 19 features from First Order Statistics (FOS), 24 features

from Grey-Level Cooccurrence Matrix (GLCM), 16 features from

Grey-Level Run Length Matrix (GLRLM), 16 features from Grey-

Level Size Zone Matrix (GLSZM), 5 features from Neighboring

Grey Tone Difference Matrix (NGTDM), and 16 features based on

the 3D shape of tumors. The 16 shape-based features were extracted

from the segmentation mask, while the remaining (19 + 24 + 16 +

16 + 5) = 80 FOS and textural features (GLCM, GLRLM, GLSZM,

and NGTDM) were extracted from the preprocessed PET and CT

patches, respectively. FOS and textural features also were

recomputed after different wavelet decomposition in three

directions (x, y, and z) of PET and CT. Performing low-pass or

high-pass wavelet filters along x, y, or z directions resulted in eight

decompositions of the original image (LLL, LLH, LHL, LHH, HHH,

HLL, HHL, and HLH). Therefore, FOS and textural features were

extracted from a total of (1 + 8) = 9 decompositions of PET and CT

(including original ones). Consequently, the number of handcrafted

radiomics features is 80 × 9 × 2 + 16 = 720 × 2 + 16 = 1,456. A total

of 720 features were extracted from PET or CT, while 16 features

were extracted from tumor segmentation masks.

Redundant features with Spearman’s correlation >0.7 were first

eliminated. Then, the remaining ones were fed into a feature

selection model to screen for robust and relevant features. The

number of the selected features derived from each selection method

was regarded as a hyper-parameter and was individually optimized

through grid searching from 1 to 30, with 1 as a step. Specifically, for

each selection–classification combination, we tried to retain 1–30

features from the selection model and fed them into the

classification model. The remaining number resulting in

the highest internal validation result was chosen. Therefore, the

number of the selected features for each combination is different.

The average number of selected features derived from each selection
Frontiers in Oncology 06
method is as follows: L1-LOG (10.14), L1-SVM (8.53), SIS (6.43),

DC (6.85), EN-LOG (8.26), and RF (4.57). Moreover, we regarded

the TNM stage as a clinical feature because it showed significant

relevance to PFS in our univariate analysis (Supplementary Table

S1). Both the selected radiomics features and clinical feature (TNM

stage) were fed into a classification model for statistical analysis.

The top three optimal combinations were identified based on the

internal validation and then were further validated on the

external cohort.
Deep learning-based radiomics analysis

We developed a multi-modality DLR model to directly

predict 5-year PFS from pretreatment PET/CT images in an

end-to-end manner. This DLR model is a 3D CNN, and its

architecture is based on 3D Deep Multi-modality Collaborative

Learning (3DMCL) (29), a deep multi-modality architecture for

predicting the distant metastases of soft-tissue sarcoma from

PET/CT images. It takes as input a pair of preprocessed PET/CT

patches (segmented ROIs) and outputs normalized probabilities

for both classes (0 or 1). Note that although segmentation is not

compulsory for DLR, we used the segmented ROIs in our DLR

models for a fair comparison with conventional radiomics

methods. The DLR network architecture is shown in Figure 3,

which consists of two separate branches processing the PET and

CT images in a simultaneous manner. For each PET and CT

branch, there are five convolutional layers (Conv1–5) of 16, 32,

64, 128, and 256 filters with kernel sizes of 5, 3, 3, 3, and 3,

respectively. The middle four convolutional layers (Conv2–5)

are with a stride of two to reduce the resolution of feature maps.

To fuse the feature maps derived from both branches, the

outputs of PET and CT branches are concatenated together

and then fed into another convolutional layer (Conv6) of 768
FIGURE 3

An illustration of the CNN used in the DLR analysis. This network takes a pair of preprocessed PET/CT patches (segmented ROIs) as input, and
the final layer (FC4) outputs normalized probabilities for both classes (0 or 1). The clinical feature (TNM stage) is concatenated with FC3. CNN,
convolutional neural network; DLR, deep learning-based radiomics; ROIs, regions of interest.
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filters with a kernel size of 3. Each convolutional layer is followed

by a batch normalization layer and an Exponential Linear Unit

(ELU) activation. The feature maps obtained from the last

convolutional layer (Conv6) are considered deep features with

high-level semantic information related to tumor characteristics.

Finally, four fully connected layers (FC1–4), which have 1,024,

512, 256, and 2 nodes, respectively, are added to perform

survival prediction based on deep features. The first three fully

connected layers (FC1–3) are followed by a ReLU activation and

a dropout layer, while the last layer (FC4) is followed by a

softmax classifier layer, which outputs normalized probabilities

of two classes (0 or 1). The TNM stage, as a high-level clinical

feature, can be concatenated with the third fully connected

layer (FC3).

We first developed a DLR model taking PET, CT, and TNM

stages as input (named the PET + CT + TNM model). Then, we

further established three degraded DLR models to evaluate the

individual values of PET, CT, and TNM stage: 1) PET + CT

model, a DLR model taking PET and CT as input. In this model,

the TNM stage was not concatenated with the FC3 layer. 2)

PET + TNM model: a DLR model taking PET and the TNM

stage as input, in which the CT branch was truncated and only

the PET branch was connected to the Conv6 layer. 3) CT + TNM

model: a DLR model taking CT and the TNM stage as input, in

which the PET branch was truncated and only the CT branch

was connected to the Conv6 layer.

All DLR models were implemented using Keras with a

Tensorflow backend on a 12GB TITAN V GPU. We used the

Adam optimizer with a batch size of 32 and a learning rate of

0.0001 for training the model. Cross-entropy loss function was

used as the loss and our training stops when there are no further

drops in the total loss. All the hyper-parameters, including batch

size, learning rate, dropout rate, and regularization terms, were

chosen through fivefold cross-validation within the internal

cohort. During the training stage, data augmentation was

applied to the input images in real-time to avoid overfitting.

The used data augmentation techniques included random

translations up to 8 pixels, random rotations up to 15 degrees,

and random flipping along three axes. We sampled an equal

number of positive and negative samples during the data

augmentation process to minimize the problem introduced by

unbalanced classes.
Statistical analysis

For clinical and conventional PET parameters including age,

gender, EBV status, histology, BMI, T stage, N stage, TNM stage,

SUVmax, SUVmean, MTV, and TLG, frequencies with percentages

were used to describe categorical variables; medians ormeans with
Frontiers in Oncology 07
ranges were used to describe continuous characteristics.

Differences in these parameters between the internal and

external cohorts were assessed using the Mann–Whitney test

(for continuous characteristics) and the X2 test or Fisher’s exact

test (for discrete characteristics). Univariate and multivariate

analyses were performed using Cox proportional hazards

regression. Factors with p < 0.1 in univariate analysis were taken

into multivariate analysis. Cox proportional regression analyses

were implemented using SPSS (version 22.0; IBM Inc., New York,

NY, USA). p < 0.05 was considered statistically significant.

The performance of conventional radiomics methods and

DLR models was evaluated using AUC and testing error. The

statistical significance between AUCs was tested via DeLong’s

method using R packages (version 3.6.3, http://www.R-

project.org).

Furthermore, survival analyses using the Kaplan–Meier

method were performed for risk group stratification.

Specifically, patients with positive/negative prediction results

were stratified into high/low-risk groups, and then a two-sided

log-rank test was used to compare the two groups. The survival

analyses were performed using SPSS.
Results

Patients and Cox regression analyses for
clinical and conventional PET parameters

A total of 170 advanced NPC patients (female = 40, male =

130; median age = 46, range 16–78) were included in the internal

cohort (Table 1). Among these patients, 121 patients (71.18%)

were diagnosed with TNM stage III, and 49 patients (28.82%)

were TNM stage IVa; 126 patients (74.12%) were non-

keratinizing undifferentiated NPC; 80 patients (47.06%) were

infected with EBV. Induction chemotherapy (IC) was given to

147 out of 170 (86.47%) patients, while concurrent

chemoradiotherapy (CCRT) was used for 88 out of 170

(51.76%) patients. Furthermore, 77 out of 170 (45.29%)

patients were treated with IC + CCRT. The mean SUVmax

value for the primary tumor was 11.40 g/ml (range, 2.74-47.49

g/ml), the mean MTV value was 30.34 ml (range, 0.17–152.99

ml), and the mean TLG value was 155.92 g (range, 0.45–864.03

g). The detailed baseline data of the external cohort were also

summarized in Table 1.

Furthermore, 48 out of 170 (28.24%) patients (for the internal

cohort) and 45 out of 87 (51.72%) patients (for the external

cohort) suffered disease progression or death after treatment

within the first 5 years. Among clinical and conventional PET

parameters, only the TNM stage was significantly associated with

PFS in univariate analysis (p = 0.047) in the internal cohort, while
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no factors showed a significant correlation with PFS in the

external cohort (Supplementary Table S1). Furthermore, MTV

and TLG showed significant association with PFS in univariate

analysis (p = 0.002 and p = 0.002) on the internal cohort using a

cutoff value of 39.80 ml and 198.68 g, respectively. However, none

of these attributes showed a significant correlation with PFS in the

multivariate analysis of both cohorts (Supplementary Table S2).
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Prognostic performance of
conventional radiomics

Figure 4A shows that the combinations with top five mean

AUC are as follows: RF + RF (0.796 ± 0.033), RF + AdaBoost

(0.783 ± 0.041), SIS + LSVM (0.778 ± 0.024), L1-LOG + L2-LOG

(0.772 ± 0.027), and L1-LOG + KSVM (0.769 ± 0.038). As
TABLE 1 Patient characteristics in the internal and external cohorts.

Characteristics Internal cohort (n = 170) External cohort (n = 87) p Value

Age (years), median (range) 46 (16–78) 46 (14–71) 0.220

Gender 0.265

Male 130 (76.47%) 72 (82.76%)

Female 40 (23.53%) 15 (17.24%)

EBV antibody 0.008

Positive 80 (47.06%) 58 (66.67%)

Negative 24 (14.12%) 5 (5.74%)

Unknown 66 (38.82%) 24 (27.59%)

Histology, WHO type a 0.001

I 4 (2.35%) 0 (0%)

II 40 (23.53%) 4 (4.60%)

III 126 (74.12%) 83 (95.40%)

BMI (kg/m2), mean (range) 22.79 (15.40–31.41) 24.23 (16.41–34.41) 0.001

T stage 0.001

T1 54 (31.77%) 21 (24.14%)

T2 21 (12.35%) 10 (11.49%)

T3 72 (42.35%) 55 (63.22%)

T4 23 (13.53%) 1 (1.15%)

N stage 0.196

N0 11 (6.47%) 3 (3.44%)

N1 34 (20.00%) 24 (27.59%)

N2 96 (56.47%) 40 (45.98%)

N3 29 (17.06%) 20 (22.99%)

TNM stage 0.462

III 121 (71.18%) 66 (75.86%)

IVa 49 (28.82%) 21 (24.14%)

Concomitant systemic treatment with IMRT

Non-IC or CCRT 12 (7.06%) 2 (2.30%) <0.001

IC alone 70 (41.18%) 18 (20.69%)

CCRT alone 11 (6.47%) 3 (3.45%)

IC + CCRT 77 (45.29%) 64 (73.56%)

Targeted therapy 26 (15.29%) 8 (9.20%) 0.243

PET parameters, mean (range)

SUVmax (g/ml) 11.40 (2.74–47.49) 14.95 (3.87–67.29) 0.001

SUVmean (g/ml) 4.71 (2.63–8.41) 5.33 (2.92–17.70) 0.016

MTV (ml) 30.34 (0.17–152.99) 18.58 (1.06–61.27) 0.001

TLG (g) 155.92 (0.45–864.03) 114.38 (3.10–906.42) 0.017
front
EBV, Epstein–Barr virus; WHO, World Health Organization; BMI, body mass index; IMRT, intensity-modulated radiation therapy; IC, induction chemotherapy; CCRT, concurrent
chemoradiotherapy; SUV, standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis.
aWHO type I = keratinizing, WHO Type II = non-keratinizing (differentiated), and WHO Type III = non-keratinizing (undifferentiated).
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demonstrated in Figure 4B, the combinations with bottom five

mean testing error are as follows: RF + RF (0.267 ± 0.037), RF +

KSVM (0.283 ± 0.034), RF + AdaBoost (0.286 ± 0.029), L1-LOG +

KSVM (0.298 ± 0.026), and RF + KNN (0.301 ± 0.032).

Scatterplot was used to screen out the combinations with both

high AUC and low testing error. Figure 5 illustrates that the optimal

combinations are RF + RF (AUC = 0.796 ± 0.033, testing error =

0.267 ± 0.037), RF + AdaBoost (AUC = 0.783 ± 0.041, testing error

= 0.286 ± 0.029), and L1-LOG + KSVM (AUC = 0.769 ± 0.038,

testing error = 0.298 ± 0.026), which show higher prognostic

performance than other combinations.

Comparison between deep learning-based
radiomics and conventional radiomics

We first compared the performance of DLR models using

ROC analysis. Figure 6 and Table 2 show that the PET + CT +
Frontiers in Oncology 09
TNMmodel has the highest prognostic performance in the internal

validation (AUC = 0.842 ± 0.034, 95% CI: 0.801–0.889; testing error

= 0.194 ± 0.029) and external validation (AUC = 0.823 ± 0.012, 95%

CI: 0.787–0.862; testing error = 0.238 ± 0.008), while PET + CT

model and PET + TNMmodel show lower but also good prognostic

performance in the internal validation (AUC = 0.825 ± 0.041 and

0.818 ± 0.029, 95% CI: 0.775–0.870 and 0.762–0.862; testing error =

0.223 ± 0.035 and 0.218 ± 0.024) and external validation (AUC =

0.819 ± 0.017 and 0.796 ± 0.009, 95% CI: 0.778–0.856 and 0.747–

0.829; testing error = 0.241 ± 0.009 and 0.262 ± 0.006). However, CT

+ TNM model shows much lower prognostic performance in the

internal validation (AUC = 0.657 ± 0.055, 95% CI: 0.596–0.718;

testing error = 0.375 ± 0.048) and external validation (AUC = 0.645

± 0.021, 95% CI: 0.591–0.709; testing error = 0.403 ± 0.011).

Then, we further compared the optimal DLR model (PET +

CT + TNM model) with the optimal conventional radiomics

methods (RF + RF, RF + AdaBoost, and L1-LOG + KSVM).
A

B

FIGURE 4

A heatmap depicting the mean internal validation AUC (A) and testing error (B) of all 54 cross-combinations derived from six feature selection
methods (in rows) and nine classification methods (in columns). AUC, area under the receiver operating characteristic curve.
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Figure 6 and Table 3 show that the DLR model has significantly

higher prognostic performance than the three conventional

radiomics methods in the internal validation (AUC = 0.842 vs.

0.796, 0.783, and 0.769; p = 0.038, 0.046, and 0.027, respectively)

and external validation (AUC = 0.823 vs. 0.782, 0.767, and 0.755;

p = 0.043, 0.026, and 0.015, respectively).

Survival analysis for risk group
stratification

We used the optimal clinical signature (TNM stage),

conventional radiomics signature (RF + RF), and DLR signature

(PET + CT + TNM model) for risk group stratification. Figure 7

shows the Kaplan–Meier curves of the high- and low-risk patient

groups stratified by the clinical signature (A, D), conventional

radiomics signature (B, E), and DLR signature (C, F). The

conventional radiomics signature and DLR signature enabled

significant differences between the high- and low-risk patient

groups in both internal and external cohorts (p < 0.001), while

the clinical signature failed in the external cohort (p = 0.042 and

0.177 for the internal and external cohorts).
Discussion

In this study, we proposed an end-to-end multi-modality

DLR model to directly predict 5-year PFS from pretreatment

PET/CT images in advanced NPC patients. The main finding of

this study is that multi-modality image-derived DLR
Frontiers in Oncology 10
outperformed clinical indicators, conventional PET predictors,

and conventional radiomics methods.

Pretreatment medical images contain much more information

than diagnosis and the TNM stage. However, clinical oncologists

usually only employ ‘visible’ information in routine clinical practice

and treatment planning. Conventional PET parameters, such as

MTV or TLG, have been demonstrated to serve as an independent

predictor for survival prediction (14, 15, 17). However, in this study,

the conventional PET parameters (SUVmax, SUVmean, MTV, and

TLG) showed no significant association with PFS (Supplementary

Tables S1, S2), which is consistent with some studies where the

conventional PET parameters also failed to show significant

association for survival prediction (40–42). Therefore, we suggest

that the conventional PET parameters have limited reproductivity

among different studies and different centers.

In radiomics analysis, we found that both conventional

radiomics and DLR showed consistent prognostic performance

in the internal and external cohorts, despite that the distribution

of some clinical characteristics and progression rate showed

significant differences (e.g., N2 and N1) between the two cohorts,

which indicates strong generalizability. This is possible because

radiomics extracts feature from PET and CT images, which

employ intra-tumor information such as tumor texture,

intensity, heterogeneity, and morphology (43). Intra-tumor

information can reflect intra-tumor heterogeneity that is

caused by genetic instability and potentially leads to drug

resistance and treatment failure (44). The uptake of 18F-FDG

in tumor cells can reflect the intra-tumor heterogeneity by

exhibiting variations in glucose metabolism of different tumor
FIGURE 5

A scatterplot depicting the mean internal validation AUC and testing error of all 54 cross-combinations derived from six feature selection
methods and nine classification methods. Two red dotted lines distinguish the combinations that show top five performance in AUC and testing
error. Three highly reliable and prognostic combinations that show top five performance in both AUC and testing error (RF + RF, RF + AdaBoost,
and L1-LOG + KSVM) are displayed in red points. AUC, area under the receiver operating characteristic curve; RF, Random Forest; AdaBoost,
Adaptive Boosting; L1-LOG, L1-Logistic Regression; KSVM, Kernel Support Vector Machines.
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regions (45). However, the conventional parameters derived

from PET/CT (e.g., MTV and TLG) can only represent the

apparent metabolism information, which thereby fails to reflect

the intra-tumor heterogeneity (46).

Conventional radiomics depends heavily on handcrafted

feature extraction and manual tuning of statistical models.

Therefore, in many studies (21, 25, 47–49), different feature

extraction schemes, feature selection methods, and statistical
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models were investigated to identify optimal conventional

radiomics methods for a specific clinical target. Our

conventional radiomics analysis followed the scheme proposed

by Zhang et al. (21), and we derived 54 cross-combinations from

six feature selection methods and nine classification methods.

Considering both AUC and testing error (Figure 4), the optimal

combinations were RF + RF and RF + AdaBoost, which is

consistent with a study by Zhang et al. (21). DLR is considered a
A B

DC

FIGURE 6

ROC curves for comparison among four DLR models and comparison among optimal conventional radiomics methods and optimal DLR model
on the internal cohort (A, C) and external cohort (B, D). ROC, receiver operating characteristic; DLR, deep learning-based radiomics.
TABLE 2 Comparison among four DLR models.

Method Internal validation External validation

AUC Testing error AUC Testing error

PET + CT + TNM model 0.842 (0.034) 0.194 (0.029) 0.823 (0.012) 0.238 (0.008)

PET + CT model 0.825 (0.041) 0.223 (0.035) 0.819 (0.017) 0.241 (0.009)

PET + TNM model 0.818 (0.029) 0.218 (0.024) 0.796 (0.009) 0.262 (0.006)

CT + TNM model 0.657 (0.055) 0.375 (0.048) 0.645 (0.021) 0.403 (0.011)
The average results are reported with standard deviation in parentheses. The best result in each column is in bold.
DLR, deep learning-based radiomics; AUC, area under the receiver operating characteristic curve.
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replacement for conventional radiomics and has demonstrated

superior prognostic performance in some studies (31–33).

However , the re are f ew s tud i e s where DLR was

comprehensively compared with conventional radiomics. In

most literature (31–34, 36–38), only a few conventional

radiomics methods were included in the comparison, but there

is no guarantee that the included methods are optimal for their

clinical targets. In this study, the three optimal conventional

radiomics methods chosen from 54 cross-combinations were

chosen as the benchmarks for further comparison with our DLR

model. Our DLR models showed the highest performance in

prognosis (Table 3) and revealed the best risk group

stratification for advanced NPC patients when compared to

clinical and conventional radiomics signatures (Figure 7).

Through the comprehensive comparison, we suggest that DLR

is superior to conventional radiomics in the prediction of long-

time PFS in advanced NPC.We attribute this superiority to three
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main reasons: first, DLR allows for automatic learning of robust

and relevant features from multi-modality PET/CT images,

which reduces the human bias (or even errors) caused by

handcrafted feature extraction. Second, automatic feature

learning discovered high-level semantic features that may be

overlooked by the manually defined feature extraction. Third, it

has been widely recognized that CNNs have the outstanding

ability for pattern recognition (50), so DLR can inherit this

ability by employing CNN architectures.

Although DLR has been applied for prognoses of NPC in

several previous studies (35, 37, 38), there still exist the following

limitations: Peng et al. (35) used 2.5D CNNs to extract deep

features rather than to directly predict survival outcomes in an

end-to-end manner, and the deep features were extracted from

informative slices instead of from the entire tumor volume. Jing

et al. (38) addressed the aforementioned limitations by

employing a 3D end-to-end DLR model that directly predicts
TABLE 3 Comparison of the optimal conventional radiomics methods and DLR model.

Method Internal validation External validation

AUC Testing error AUC Testing error

L1-LOG + KSVM 0.769 (0.038) 0.298 (0.026) 0.755 (0.015) 0.306 (0.007)

RF + AdaBoost 0.783 (0.041) 0.286 (0.029) 0.767 (0.016) 0.297 (0.008)

RF + RF 0.796 (0.033) 0.267 (0.037) 0.782 (0.012) 0.279 (0.010)

DLR (PET + CT + TNM) 0.842 (0.034) 0.194 (0.029) 0.823 (0.012) 0.238 (0.008)
The average results are reported with standard deviation in parentheses. The best result in each column is in bold.
DLR, deep learning-based radiomics; AUC, area under the receiver operating characteristic curve; L1-LOG, L1-Logistic Regression; KSVM, Kernel Support Vector Machines; RF, Random
Forest.
A B

D E F

C

FIGURE 7

Kaplan–Meier curves of risk group stratification based on clinical signature (TNM stage), conventional radiomics signature (RF + RF), and DLR
signature (PET + CT + TNM model) on the internal cohort (A–C) and external cohort (D–F). RF, Random Forest; DLR, deep learning-based
radiomics.
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the risk of disease progression based on the entire tumor volume.

Their study demonstrated that end-to-end DLR models are

more effective to extract relevant features and showed higher

prognostic performance, but their study was limited by only

using single-modality MRI. Zhang et al. (37) also used an end-

to-end DLR model to directly predict distant metastasis-free

survival (DMFS), but their study suffered from the same

limitations as a study by Peng et al. and Jing et al.: they also

used a 2D CNN that makes decisions based on maximum three

tumor slices, and their study was also limited by using single-

modality MRI. In this study, we have overcome these limitations

by developing a 3D multi-modality end-to-end DLR model that

was purposely optimized for PET/CT images. In contrast to a

study by Peng et al. where deep features were separately

extracted from PET and CT images, our DLR model can

simultaneously extract complementary deep features from

both PET and CT images. In the experiments, since a study by

Zhang et al. and our study both focused on similar clinical

targets (DMFS and PFS) and used the same evaluation metrics

(AUC), their result can be directly compared with ours. Our

multi-modality DLR model (PET + CT + TNM model) showed

higher prognostic performance than the method of Zhang et al.

(AUC of 0.842 vs. 0.795), in spite of the fact that Zhang et al.

employed additional information (e.g., EBV DNA and treatment

regimens) for prediction. The result demonstrates that, by

overcoming the aforementioned limitations with a 3D PET/

CT-based end-to-end DLR model, our study indeed gained

improvements over previous DLR studies in NPC.

The TNM staging system is widely used in the clinic for risk

stratification and decision-making for treatment, but the TNM

stage alone is limited for survival prediction (8). In the survival

analysis (Figure 7), no significant difference between the high- and

low-risk patient groups was identified in the external cohort (p =

0.177), which indicates that the TNM stage lacks accuracy in risk

group stratification. Nevertheless, existing studies have shown that

the TNM stage combined with other clinical signatures may

improve the performance for risk discrimination (51–53). Our

results show that the TNM stage was significantly associated with

PFS in univariate analysis (Table 1). Therefore, we further

combined the TNM stage into our DLR models (PET + CT +

TNM, PET + TNM, and CT + TNM models) to evaluate its

capability for further improving the prognostic performance. For

evaluating the value of the TNM stage, we established a DLR

model excluding the TNM stage (PET + CT model). The results

showed that the PET + CT + TNM model has improved

prognostic performance compared to the PET + CT model

(Table 2), which suggests that the TNM stage can provide

supplementary information and enhance the prognostic

performance of survival prediction in NPC patients. We further

compared the multi-modality DLR model (PET + CT + TNM

model) with two single-modality DLR models (PET + TNM and

CT + TNM model) for additional comparisons (Table 2). The
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results showed that the PET + CT + TNM models outperformed

the PET + TNM and CT + TNM models, which suggests that

integrating both metabolic (from PET) and anatomical (from CT)

information helps achieve higher prognostic performance.

There are some limitations to the current study. First, EBV

status was determined by testing plasma anti-EBV IgA antibodies

rather than plasma EBV DNA levels in our center, and EBV status

was missing for 35.02% of the patients, which might limit the

accuracy of statistical analysis. This was because the technology was

only recently adopted in our center. Second, our internal cohort is

relatively small (170 patients). To alleviate this limitation, we

performed fivefold cross-validation within the internal cohort for

the establishment and internal validation of all prognostic methods.

Then, all methods were further validated on the external cohort

acquired from a different center. These settings help to avoid the

sampling bias led by a single random training-validation split and

gain generalizable results in a small dataset (54). Third, the

progression rate of the external cohort is higher than that of the

internal cohort (51.72% vs. 28.24%). This is attributed to the fact

that patients in the external cohort were enrolled from SPHIC, a

young center established in June 2014, with the enrollment time

from June 2014 to May 2019. Since we focused on the survival

analysis of 5-year PFS, many patients without disease progression

were excluded, as they were not followed up for sufficient time

(more than 5 years). In contrast, all patients with disease

progression were enrolled, which inevitably increased the

progression rate in the external cohort. Nevertheless, the

variations between the internal and external cohorts did validate

that radiomics methods have strong generalizability. Radiomics

methods performed patient-wise prediction based on PET/CT of

each patient, such that their prediction results were not affected by

the progression rate in the cohorts. Fourth, DLR models are limited

by the ‘black box’ problem: an algorithm operates in an obscured

space that is inaccessible to humans (55). Despite this, existing

clinical studies (30–38), even conducted at a very large scale (56),

demonstrate the advantages and feasibility of using these models for

clinical purposes. A recent study has attempted to make advances

into this problem and is leading toward a solution that physicians

and patients can better understand how DLRmakes decisions from

medical images (57). Finally, since we focused on the comparison of

DLR and conventional radiomics in their capability for survival

prediction in advanced NPC, we, therefore, optimized our DLR

models based on the existing reliable and proven deep learning

architectures [3DMCL (29)]. In our future work, we plan to evaluate

other deep learning architectures and apply the proposed DLR

model to other types of cancer diseases.
Conclusion

We introduced and evaluated an end-to-end multi-modality

DLR model in predicting 5-year PFS of patients with advanced
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NPC using pretreatment PET/CT images. Our results

demonstrated that our DLR models improved prognostic

performance over conventional radiomics methods.

Furthermore, our DLR model can facilitate risk group

stratification for advanced NPC patients, where the DLR

signature demonstrated greater accuracy for risk group

stratification than the clinical signature and conventional

radiomics signature. Our study suggested that multi-modality

DLR derived from pretreatment PET/CT could provide

complementary values to the current TNM staging and could

guide the individual treatment practice in routine clinical care

for NPC patients.
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