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Background: With the rapid development and wide application of high-throughput
sequencing technology, biomedical research has entered the era of large-scale omics
data. We aim to identify genes associated with breast cancer prognosis by integrating
multi-omics data.

Method: Gene-gene interactions were taken into account, and we applied two differential
network methods JDINAC and LGCDG to identify differential genes. The patients were
divided into case and control groups according to their survival time. The TCGA and
METABRIC database were used as the training and validation set respectively.

Result: In the TCGA dataset, C11orf1, OLA1, RPL31, SPDL1 and IL33 were identified to
be associated with prognosis of breast cancer. In the METABRIC database, ZNF273,
ZBTB37, TRIM52, TSGA10, ZNF727, TRAF2, TSPAN17, USP28 and ZNF519 were
identified as hub genes. In addition, RPL31, TMEM163 and ZNF273 were screened out in
both datasets. GO enrichment analysis shows that most of these hub genes were involved
in zinc ion binding.

Conclusion: In this study, a total of 15 hub genes associated with long-term survival of
breast cancer were identified, which can promote understanding of the molecular
mechanism of breast cancer and provide new insight into clinical research and treatment.

Keywords: multi-omics, survival prediction, differential network, breast cancer, prognosis
INTRODUCTION

Gene variation and expression play an important role in the development of cancer. Breast cancer
ranks as the greatest killer among women’s cancers (1). Therefore, research on genes related to long-
term survival in breast cancer is of great significance for medical workers, in order to enable the
development of targeted drugs and formulation of reasonable plans.
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The development of high-throughput sequencing technology
provides a unique opportunity for the prognostic prediction of
breast cancer (2). Most of the early breast cancer studies were
conducted based on single omics data such as gene expression (3, 4).
For example, 70 genes related to the survival of breast cancer
patients were identified by feature screening in 295 samples of
breast cancer gene expression data using multivariate analysis (5).
However, the development of cancer is a multiplex, multi-factorial
process, involving a variety of molecular-level biological
mechanisms; it is difficult for single omics analysis to elucidate
the biological process of breast cancer development (6). The
integration of multiple omics data is conducive to comprehending
the mechanism of disease occurrence and development and can
inject new blood into biological research (7). Many studies have
found that integrating multiple omics data can improve clinical
classification performance (8–10). Zeng integrated radiological and
genomic data to predict the survival of clear-cell renal carcinoma
using multiple machine learning classifiers such as logistic
regression and support vector machine methods, and found that
multi-omics models were more accurate than single-omics
models (11).

The occurrence and development of cancer are often related
to interactions between multiple genes. The heterogeneity of
genomic data and the characteristics of interaction analysis result
in limitations for traditional statistical methods in the
application of the whole genome (12). Differential network
estimation has become an important tool for exploring
biological mechanisms, and the interaction patterns can
provide opportunities for screening important biomarkers in
disease research, which has a wide range of biological and clinical
research significance (13–15). Kim used a graph-based data-
fusion approach to treat multiple omics data as different nodes in
a heterogeneous network for the clinical postoperative prediction
of the stage, grade, and survival of ovarian cancer patients (16).
Gatto constructed genome-scale metabolic-network models for
13 cancers based on the cancer genome atlas (TCGA) dataset and
found that different cancers showed similar metabolic networks
(17). However, most differential network models are based on
single omics data, and few studies have combined multiple omics
data for differential network analysis.

In this study, two advanced differential network methods for
continuous and discrete data were combined to identify the
differential genes and interaction networks related to breast
cancer. Gene expression profiles, somatic mutations, and copy
Frontiers in Oncology | www.frontiersin.org 2
number variations (CNVs) were collected from the cancer
genome atlas (TCGA) and molecular taxonomy of breast
cancer international consortium (METABRIC). By integrating
genomic and transcriptomic data, we screened prognostic
markers and constructed gene-interaction networks related to
the long-term survival of breast cancer patients. Functional
enrichment analysis was used to identify the important
biological processes associated with breast cancer. The current
study provides insights into the molecular mechanisms
underlying breast cancer prognosis and will support the
development of clinical trials and breast cancer research.
MATERIALS AND METHODS

Data Sources and Preprocessing
Omics data for mRNA gene expression, CNVs, and mutations
were integrated into our study. The TCGA database was used as
the training set (18). The gene expression profiles with the
HTSeq‐FPKM format of BRCA samples and mutation profiles
were obtained directly from the data portal of TCGA (https://
portal.gdc.cancer.gov/). We used R to convert RNAseq data from
fragments per kilobase million (FPKM) format to transcripts per
million (TPM) format. CNV profiles and survival data were
downloaded from http://xena.ucsc.edu/, and the validation set
METABRIC database was downloaded from http://www.
cbioportal.org/ (19–22).

The specific steps of our study were as follows: (1) The
original data were obtained. (2) Gene expressions with ≥ 5%
missing values were deleted, and those with < 5% missing values
were interpolated with the median. The expression values of
genes with repeated sample IDs were replaced by the mean
values. (3) The survival time (“OS.time” in TCGA and
“OS_MONTHS” in META) was extracted, and the units were
uniformly converted into years. (4) The coefficients of the
distance correlations between genes and the survival time were
calculated. (5) We selected the common differential genes in
three omics of the TCGA dataset to train the classification model
and construct the gene-interaction network. Finally, 966 patients
in TCGA and 1,866 patients in METABRIC were used in our
study. The workflow of our study is shown in Figure 1.

We considered four survival time categories: 1-year, 3-year, 5-
year, and 10-year. The classification performance was measured
using the receiver operating characteristic (ROC) curve, Kaplan-
FIGURE 1 | The workflow of our study.
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Meier curve, area under the ROC curve (AUC), and accuracy.
The high-risk group and low-risk group in Kaplan-Meier curves
were truncated by the cutoff calculated by ROC curves. The
differential networks were drawn to identify genes associated
with breast cancer prognosis.
DC-SIS Variable Selection
The dimension of biological data is too large, and they contain
many genes with little significance. To effectively utilize the
data and reduce the cost of machine learning, variable selection
is required. We used the sure independence screening
procedure based on distance correlation (DC-SIS) method to
select differential genes using the “energy” package (v1.7-8) in
R (23).

The DC-SIS method measures the correlation between two
random vectors according to their distance correlation
coefficients (24). The distance covariance of two random
vectors u and v is defined as

dcov u, vð Þ =
Z
Rdu+dv

∥ju,v t, sð Þ − ju tð Þjv sð Þ ∥2 w t, sð Þdtds,

in which du and dv are the dimensions of u and v, respectively; ju
(t) and jv(s) are their respective eigenfunctions; ju,v(t,s) is their
joint eigenfunction; and

w t, sð Þ = cdu cdv ∥ t ∥
1+du
du

∥ s ∥1+dvdv

n o−1
,

 cd = p 1+dð Þ=2=G 1 + dð Þ=2f g :
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The distance correlation of u and v is obtained by dividing
their distance covariance by the product of their distance
standard deviations, which is

dcor u, vð Þ = dcov u, vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dcov u, uð Þdcov v, vð Þp :
Classification and Differential
Network Analysis
Since gene expression data are continuous variables, whereas CNVs
and mutations are discrete variables, we applied two advanced
differential network estimation methods to infer the interaction
networks and differential genes. In this paper, the differential
network consists of difference edges that filtered out from at least
two omics of data. We used Cytoscape (25) to plot the differential
network. A flow chart of the study is shown in Figure 2. Among
them, we used TCGA as the training set and METABRIC as the
verification set. The omics data mRNA, CNV and somatic mutation
in TCGA and mRNA and CNV in METABRIC were used to
construct the differential network respectively.

For continuous-variable mRNA data, we referred to the joint
density-based non-parametric differential interaction network
analysis and classification (JDINAC) method to measure the
interaction between the two variables, and then used L1-
Penalized logistic regression to build the prediction model
and screen the differential genes (26). A total of 50% of the
data were used to fit the joint density function, and 50% were
used to fit the regression model; the number of data splits was
FIGURE 2 | Flow chart of JDINAC and LGCDG method. A–C represent mRNA expression, copy number variation, and somatic mutation datasets.
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100. The mean of the predicted values is taken as the final
prediction probability.

JDINAC is a nonparametric kernel method that considers gene-
gene interaction,which is characterizedby estimating the conditional
joint density of gene pairs (26). If (xi, xj) denotes one gene pair, the
response variable is y = {0,1}; patients with short survival time were
labeled 1, and those with long survival time were labeled 0. For
example, in the case of 1-year classification, samples with survival
time less thanorequal to1yearwere labeled1, and thosewith survival
time greater than 1 yearwere labeled 0. fij(xi,xj) and gij(xi,xj) represent
the class conditional densities for class 1 and class 0, respectively,
where fij(xi,xj)=P((xi,xj) |y=1)andgij(xi,xj)=P((xi,xj) |y=0).The log

ratio of the two-dimensional class conditional density ln
f ij(xi ,xj)
gij(xi ,xj)

was

used as the classification predictor variable ln
f ij(xi ,xj)
gij(xi ,xj)

> 0 indicates

that the gene pair is more closely related in class 1, whereas ln
f ij(xi ,xj)
gij(xi ,xj)

< 0 indicates that there is strongerdependencybetweengenes in class
0. Based on the L1-penalized logistic regressionmodel, the prediction
accuracy is improved in the multivariate classifier, and the logistic
model can be

logit Pð Þ = b0 +o
p

i=1
o
p

j=i+1
bijln

fij xi, xj
� �

gij xi, xj
� � ,o

p

i=1
o
p

j=i+1
bij
�� �� < c, c > 0:

To explore the differential networks of the discrete-variable
CNV and mutation data, we applied the latent Gaussian copula
differential graphical (LGCDG) model, which defines the
differential network as the difference between the precision
matrices of the short-term (labeled 1) and long-term (labeled 0)
survival groups (27). We transferred the CNV data into binary
variables; specifically, the non-zero elements were encoded as 1,
indicating that the copy number is out of the normal range.

LGCDGassumes that the 0/1 binary dataD= (D1,D2,… ,Dp)
T∈

{0,1}p satisfies the latent Gaussian copula model (LGCM), that is,
the binary data are generated by discretizing a latent continuous
variable at some unknown cutoff. In this assumption, the
continuous variable follows a non-paranormal distribution,
which is X ~ NPN(0,S,f), and the binary variable can be Dj = I
(Xj > Cj); then, D ~ LGCM(S,L), where Lj = fj(Cj).
Frontiers in Oncology | www.frontiersin.org 4
We assume D1 ~ LGCM(S1,L1) and D0 ~ LGCM(S0,L0) are
the binary data from the case and control group, respectively.
The differential network is defined as the difference between the
two precision matrices, denoted by D = (S1)-1 – (S0)-1. The
estimator of D can be obtained by solving the following
optimization problem:

argmin Dj j1,  subject to  b̂ 1 ⊗ b̂ 0
� �

Vec Dð Þ − Vec b̂ 1 − b̂ 0
� ����

���
∞
≤ ln,

where b̂1 and b̂ 0 are the Kendall’s tau rank-based correlation
matrix estimators for S1 and S0.

The underlying differential network of binary data can be
inferred through the LGCDG method, which provides a deeper
understanding of the unknown mechanism than that among the
observed binary variables.

GO Function Enrichment
Gene ontology (GO) enrichment analysis was performed to
better understand the biological functions of the differential
genes selected by DC-SIS method, and the “clusterProfiler”
package (v4.2.1) and “org.hs.eg.db” package (v3.14.0) in R were
used (28). With reference to the whole human genome,
significant functional categories and the biological functions of
the differential genes were identified.

b̂0b̂1
RESULTS

DC-SIS Variable Selection
The coefficients of the distance correlations between genes and
survival time were calculated; a total of 140 common genes for
three omics were screened (listed in Table S1). The differential
genes were considered as the genes highly expressed and mutated
in breast cancer and were used in the following study.

Classification and Differential
Network in TCGA
We compared the JDINAC model with classical binary classifiers
logistic regression and random forest using 5-fold cross-validation;
A B C

FIGURE 3 | Time-dependent receiver operating characteristic (ROC) curves at 1, 3, 5, and 10 years of mRNA expression data in TCGA. (A) The ROC curves for
JDINAC classifier. (B) The ROC curves for logistic regression classifier. (C) The ROC curves for random forest classifier.
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the ROC curves and 5-year Kaplan-Meier curves of mRNA gene
expression data are shown in Figures 3, 4. The other Kaplan-Meier
curves in TCGA dataset were shown in Figure S1. The classification
performance of the three classifiers was measured in terms of the
AUC, specificity, sensitivity, and accuracy (Table S2). The results
show that our model has better classification performance than
logistic regression model, and it can achieve comparable
performance to the random forest method. In addition, the AUCs
of JDINAC are all above 0.7 and even reached 0.989 in the 3-year
classification category, which is sufficient to prove the efficient
classification performance of JDINAC. The Kaplan-Meier curves
also show that our method has better classification ability than the
other two models.

The interaction networks of genes were performed by
combining JDINAC and LGCDG, in which the three omics
data were integrated. The differential network is composed of the
common edges screened out from omics data. Genes are
represented by nodes, the interactions between genes are
represented by edges between nodes, and genes with at least
three edges are regarded as hub genes. The hub genes were
identified under four taxonomic conditions, of which C11orf1,
OLA1, RPL31, SPDL1, and IL33 were identified in at least two
interaction networks, and all of these genes were found in 5- or
10-year interaction networks (Figure 5).

Classification and Differential Network
in METABRIC
We used the selected 140 differential genes in TCGA to evaluate
the performance in METABRIC. Mutation data were not
included in the model due to insufficient sample size. The
JDINAC classification performance of the mRNA expression
data was compared with the logistic regression and random
forest methods using 5-fold cross-validation, and the ROC and
Kaplan-Meier curves are shown in Figures 6, 7. The other
Kaplan-Meier curves in METABRIC dataset were shown in
Figure S2. The AUCs, specificities, sensitivities, and accuracies
of the three classifiers are listed in Table S3. The classification
performance of JDINAC is as good as that of random forest
Frontiers in Oncology | www.frontiersin.org 5
method, and is better than that of logistic regression. The AUCs
of JDINAC were all above 0.8, which indicates that the JDINAC
method showed excellent classification performance.

The gene-interaction networks for four classification categories
were determined by combining JDINAC and LGCDG methods,
and the identified hub genes are marked by orange circles
(Figure 8). The results show that ZNF273, ZBTB37, TRIM52,
TSGA10, ZNF727, TRAF2, TSPAN17, USP28, and ZNF519 were
identified in at least two interaction networks, in which ZNF273,
ZBTB37, and ZNF727 are related to 5-year or 10-year survival in
breast cancer. Additionally, it is interesting that RPL31, TMEM163,
and ZNF273 were selected as hub genes in both the TCGA and
METABRIC databases, this is a finding that cannot be ignored.

GO Function Enrichment
We performed GO enrichment analysis to assess which functional
categories of genes were most connected to the prognosis of breast
cancer. Enrichment analysis revealed that these differential genes
were significantly enriched in 34 GO terms, mainly associated with
regulation of cell-cell adhesion, positive regulationof cell activation,
and positive regulation of leukocyte activation (Figure 9).
Combining these results with TCGA and METABRIC data, a
total of 15 genes related to the prognosis of breast cancer were
screened out. The GO terms enriched by the 15 genes show that the
metastasis andprognosis of breast cancer are closely related to zinc-
ion binding (Table S4), which means that genes related to zinc-ion
bindinghave significant referencevalue in the studyof breast cancer
prognosis. Among them, ZBTB37, ZNF273, ZNF519, ZNF727 and
IL33 are all involved in thebiological process of transcriptionDNA-
templated, which can be used in targeted gene therapy.
DISCUSSION

The incidence of breast cancer ranks the highest among malignant
tumors in females (1). With the improvement of medical
technology, the mortality rate for breast cancer has decreased
significantly. However, drug resistance, recurrence, and
A B C

FIGURE 4 | Kaplan-Meier curves for overall survival at 5-year classifiers of mRNA expression data in TCGA. (A) Kaplan-Meier curves for JDINAC classifier, (B)
Kaplan-Meier curves for logistic regression classifier, and (C) Kaplan-Meier curves for random forest classifier.
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A B

DC

FIGURE 5 | The gene–gene interaction network in TCGA. The selected interaction networks for (A) 1-year, (B) 3-year, (C) 5-year, and (D) 10-year categories. The
orange circular nodes represent hub genes.
A B C

FIGURE 6 | Time-dependent receiver operating characteristic (ROC) curves for 1-, 3-, 5-, and 10-year mRNA expression data in METABRIC. (A) The ROC curves
for JDINAC classifier. (B) The ROC curves for logistic regression classifier. (C) The ROC curves for random forest classifier.
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metastasis remain poorly addressed, resulting in low long-term
survival (29). To improve the efficacy of treatment for breast cancer
patients, in-depth research on potential prognostic molecular
markers related to long-term survival is of great significance. In
this study, we utilized multi-omics data from TCGA and
METABRIC to construct gene-gene interaction networks and
identify differential genes, which can provide an important basis
for the clinical diagnosis of and medical research on breast cancer.
Frontiers in Oncology | www.frontiersin.org 7
In order to avoid information redundancy, the pre-screening
of differential genes is essential. We usually screen differential
genes by calculating the correlation of variables according to a
certain principle, such as the p-value, Pearson’s correlation
coefficient, and Kendall’s tau correlation coefficient. However,
the omics data include continuous and discrete data, and the
traditional screening criteria often assume that the variables obey
certain distributions and tend to ignore the sample information.
A B C

FIGURE 7 | Kaplan-Meier curves for overall survival at 5-year classifiers of mRNA expression data in METABRIC. (A) Kaplan-Meier curves for JDINAC classifier,
(B) Kaplan-Meier curves for logistic regression classifier, and (C) Kaplan-Meier curves for random forest classifier.
A B

DC

FIGURE 8 | The gene-gene interaction network in METABRIC. The selected interaction networks for (A) 1-year, (B) 3-year, (C) 5-year, and (D) 10-year categories.
The orange circular nodes represent hub genes.
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Compared with traditional statistical methods, DC-SIS can deal
with multiple response variables, regardless of whether the
response variables are continuous, discrete, or classified. It
ensures that all important variables can be selected in a
sufficient sample size. In addition, it does not make any model
assumptions about responses and predictors, thus making model
misrepresentation unlikely.

In recent years, many survival prediction models have been
developed to identify prognostic biomarkers. Researchers usually
use Kaplan–Meier and time-dependent ROC curves to measure
predictive performance (30, 31). However, these studies are only
based on the probabilities calculated using a single prediction
model, which lacks discernibility in long-term survival. Zhou
et al. used high-dimensional embedding and residual neural
network method to extract hub genes by analyzing multi-omics
data of breast cancer, but only analyzed the hub genes of each
omics, lacking comprehensive consideration of multiple omics
(32). In this study, we divided patients according to survival time,
and constructed gene-interaction networks. Then, we focused on
the differential genes associated with 5-year and 10-year survival,
which makes more sense for the long-term survival of breast
cancer patients.

Public sequencing platforms such as TCGA and GEO provide
abundant omics data for biological researchers and facilitate
molecular mechanism and clinical research. However, these
datasets are highly heterogeneous, which poses significant
challenges for existing approaches of data integration. There are
many studies using multiple omics data and data-integration
methods to analyze the survival of breast cancer patients.
However, studies that combine gene interactions with multi
omics are rare. Most of the studies on gene interaction focus on
single omics, while the studies on multiple omics data often
consider the impact of a single gene and ignore the gene
interaction (33–36). We overcame the limitations of omics-data
heterogeneity and applied interaction-network methods that are
more suitable for multiple data types to identify hub genes.

In this study, we identified genes associated with breast cancer
prognosis. Interestingly, most of the screened genes are involved in
Frontiers in Oncology | www.frontiersin.org 8
protein binding and zinc-ion binding. The results indicate that the
tumorigenesis and development of breast cancer are closely related
to zinc-ion binding, which is consistent with the findings in
previous studies (37–39). Many studies have found that zinc is
significantly correlated with the carcinogenesis of various tissues
and cells in the body, and a change in the zinc content in the
human body is closely related to the occurrence and development
of tumors (40–42). In addition, zinc deficiency can cause immune
dysfunction, which can enhance the inflammatory effects of
interleukin, inhibit the effects of interleukin on lymphocytes,
and promote apoptosis, angiogenesis, and metastasis. Zinc is
often involved in gene expression, the maintenance of protein
and nucleic acid structure, intracellular molecular transport, and
immune functions performed by zinc-finger proteins (43–45).
Studies have shown that zinc lipoprotein is involved in cancer-
related biological processes, can inhibit the proliferation and
invasion of cancer cells, and has a protective effect on the
occurrence of prostate cancer (46–48).

There are endless studies about breast cancer prognosis, and our
method has several advantages compared with other methods.
Firstly, we used multiple omics data for gene expression, copy
number variations, and somatic mutations, making full use of
multiple levels of biological information to make the study more
complete. Secondly, the interaction between genes was taken into
account. The correlation between genes was incorporated into the
predictive variables to preliminarily explore the biological
mechanisms of complex diseases. Thirdly, we classified different
survival periods, mainly focusing on the genes related to long-term
survival. Genes associated with 5-year and 10-year survival were
identified, and their biological functions were analyzed. Finally, we
solved the problem of data heterogeneity. Appropriate differential
network approaches were used to estimate gene differential
networks and identify hub genes.

The results for the selected genes can provide potential targets
for the clinical diagnosis of breast cancer. Although we identified
potential candidate genes for breast cancer prognosis using
bioinformatics approaches, some limitations of this study need
to be noted. First, our sample lacked clinical follow-up
FIGURE 9 | GO functional enrichment of the differential genes.
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information, and the database analysis based on publicly available
data is not convincing enough; it needs to be verified by further
clinical trials. We also lack the comprehensive consideration of
clinical characteristics including age, response to different
treatments, and recurrence rate in patients with different
molecular subtypes, especially the hormone receptor-positive
luminal vs. basal/triple-negative breast cancer (49–51). Second,
the interaction between genes is a complex biological process; we
only integratedexistingdifferential-network-estimationmethods to
discover differential genes, which lacks innovation in methodology
and comparability with other network-based approaches. Finally,
the gene pre-screening process may omit some important
characteristics. In the next step, we plan to focus on exploring the
relationship between zinc-ion-related genes and breast cancer, and
support our research through operational experiments.
CONCLUSIONS

In conclusion, we constructed a breast cancer gene-interaction
network and identified genes associated with long-term breast
cancer survival. The results show that there is a strong correlation
between the prognosis of breast cancer and zinc-ion binding. The
screened genes can be used as new prognostic markers of breast
cancer, providing a new development direction for clinical research
and laying a foundation for subsequent research.
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