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Purpose: The study aimed to construct and evaluate a CT-Based radiomics model for
noninvasive detecting perineural invasion (PNI) of perihilar cholangiocarcinoma (pCCA)
preoperatively.

Materials and Methods: From February 2012 to October 2021, a total of 161 patients
with pCCA who underwent resection were retrospectively enrolled in this study. Patients
were allocated into the training cohort and the validation cohort according to the
diagnostic time. Venous phase images of contrast-enhanced CT were used for
radiomics analysis. The intraclass correlation efficient (ICC), the correlation analysis, and
the least absolute shrinkage and selection operator (LASSO) regression were applied to
select radiomics features and built radiomics signature. Logistic regression analyses were
performed to establish a clinical model, a radiomics model, and a combined model. The
performance of the predictive models was measured by area under the receiver operating
characteristic curve (AUC), and pairwise ROC comparisons between models were tested
using the Delong method. Finally, the model with the best performance was presented as
a nomogram, and its calibration and clinical usefulness were assessed.

Results: Finally, 15 radiomics features were selected to build a radiomics signature, and
three models were developed through logistic regression. In the training cohort, the
combined model showed a higher predictive capability (AUC = 0.950) than the radiomics
model and the clinical model (AUC: radiomics = 0.914, clinical = 0.756). However, in the
validation cohort, the AUC of the radiomics model (AUC = 0.885) was significantly higher
than the other two models (AUC: combined = 0.791, clinical = 0.567). After
comprehensive consideration, the radiomics model was chosen to develop the
nomogram. The calibration curve and decision curve analysis (DCA) suggested that the
nomogram had a good consistency and clinical utility.

Conclusion: We developed a CT-based radiomics model with good performance to
noninvasively predict PNI of pCCA preoperatively.
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INTRODUCTION

Cholangiocarcinoma (CCA) is a highly lethal malignancy
originating from the biliary epithelium, accounting for about
3% of all gastrointestinal system malignancies (1, 2). According
to the anatomical location, CCA is divided into three subtypes,
and perihilar cholangiocarcinoma (pCCA) represents the most
common type of CCA (3). PCCA carries a poor prognosis with a
median overall survival (OS) of 5-10 months (4). Surgery
resection with an R0 margin can significantly prolong OS and
provide a chance to cure pCCA. However, only 13% to 32% of
pCCA patients undergo surgical resection and the recurrence
rate within one year was greater than 50% (4, 5).

PNI is considered one of the histological features of biliary
tract tumors, and it has a high prevalence in biliary tract tumors
ranging from 56% to 88% (6). Previous studies reported that PNI
was an important risk factor associated with poor prognosis and
low overall survival time of malignant tumors (7–9). In pCCA,
the 5-year overall survival of patients without PNI is 63.7%,
whereas that of patients with PNI is 34.9% (10). In addition, PNI
was regarded as an independent risk factor for R0 resection and
presented a high recurrence rate (11, 12). At present, several
studies have made a progress in the molecular mechanism of
PNI, which may block the occurrence of PNI and lead to specific
tumor treatments (6, 13, 14). Therefore, the diagnosis of PNI is
essential for determining the treatment approach and predicting
the prognosis of patients with pCCA.

Multidetector computed tomography (MDCT) and magnetic
resonance imaging (MRI) are the most commonly used imaging
modalities for the diagnosis and evaluation of pCCA (15). However,
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they are of limited value for the detection of PNI. Currently, PNI
can only be confirmed by pathological examination of surgical
specimens, and it is invasive and can only be performed after
resection. Developing an appropriate and convenient method for
the noninvasive prediction of PNI is urgently required.

Radiomics is a new rapidly developing technology that can
extract numerous quantitative features from medical images, and
these imaging features may be informative for disease diagnosis,
prognosis, and treatment response (16–18). Some studies have
indicated the potential value of radiomics for the preoperative
prediction of PNI in specific tumors (19–25). Nevertheless, we
have not yet found any study that focuses on CT-based radiomics
analysis for the noninvasive prediction of PNI of pCCA. Therefore,
the goal of our study was to construct and evaluate a CT-Based
radiomics model for noninvasive detecting PNI of pCCA.
MATERIALS AND METHODS

Patient Characteristics
This retrospective, single-center study was approved by the
Ethical Committee of the First Affiliated Hospital of
Zhengzhou University (2021-KY-0778-001), and the
requirement for informed consent was waived.

From February 2012 to October 2021, we reviewed
clinicopathological characteristics and CT images of 256
consecutive patients with pCCA. Finally, a total of 161 patients
were included in the present study based on the inclusion criteria
and exclusion criteria. The flowchart of patient selection was
presented in Figure 1. PNI is defined as the appearance of tumor
FIGURE 1 | The flowchart of patient selection in this study.
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cells along the nerves and/or within the epineural, perineural,
and endoneurial places of the neuronal sheath, with cancer cells
surrounding at least 33% of the nerves (26). The inclusion
criteria were (1) pathologically diagnosed with pCCA and PNI
status evaluation available, (2) curative or palliative resection,
and (3) contrast-enhanced CT performed within 2 weeks prior to
resection. The exclusion criteria were (1) absence of evaluation
for PNI in the pathological report, (2) history of any anti-tumor
therapy or biliary drainage before resection, and (3) the thickness
of CT images >3mm. According to the order of diagnosis time,
we divided the patients into the training cohort (n = 106) and the
validation cohort (n = 55). The training cohort was used to select
robust radiomics features and construct models, and the internal
validation was performed in the validation cohort.

Baseline clinical features were obtained by reviewing
the electronic medical charts, including age, sex, symptom,
total bilirubin (TBIL), direct bilirubin (DBIL), aspartate
aminotransferase (AST), alanine aminotransferase (ALT),
glutamyl transpeptidase (GGT), albumin (ALB), prothrombin
time (PT), Child-Pugh grade, CA19-9, CEA, CA125, Bismuth
classification, clinical T stage (cT), and clinical N stage (cN).

CT Image Acquisition and Analysis
Contrast-enhanced CT examination of the abdomen was
performed in all patients by using a 256-slice CT scanner
(Revolution CT, GE Healthcare, United States) or a 320-
MDCT scanner (Aquilion ONE, Otawara, Japan). The CT scan
sequence included plain scan sequence, arterial phase sequence
(AP), and portal venous phase sequence (VP). The intravenous
contrast agent (Ultravist 370, Bayer Schering Pharma, Germany)
was infused through the antecubital vein at a rate of 3.0–4.0 mL/s
(1.5 ml/kg) using a pump injector. AP and VP contrast-enhanced
CT images were achieved after a post-injection delay of 20-30 s
and 55-70 s, respectively. The parameters of image acquisition
are as follows (1) Revolution CT: tube voltage: 120 kv; tube
current range: 50-500 mA, pitch: 0.992:1, rotation time: 0.5 s,
detector width: 80mm; reconstruction algorithm: STAND; scan
slice thickness: 5 mm; reconstructed section thickness: 0.625
mm. (2) Aquilion ONE: tube voltage: 120 kv; tube current: 350
mA, rotation time: 0.5 s, scan slice thickness: 5 mm,
reconstructed section thickness: 2 mm.

Two radiologists with more than 5 years of experience in
abdominal imaging who were blinded to pathologic details
reviewed CT images and evaluated the following features:
Bismuth classification, cT stage, and cN stage. Any
discrepancies between the readers were resolved by consultation.

ROI Segmentation and Feature Extraction
The 3D region of interest (ROI) segmentation was performed
using the open-source image analysis software 3D Slicer 4.13.0
(https://www.slicer.org/). Venous phase (VP) images were
previously reported as the best phase for pCCA visualization
and therefore were used for the segmentation of ROI (27, 28). To
evaluate interobserver reliability by calculating the intraclass
correlation coefficient (ICC), we randomly chose 50 patients,
and segmentation of ROI was performed by one abdominal
radiologist (reader 1) with 7 years of experience and another
Frontiers in Oncology | www.frontiersin.org 3
abdominal radiologist (reader 2) with 10 years of experience,
who were all blinded to pathologic data. The remaining ROI
segmentation was finished by reader 1 and was examined by
reader 2. If the ROI was questioned, it would be re-segmented
after the two agree.

Before radiomics features extraction, the images were
preprocessed to reduce the effect of different scanning schemes
or devices on the quantitative radiomics features. First, all images
were resampled into 3 × 3 × 3 mm3 voxels. In addition, the gray
values were discretized using 25 bin width. The radiomic features
were then extracted from ROI drawn by reader 1 using the 3D
slicer software with an extended plug-in called “PyRadiomics
package” (https://www.radiomics.io/pyradiomics.html) (18, 29).

Feature Selection
To identify robust and reliable radiomics features, feature
selection was performed in the following three steps. First,
features with ICC greater than 0.75 were included in further
feature selection. Furthermore, the correlation analysis was
performed to exclude redundant features (30); for each highly
correlated feature pair (Pearson correlation coefficient > 0.9), the
feature with a higher average absolute correlation was removed.
Finally, to prevent overfitting or selection bias, the least absolute
shrinkage and selection operator (LASSO) regression with
tenfold cross-validation was applied to select the most
significant features for PNI. After feature selection, the
remaining radiomics features were standardized with the z-
score for further analysis (31).

Models Construction and Evaluation
The radiomics signature was built based on the selected
features, and the corresponding radiomics score was
calculated for each patient. Based on the selected features, the
radiomics model was established by a multivariate logistic
regression algorithm.

Laboratory variables were categorized based on normal
reference ranges, including those for TBIL (≤25 or >25 umol/L),
DBIL (≤10 or >10 umol/L), AST (≤40 or >40 U/mL), ALT (≤50
or >50 U/mL), ALB (≤36 or >36 g/L), CA19-9 (≤40 or >40 U/mL),
CEA (≤5 or >5 ng/ml), and CA125 (≤35 or >35 U/mL). The
baseline clinical features were subsequently compared
by univariate logistic analysis. Statistically significant variables
(p < 0.05) were included in the multivariable logistic regression
analysis, and the clinical model was established. In addition, a
clinical-radiomics model was developed integrating the radiomics
signature and the independent clinical risk factors.

The performance of different models was measured by AUC,
and pairwise ROC comparisons between models were tested
using the Delong method. Finally, the model with the best
performance was visualized as a nomogram, and its calibration
and clinical usefulness were assessed.

Statistical Analysis
Continuous variables (age) were expressed as mean ± standard
deviation (SD). Continuous variables were compared by using the
Student t-test or Mann-Whitney U test. Categorical variables were
compared by using the c2 test or Fisher exact test. Feature
June 2022 | Volume 12 | Article 900478
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selection, model construction, and performance evaluation were
performed on the R software package (version 4.0.3). A two-tailed
p value < 0.05 was considered statistically significant.
RESULTS

Patient Characteristics
A total of 161 patients were enrolled in this study based on the
inclusion criteria and exclusion criteria. According to the order
of diagnosis time, the patients were divided into the training
cohort (n = 106) and the validation cohort (n = 55). The
Frontiers in Oncology | www.frontiersin.org 4
histologic type of all patients is adenocarcinoma, and the
baseline clinical characteristics of two cohorts are summarized
in Table 1. An example of cases with or without PNI is listed
in Figure 2,

Feature Extraction and Selection
The plug-in called the “PyRadiomics package” of 3D slicer
software was applied to extract radiomics features from each
ROI. The extracted features were reproducible and matched the
benchmarks of the image biomarker standardization initiative
(IBSI) (32). For each patient, 851 radiomics features were
extracted, including 14 shape features, 18 first-order features,
75 texture features, and 744 wavelet features. The details of
TABLE 1 | Characteristics of patients in the training and validation cohort.

Characteristic Training cohort (n = 106) Validation cohort (n = 55)

PNI negative PNI positive P Value PNI negative PNI positive P Value

Age (years) 60.4±10.7 60.6±9.9 0.920 65.6±6.4 62.4±8.4 0.152
Sex 0.078 0.022
Female 16 31 9 11
Male 11 48 5 30

symptom 0.473 0.927
Jaundice 14 44 8 24
Abdominal malaise 5 20 3 7
Both 8 15 3 10

TBIL (umol/L) > 0.999 0.012
≤25 4 11 4 1
>25 23 68 10 40

DBIL (umol/L) 0.417 0.047
≤10 3 5 3 1
>10 24 74 11 40

AST (U/L) 0.755 0.181
≤40 3 12 4 4
>40 24 67 10 37

ALT (U/L) 0.508 0.638
≤40 2 11 2 4
>40 25 68 12 37

ALB (g/L) 0.349 0.007
≤40 25 65 7 36
>40 2 14 7 5

Child-Pugh grade > 0.999 0.703
A 4 11 3 7
B 23 68 11 34

CA19-9 (U/mL) 0.392 0.259
≤40 7 13 5 7
>40 20 66 9 34

CEA (ng/mL) 0.805 > 0.999
≤5 19 58 11 32
>5 8 21 3 9

CA125 (U/mL) 0.553 > 0.999
≤35 24 64 14 39
>35 3 15 0 2

Bismuth classification < 0.001 0.529
I/II 22 24 7 26
III/IV 5 55 7 15

cT stage 0.446 > 0.999
1/2 22 57 13 36
3/4 5 22 1 5

cN stage 0.801 > 0.999
0 19 59 9 27
1/2 8 20 5 14

Radiomics score 0.362±0.320 0.876±0.175 < 0.001 0.301±0.352 0.816±0.295 < 0.001
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extracted radiomics features were presented in Supplemental
Appendix 1; Table S1.

Through ICC analysis and the correlation analysis, 487
radiomics features were excluded, and the remaining 364 stable
features were considered for subsequent analysis. Finally, based on
LASSO regression, 15 PNI status related features with nonzero
coefficients were selected, and the radiomics signature was
constructed. The feature selection process of LASSO is illustrated
Frontiers in Oncology | www.frontiersin.org 5
in Figure 3. The corresponding radiomics score was calculated for
each patient and was shown in Figure 4A. The formula of the
radiomics score and the details of the selected radiomics features
were presented in Supplemental Appendix 2; Table S2.

Models Construction and Evaluation
Among all baseline clinical features, only Bismuth classification
was identified as a significant predictor for PNI by univariate
FIGURE 2 | Representative CT images (A, D; arrow) and the corresponding cropped images (B, E), and the corresponding histology of PNI negative (C) and PNI
positive tumors (F). H&E, hematoxylin and eosin, ×150.
A B

FIGURE 3 | Radiomic feature selection by using the least absolute shrinkage and selection operator (LASSO) logistic regression. (A) The selection of tuning
parameter (l) in the LASSO model used 10-fold cross-validation via minimum criteria. The AUC curve was plotted versus log (l). (B) LASSO coefficient profiles of the
radiomics features. A vertical line was plotted at the optimal l value, which resulted in 15 features with nonzero coefficients.
June 2022 | Volume 12 | Article 900478
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analysis. So the clinical model was built based on the Bismuth
classification. Detailed univariate analysis results were shown in
Table 2. In addition, by using a multivariate logistic regression
algorithm, the radiomics model was established based on the
radiomics signature and the combined model was developed by
integrating the radiomics signature and Bismuth classification.

In the training cohort, the AUC values of the clinical model,
the radiomics model, and the combined model were 0.756 (95%
CI 0.665-0.846), 0.914 (95% CI 0.853-0.976), and 0.950 (95% CI
0.912-0.988), respectively. In the validation cohort, the AUC
values of three corresponding models were 0.567 (95% CI 0.412-
0.722), 0.885 (95% CI 0.797-0.974), and 0.791 (95% CI 0.642-
0.940), respectively. Though the combined model showed a
higher predictive capability in the training cohort, the AUC
values of the combined model and the clinical model were
significantly less than the radiomics model. Therefore, the
radiomics model was chosen as the final model and presented
as a nomogram. The specific performances of models are shown
in Table 3. ROC curves of the three models are illustrated in
Figure 4, and the nomogram is presented in Figure 5A.

The calibration curve of the nomogram is presented in
Figure 5B and indicated good agreement between predictive
Frontiers in Oncology | www.frontiersin.org 6
probability and actual PNI status. The decision curve analysis
(DCA) for the radiomics model, the clinical model, and the
combined model are presented in Figure 6. The DCA
demonstrated good performance of the radiomics model in
terms of clinical decision-making. In addition, the radiomics
model and the combined model had a similar clinical application
value, and they can provide a better net benefit than the
clinical model.
DISCUSSION

The present study was conducted to probe the value of CT
radiomics in determining PNI of pCCA. Our results revealed
that the CT-radiomics nomogram based on the radiomics
signature had a good performance in detecting PNI. The
calibration curve and the DCA demonstrated that the
nomogram was well calibrated and had significantly more
clinical net benefits. This is the first CT-based radiomics model
to noninvasively predict PNI of pCCA.

Several conventional imaging methods have been reported to
diagnose PNI. Asayama et al. found that enhancement of greater
A CB

FIGURE 4 | Radiomics score, ROC curve analysis of all models in the training dataset and the testing dataset. (A) Waterfall plot for distribution of radiomics scores
for each patient. (B) ROC curves of all models for predicting PNI in the training dataset. (C) ROC curves of all models for predicting PNI in the testing dataset.
TABLE 2 | Univariate logistic regression in the training cohort.

Variable Odd Ratio P value

Age 1.002 (0.958, 1.046) 0.916
Sex 0.444 (0.178, 1.072) 0.074
Symptom 1.273 (0.403, 4.019) 0.681
TBIL 0.930 (0.286, 3.612) 0.909
DBIL 0.541 (0.123, 2.790) 0.423
AST 1.433 (0.412, 6.679) 0.601
ALT 2.022 (0.497, 13.657) 0.381
ALB 0.371 (0.056, 1.458) 0.211
Child Pugh grade 1.075 (0.277, 3.498) 0.909
CA19-9 0.563 (0.201, 1.671) 0.281
CEA 1.163 (0.426, 2.993) 0.759
CA125 0.533 (0.116, 1.797) 0.353
Bismuth classification 10.083 (3.651, 33.024) < 0.001
cT 1.698 (0.606, 5.562) 0.340
cN 0.805 (0.311, 2.207) 0.661
June 2022 | Volume 12 | Article
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than two-thirds of the primary lesion on delayed phase images
was correlated with PNI in 32 patients with intrahepatic
cholangiocarcinoma (ICC) (33). But this conclusion was not
confirmed in another study, in which soft-tissue infiltration
along the celiac plexus on MDCT was regarded as an indicator
of PNI in 20 ICC patients (34). In addition, several studies have
shown the value of 3D volume-rendered MDCT imaging in
diagnosing PNI of pancreatic adenocarcinoma (35, 36). These
studies all have the important limitation of a small sample size.
On the other hand, it is difficult to confirm PNI through visual
evaluation and simple quantitative methods (22).

As an emerging field, radiomics has achieved satisfactory
abilities in the clinical diagnosis and treatment of malignant
tumors. Previous studies have reported radiomics models with
good performance in predicting the lymph node metastasis,
preoperative staging, and postoperative recurrence of pCCA
(27, 37, 38). In addition, many studies have indicated the
diagnostic value of radiomics in detecting PNI of specific
tumors including colorectal cancer, head and neck squamous
cell carcinoma, and ICC (21, 24, 25, 39). Huang et al. reported an
MRI-based radiomics model with the AUC value of 1 to predict
PNI in patients with extrahepatic cholangiocarcinoma (22). But
their study included two subtypes of CCA, and the sample size
was only 101 patients. In the present study, we enrolled 161
patients with pCCA, and establish a CT-based radiomics model.
The radiomics model achieved satisfactory performance in both
Frontiers in Oncology | www.frontiersin.org 7
two cohorts, with the AUCs of 0.914 and 0.885, respectively. Of
note, the selected radiomics features in our study were all
wavelet-based features with image conversion using a wavelet
filter, which demonstrated wavelet-based features were more
sensitive to PNI of the patients. Previous studies reported that
wavelet-based features furnished more directional information
than conventional features, which played an important role in
building radiomics signatures (40). Furthermore, we developed a
CT-radiomics nomogram for noninvasive prediction of PNI in
pCCA. The CT-radiomics nomogram provides a simple and
convenient tool for noninvasive prediction of PNI in pCCA,
which may be helpful to improve patient prognostic stratification
and facilitate optimized and individualized treatment strategies.

Among all baseline clinical features, we did not find the
independent predictor for PNI of pCCA. That may be because
we didn’t include enough clinical features or data bias. A study by
Li et al. demonstrated that the depth of tumor invasion was
correlated significantly with PNI of pCCA (41). Besides, some
studies reported several clinicopathological factors related to PNI
of other specific tumors including tumor markers, tumor stage,
and tumor differentiation grade (19–21, 42). Of note, our study
aimed to develop a noninvasive prediction model before surgery
resection, hence pathological factors were not considered in our
study. Moreover, clinical factors are indispensable for the
prediction of tumors, and more efforts should be made to
explore the clinical factors associated with PNI of pCCA.
TABLE 3 | Performances of models for PNI prediction.

Model Training cohort Validation cohort

Sensitivity (%) Specificity (%) Accuracy (%) AUC (95%CI) Sensitivity (%) Specificity (%) Accuracy (%) AUC (95%CI)

Clinical 0.696 0.815 0.726 0.756 (0.665-0.846) 0.634 0.500 0.600 0.567 (0.412-0.722)
Radiomics 0.886 0.815 0.868 0.914 (0.853-0.976) 0.829 0.643 0.782 0.885 (0.797-0.974)
Combined 0.835 0.926 0.858 0.950 (0.912-0.988) 0.780 0.857 0.800 0.791 (0.642-0.939)
Jun
e 2022 | Volume
A B

FIGURE 5 | Nomogram developed with the radiomics model and calibration curves of the nomogram. (A) The developed radiomics nomogram to predict PNI
in patients with pCCA. (B) Calibration curves of the nomogram. The x-axis and the y-axis show the nomogram predicted probabilities of PNI and the actual
probabilities, respectively. The diagonal gray line presents a perfect prediction, and the red solid line presents the predictive performance of the nomogram.
Better prediction is indicated by a closer fit of the red solid line to the diagonal gray line.
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Our study has several limitations. First, there may exist data
bias due to the retrospective design of this study. Second, this
study was conducted as a single-center study, and a future
multicenter study is necessary to validate and improve the
performance of our model. In addition, further study should
be performed to reveal the relationship between the selected
radiomics features and clinical features or genomic features, and
our radiomics model should be further refined by incorporating
other multi-omics features.

Conclusion
We constructed a radiomics model with good performance based
on selected radiomics features to noninvasively predict PNI of
pCCA. The prediction model has potential prognostic value to
stratify patients and may provide a reference for individualized
treatment of pCCA patients.
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