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Background: Liver hepatocellular carcinoma (LIHC), one of the most common primary
malignancies, exhibits high levels of molecular and clinical heterogeneity. Increasing
evidence has confirmed the important roles of some RNA helicase families in tumor
development, but the function of the DEAH-box RNA helicase family in LIHC therapeutic
strategies has not yet been clarified.

Methods: The LIHC dataset was downloaded from The Cancer Genome Atlas (TCGA).
Consensus clustering was applied to group the patients. Least absolute shrinkage and
selection operator Cox regression and univariate and multivariate Cox regression were
used to develop and validate a prognostic risk model. The Tumor Immune Estimation
Resource and Tumor Immune Single Cell Hub databases were used to explore the role of
DEAH-box RNA helicases in LIHC immunotherapy. In vitro experiments were performed
to investigate the role of DHX9 in LIHC radiosensitivity.

Results: Twelve survival-related DEAH-box RNA helicases were identified. High helicase
expression levels were associated with a poor prognosis and clinical features. A
prognostic model comprising six DEAH-box RNA helicases (DHX8, DHX9, DHX34,
DHX35, DHX38, and DHX57) was constructed. The risk score of this model was found
to be an independent prognostic indicator, and LIHC patients with different prognosis
were distinguished by the model in the training and test cohorts. DNA damage repair
pathways were also enriched in patients with high-risk scores. The six DEAH-box RNA
helicases in the risk model were substantially related to innate immune cell infiltration and
immune inhibitors. In vitro experiments showed that DHX9 knockdown improved
radiosensitivity by increasing DNA damage.
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Conclusion: The DEAH-box RNA helicase signature can be used as a reliable prognostic
biomarker for LIHC. In addition, DHX9 may be a definitive indicator and therapeutic target
in radiotherapy and immunotherapy for LIHC.
Keywords: liver hepatocellular carcinoma, DEAH-box RNA helicases, DHX9, radiosensitivity, DNA repair
1https://portal.gdc.cancer.gov/repository.
2https://www.cbioportal.org.
3https://www.proteinatlas.org.
4https://scatlaslc.ccr.cancer.gov/#/tumor-cells.
INTRODUCTION

With a global increase in incidence and mortality in 2018, liver
cancer was ranked as the fourth leading cause of cancer-related
deaths (1). Should the current trend continue, liver
hepatocellular carcinoma (LIHC), which has the highest
incidence among the liver cancer types, is projected to become
the third major cause of cancer-related death by 2030 (2). Over
the past decade, LIHC management has significantly improved.
Different types of treatment, such as resection, transplantation,
local ablation, transarterial chemoembolization, and systemic
therapies, are assigned according to the Barcelona Clinic Liver
Cancer staging system (3). Moreover, new immunotherapy
combination strategies, such as atezolizumab plus bevacizumab
(4, 5), have been confirmed to improve overall survival (OS) in
patients and have become a growing field in LIHC treatment. In
addition, for Child-Pugh class A patients, prospective
uncontrolled studies have shown that external beam radiation
therapy, primarily stereotactic body radiation therapy, can
achieve high rates of radiological responses with acceptable
safety in tumors confined to the liver (6). Despite the many
available therapeutic options, the survival rate associated with
the disease remains unsatisfactory. Identifying and applying
novel biomarkers can help define at-risk populations, patient
prognosis, and response to therapies (7). Therefore, it is
important to explore additional biomarkers to improve
therapeutic strategies.

The DEAH-box RNA helicase family belongs to the superfamily
2 (SF2) helicases. They are characterized by a conserved core
structure composed of two tandem RecA domains, which contain
typical sequence motifs involved in RNA binding, as well as ATP
binding and hydrolysis (8, 9). DEAH-box RNA helicases primarily
function in mRNA metabolism, such as in mRNA splicing, mRNA
nuclear export, translation, decay, transport, and storage (10). In
addition, some DEAH-box helicase members, such as DHX9 and
DHX33 (11), also participate in RNA sensing during innate
immune activation in the presence of exogenous insults.
Moreover, this family is involved in DNA repair upon damage
(12). During tumor development, some members of this family,
such as DHX9, DHX15, and DHX36, have been shown to be
associated with tumorigenesis.

This study aimed to identify prognostic genes and risk models
and to study their role in the clinicopathological characteristics,
cancer cell biology, and the tumor immune microenvironment
(TIM) in LIHC. To this end, we obtained a total of 15 DEAH-
box RNA helicases from published literature, including DHX15,
DHX33, DHX36, DHX9, DHX8, DHX16, DHX35, DHX38,
DHX34, DHX29, DHX57, DHX30, DHX37, DHX40, and DQX1
(10, 13) and obtained the gene expression data and corresponding
2

clinical data of patients with LIHC from The Cancer Genome Atlas
(TCGA) database to perform further analysis with the aim of
discovering improvements in radiotherapy and immunotherapy
for LIHC.
MATERIALS AND METHODS

Analysis of Differentially Expressed Genes
in Tumor and Normal Tissues
TCGA Database
The gene expression data of normal liver and LIHC tissues was
obtained from TCGA1. Differentially expressed prognosis-
related DEAH-box RNA helicases between the tumor and
normal tissue groups were analyzed using the R package
“limma”, and the results were visualized as a heatmap and
volcano plot (p < 0.05).

cBioPortal Database
The cBioPortal database2 was used to analyze the frequency of
gene alterations in prognostic DEAH-box RNA helicases
in LIHC.

Human Protein Atlas
Immunohistochemical images from different samples were
downloaded from the Human Protein Atlas (HPA) database34

and were used to demonstrate the translational level of DHX9 in
normal and tumor tissues of LIHC.

Single-Cell Atlas in Liver Cancer
(scAtlasLC)
The scAtlasLC dataset4 was used to show the expression of six
DEAH-box helicases in hepatocytes at the single-cell level.

Data Collection
Gene expression data and the corresponding clinical data of 375
patients with LIHC were obtained from TCGA. The clinical
information of the patients with LIHC included survival status,
sex, age, tumor stage, tumor grade, stage of tumor (T), nodes (N),
and metastases (M). Inclusion criteria were as follows: (1)
histologically confirmed LIHC and (2) complete gene
expression and clinical information. A total of 370 patients
were enrolled for further analysis, all of whom had complete
clinicopathological information (Table 1).
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Identification of LIHC Subtypes Defined
by Survival-Related DEAH-Box
RNA Helicases
First, univariate Cox regression analysis was performed to identify
prognosis-related DEAH-box RNA helicases (P < 0.05).
Consensus clustering was then applied to systematically assess
the roles and functions of DEAH-box RNA helicases. The R
package “ConsensusClusterPlus” was used to assign the patients
into two clusters. Kaplan–Meier (KM) curves were constructed
using the R packages “survival” and “survminer” to show the OS of
the two clusters. The difference in clinicopathological factors
between the two clusters was analyzed through the R package
“pheatmap” and shown as a heatmap.

Establishment and Validation of a
Prognostic Risk Model With DEAH-Box
RNA Helicases
We used the R package “glmnet” to perform least absolute
shrinkage and selection operator (LASSO) Cox regression.
Based on the minimum criteria, the optimal penalty parameter
lambda and corresponding coefficient criteria were determined.
A prognostic model was constructed, and its risk score was
calculated as follows: risk score = (gene A expression×bA) +
(gene B expression×bB)…+ (gene N expression×bN), where b is
the regression coefficient. A 1:1 ratio was employed to randomly
group the samples into training (n = 186) and test cohorts (n =
Frontiers in Oncology | www.frontiersin.org 3
184). Using the formula, we obtained the risk scores for all
patients in the two cohorts. The median value of the risk scores in
the training cohort was determined and was used to group the
patients into low- and high-risk subgroups. The R packages
“survival” and “survminer” were used to conduct KM survival
analysis to compare the OS between the two subgroups. Time-
dependent receiver operating characteristic (ROC) analyses were
performed, and the area under the curve was calculated using the
R package “timeROC” to assess the model. Univariate and
multivariate Cox regression analyses were performed using the
R package “survival” to determine the independent prognostic
value of the risk score. Lastly, gene set enrichment analysis
(GSEA) was used to identify the differential Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways of the
low- and high-risk groups. The enrichment levels and statistical
significance were determined using normalized enrichment
scores and nominal p-values, respectively.

DEAH-Box RNA Helicases in the Context
of a TIM
TIMER Database
In this study, the TIMER database5 was used to estimate the
correlation between six DEAH-box RNA helicases in the risk
model and the level of immune cell infiltration. We also explored
the relationship between these genes and immunomodulators
using the TIMER database.

Tumor Immune Single Cell Hub Database
We also used the Tumor Immune Single Cell Hub (TISCH)6 to
systematically investigate the TIM heterogeneity at the single-cell
transcription level.

Cell Culture and Lentiviral
Particle Transduction
The hepatocellular carcinoma cell lines Hep-3B, Huh7, and
HEK293T were obtained from the American Type Culture
Collection (ATCC, USA). Dulbecco’s modified Eagle’s medium
was used to culture the cells with 10% fetal bovine serum and 1%
penicillin/streptomycin at 37°C in a 5% CO2 incubator. A short
hairpin RNA (shRNA) targeting the DHX9 gene was designed, and
p S L e n t i - s h RNA -DHX9 # 4 0 ( t a r g e t s e q u e n c e 5 ’ -
ACGACAATGGAAGCGGATATA-3’), pSLenti-shRNA-
DHX9#41(target sequence 5’-GGGCTATATCCATCGAAATTT-
3’), and pSLenti-shRNA-NC plasmids were purchased from OBiO
Technology (Shanghai, China). Lentiviral supernatants were
produced by transfecting HEK293T cells with lentiviral vectors
(pM2.G and psPAX2) and the three plasmids using Lipofectamine
3000 transfection reagent (L3000-015; Invitrogen, USA). Hep-3B
and Huh7 cells were transduced with lentiviral supernatants in six-
well dishes for 24 h in the presence of polybrene and selected in the
presence of 1 mg/mL puromycin for 5 d. DHX9 expression levels
were examined via western blot analysis.

siRNA Transfection
Hep-3B cells was passage into six-well plates. When the cell
density reached 30%-50%, medium was replaced to serum-free
TABLE 1 | Clinical characteristics of patients with LIHC in the study.

Variable Number of patients Percentage (%)
Age (years)

≤65 232 62.7
>65 138 37.3
Gender
Female 121 32.7
Male 249 67.3
Grade
G1-2 232 62.7
G3-4 133 35.9
unknow 5 1.4
Stage
Stage I-II 256 69.2
Stage III-IV 90 24.3
unknow 24 6.5
T
T1-2 274 74.1
T3-4 93 25.1
unknow 3 0.8
N
N0 252 68.1
N1 4 1.1
unknow 114 30.8
M
M0 266 71.9
M1 4 1.1
unknow 100 27
Survival status
Alive 240 64.9
Death 130 35.1
Total 370 100
T, tumor; N, node; M, metastasis.
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opti-MEM medium, 750ml/well. 5uL of Lipofectamine 3000
(L3000-015; Invitrogen, USA) was added to 125uL opti-MEM
medium, mixed well, and placed at room temperature for 5min.
5ml siRNA (siCtrl, siDHX9-1, siDHX9-2) solution was added to
125uL opti-MEM medium and mixed well. siDHX9-1 (5′-
CCCUGUCACUUGUCAGACA -3′) and siDHX9-2 (5′-
GCAUGGACCUCAAGAAUGA -3′) were used in this study.
SiCtrl, siDHX9-1, siDHX9-2 were purchased from Hanbio
Biotechnology Co.,Ltd (Shanghai, China). After gently mixing
the liquids in the above two steps, we placed it at room
temperature for 15 minutes. 250 uL/well of the mixed solution
was added to the cells in the 6-well plate. After being placed in
the incubator for 6h-8h, the medium was replaced with a
complete medium.

Irradiation
The cell lines were X-ray irradiated at single 4 Gy and 8 Gy doses
in a Rad Source model 2000PRO irradiator with a 0.3 mm copper
filter and X-ray tube settings of 225 kV and 17.7 mA, dose rate of
1.78 Gy/min, and target distance of 50 cm (Rad Source
Technologies, Buford, GA, USA).

Total RNA Extraction and Quantitative
Real-Time PCR
Liver cancer cell lines Hep-3B and Huh7 RNA isolation was
performed using RNA extraction kit (19221ES50, Yeasen,
China). RNA sample concentration was detected by a
spectrophotometer (NanoDrop 3000, Thermo Fisher Scientific,
Waltham, MA, USA). Take two micrograms of RNA to
synthesize cDNA (5×RT Master Mix, Takara, Japan). RT-
qPCR was conducted using a SYBR Green qPCR kit (Bio-rad,
USA). We used glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) for normalization. The primer sequences were
as follows:

GAPDH : F AATCCCATCACCATCTTCCAG ;
R AAATGAGCCCCAGCCTTC

DHX9(exon 6 A): F GGAGGAGAATGAGATTGAGTGC; R
GCTTTCAGGGGAACAACATC

Protein Extraction and Western Blot
Total protein was extracted from the cells using RIPA lysis buffer
(ES0012; Yishan Biotech, Shanghai, China). Equal amounts of
protein were separated on 12.5% and 8% sodium dodecyl sulfate
polyacrylamide gels, which were then electrotransferred onto
polyvinylidene difluoride membranes. Next, blocking was
performed using 5% bovine serum albumin (BSA) for 1 h at
room temperature. The membranes were incubated with primary
antibodies against DHX9 (1:1000, 17721-1-AP; Proteintech,
Hubei, China), DHX8 (1:10000, ab181074, abcam, UK), DHX35
(1:1000, YN4410, Immunoway, USA), DHX38 (1:1000, YN1100,
Immunoway, USA), DHX57 (1:1000, #29895, Signalway
Antibody, USA), GAPDH (1:10000, 60004-1-Ig; Proteintech),
and g-H2AX (1:1000, #80312; Cell Signaling Technology,
Beverly, MA, USA) overnight at 4°C. After incubation with the
corresponding secondary antibody at room temperature for 1 h,
images were captured using the ChemiDoc™ Touching Image
System (Bio-Rad, Hercules, CA, USA).
Frontiers in Oncology | www.frontiersin.org 4
CCK-8 Assay
Hep-3B cells were seeded into a 96-well plate with 3,000 cells per
well. The 96-well plate was placed in a cell incubator. After the
cells adhered to the wall, the corresponding irradiation dose
(0Gy-10Gy) was given. After 5 days, the 96-well plate was taken
out, the medium in the wells was aspirated, and then 100uL of
the prepared CCK-8(CK04, DOJINDO, Japan) solution was
added to the relevant wells (CCK-8: medium = 1:9). After that,
the 96-well plate added with CCK-8 was placed in an incubator
for 2 h, and then the absorbance at a wavelength of 450 nm was
measured by an automatic microplate reader. Statistical data and
ce l l prol i fera t ion curves were per formed through
Graphpad software.

Colony Formation Assay
Hep-3b and Huh7 cells were seeded in a six-well plate at a
density of 1000 cells/well. After irradiation of 4Gy, the cells were
incubated at 37°C for 10 d, during which the medium was
replaced every 3 d. The cells were fixed using cold methanol
(1ml/well) and stained with crystal violet (1ml/well) for 20 min.
Colonies visible to the eyes (> 50 cells) were counted.

DNA Comet Assay
DNA damage was evaluated using a Single-cell Gel
Electrophoresis Assay (Comet Assay) kit (4250050K; Trevigen,
USA) according to the manufacturer’s instructions. For each
sample, 80 µL of low-melting agarose gel was mixed with 20 µL of
the cell suspension and spread onto comet slides, which were
then immersed in alkaline electrophoresis solution.
Electrophoresis was performed for 15–20 min after cell lysis
and washing. The slides were neutralized for 15 min and stained
with propidium iodide solution. Finally, the slides were observed
under a fluorescence microscope (Nikon, Tokyo, Japan), and the
DNA tail percentage was analyzed using CASP software.

Immunofluorescence
The cells were cultured in immunofluorescent cell culture dishes
prior to the experiments. After irradiation, the cells were fixed
with 4% paraformaldehyde, permeabilized with 0.3% Triton X-
100, and blocked with 5% BSA for 1 h. The cells were then
incubated with primary antibodies against DHX9 (1:20, 17721-1-
AP; Proteintech) and g-H2AX (1:100, #80312; Cell Signaling
Technology) at 4°C overnight. They were then incubated with
Alexa Fluor 647-labeled (1:200, #4410; Cell Signaling
Technology) and 594-labeled (1:200, #8889; Proteintech)
secondary antibodies for 1 h at room temperature. After the
cells were stained with 4’,6-diamidino-2-phenylindole solution,
images were captured using a laser scanning confocal microscope
(Olympus Optical, Tokyo, Japan).

Statistical Analysis
GraphPad Prism 5.0 and R statistical software (version 4.1.1)
were used for image processing and data analysis, respectively.
KM survival analysis was performed to evaluate the prognostic
differences between different clusters or cohorts based on the risk
scores in LIHC. Univariate and multivariate Cox regression
analyses were used to evaluate the influence of risk score on
June 2022 | Volume 12 | Article 900671
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OS. Differences between the two groups were compared using a
two-tailed unpaired Student’s t-test. Each experiment was
repeated thrice. Statistical significance was set at *p < 0.05, **p
< 0.01, ***p < 0.001, and ****p <0.0001.
RESULTS

Identification of Prognosis-Related DEAH-
Box RNA Helicases in LIHC
The transcriptomic and clinical data of 370 patients with LIHC
were downloaded from TCGA database. Based on the data, 12
prognosis-related DEAH-box RNA helicases were identified
using univariate Cox regression analysis (p < 0.05; Table 2).
The hazard ratio (HR) of the 12 genes was > 1, indicating a poor
prognosis in patients with LIHC. Consistent with this, these 12
helicase genes were upregulated in LIHC tissues (Figures 1A, B).
Some studies have confirmed correlations between cancer
characteristics and genetic alteration signatures (14); thus, we
analyzed the alterations in these prognosis-related genes using
the cBioPortal database. Our findings showed that most of these
genes had high mutation frequencies, with that of DHX9 being
the highest. In addition, most of these alterations were
amplification (Figure 1C).
Subtype Defined by Survival-Related
DEAH-Box RNA Helicases of LIHC
To systematically assess the roles and functions of DEAH-box
RNA helicases, the patients with LIHC were grouped using
consensus clustering analysis. Based on the expression profiles
of these prognostic helicases, the patients were classified into two
clusters (k=2, Figures 2A–C). The results showed that patients in
Cluster 1 tended to have longer survival than those in Cluster 2
(p < 0.01; Figure 2D). Clinical characteristics, such as age, tumor,
stage, and grade, also differed between Clusters 1 and 2 (p < 0.01;
Figure 2E), which suggests that these RNA helicases have a
significant prognostic value in LIHC.
Frontiers in Oncology | www.frontiersin.org 5
Establishment and Validation of an
Independent Prognostic Risk Model
A prognostic risk model was constructed using LASSO
regression for an improved prediction of prognosis of patients
with LIHC. A total of 370 patients with LIHC were randomly
divided into two groups, namely the training (186 patients) and
test cohorts (184 patients), in a 1:1 ratio. Based on the expression
values in the training cohort, 12 survival-related DEAH-box
RNA helicases were used to build the prognostic model. In
accordance with the minimum criteria (Figures 3A, B), we
built a risk model comprising DHX9, DHX8, DHX34, DHX35,
DHX38, and DHX57. The risk score of each patient in TCGA
training and test cohorts was calculated as follows: risk score =
(0.0041 × EXPDHX9) + (0.0136 ×EXPDHX8) +(0.0951
×EXPDHX35) + (0.0009 × EXPDHX38) + (0.0722 ×
EXPDHX34) + (0.0955 × EXPDHX57).

Patients in the training and test cohorts were divided into
high-risk and low-risk groups according to the median risk score
in the training cohorts. As shown in Figures 3C, D, fewer deaths
and longer survival were observed in the low-risk group in both
cohorts. We observed an upregulation of six risk genes in high-
risk patients (Figures 3E, F). KM survival curves also indicated a
worse OS in high-risk patients than in low-risk patients in both
the training and test cohorts (p < 0.01; Figures 3G, H).
Moreover, this six-gene risk model had a promising predictive
potential for OS in both cohorts, which was demonstrated
through ROC curves (Figures 3I, J). Next, from the results of
the univariate Cox analysis in the two cohorts, we found that
both risk score (training: p < 0.001; test: p < 0.001) and stage
(training: p < 0.001; test: p = 0.045) were significantly associated
with OS (Figures 4A, B). In multivariate Cox regression
analyses, the risk score (training: p = 0.002; test: p < 0.001) and
stage (training: p < 0.001; test: p = 0.042) were shown to be
independent risk factors for patients with LIHC (Figures 4C, D).
Furthermore, we measured the proportions of some causative
agents in both the training and the test cohorts, including the
history of alcohol abuse, hepatitis virus infection and
nonalcoholic fatty liver disease (NAFLD). The results showed
in Tables 3, 4. We found that the above three factors were not
statistically different between the high-risk and low-risk groups.
TABLE 2 | Univariable Cox regression analysis for screening prognostic genes.

gene HR HR.95% CI Low HR.95% CI High P-value

DHX15 1.082 1.031 1.136 0.001
DHX36 1.193 1.019 1.397 0.029
DHX9 1.037 1.017 1.058 <0.001
DHX8 1.123 1.048 1.203 <0.001
DHX35 1.312 1.100 1.564 0.003
DHX38 1.097 1.036 1.162 0.002
DHX34 1.163 1.095 1.234 <0.001
DHX57 1.453 1.217 1.735 <0.001
DHX30 1.124 1.059 1.192 <0.001
DHX37 1.223 1.123 1.332 <0.001
DHX40 1.112 1.043 1.186 0.001
DQX1 1.086 1.012 1.166 0.022
June 2022 | Volume 12 | Article
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From this we speculate that the DEAH-box helicases may be less
influenced by different HCC causative agents. To explore the
expression of six DEAH-box helicases in the model at the single-
cell level, we searched the scAtlasLC dataset (15–18) and found
that the six DEAH-box helicases were highly expressed in
malignant hepatocytes (Figure S1). These results suggest that
the 6-DEAH-box RNA helicase risk model may be useful for the
evaluation of clinical prognosis.

KEGG pathway enrichment analysis of high- and low-risk
patients in both cohorts was performed using the GSEA software.
The results revealed that the high-risk group was positively correlated
with the RIG-I-like receptor signaling pathway. Moreover, three types
of DNA repair pathways, particularly nucleotide excision repair, base
excision repair, and homologous recombination, were also enriched
in the high-risk group (Figure 5).

Correlation Between TIM and DEAH-Box
RNA Helicases
KEGG pathway enrichment analysis revealed that the RIG-I-like
receptor signaling pathway, which is important in the innate
immune response to RNA virus infection (19), was enriched in
the high-risk group. Previous studies have shown that DEAH-
box helicases participate in RNA sensing in the process of innate
immune activation in the presence of exogenous insults (20). As
most innate immune cells play cancer-promoting roles in tumor
Frontiers in Oncology | www.frontiersin.org 6
development (21–23), we further explored the correlation
between specific innate immune cells and the expression levels
of six DEAH-box RNA helicases included in the risk model for
LIHC. Using the TIMER database, the expression levels of the
helicases were found to be significantly positively correlated with
immune cells, with the correlation with myeloid-derived
suppressor cell infiltration being the most evident (Figure S2).
Furthermore, in the TISCH database, the expression levels of the
six helicases were high primarily in proliferative T cells,
monocytes/macrophages, and dendritic cells. We also found
that DHX9 expression was the highest in immune cells (Figure
S3A). The GSE140228_Smartseq2 dataset composed of 10 cell
types was then used to analyze the distribution of the six DEAH-
box RNA helicases in different immune cell types (Figures
S3B, C). Consistent with the results shown in Figure S2A, the
expression of DHX9 in TME-related cells was the highest,
whereas that of DHX57 was the lowest (Figure S3D). We then
explored the relationship between the six DEAH-box RNA
helicases and immune inhibitors in patients with LIHC using
the TIMER database. As shown in Figures S4A–F, the
expression levels of the six DEAH-box RNA helicases were
significantly positively correlated with PDCD1, CTLA4,
PDCD1LG2 (PD-L1), and LAG3. These results indicate that
DEAH-box RNA helicases may be closely related to innate
immune cells in the TIM of LIHC.
A

C

B

FIGURE 1 | Transcriptional levels and genetic alterations of prognostic DEAH-box RNA helicases in liver hepatocellular carcinoma (LIHC). (A) Differential expression
heatmap and (B) boxplot of prognostic genes in LIHC and normal tissues based on TCGA. (C) Gene alteration of prognosis-related helicases in LIHC based on
cBioPortal data. ***p < 0.001.
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Role of DHX9 in the Radiosensitivity
of LIHC
As shown in Figure 5, several DNA repair pathways were also
enriched in the high-risk group, and it is well known that
radiotherapy (RT) has been increasingly used for the treatment
of LIHC (24). Therefore, improving radiosensitivity is important.
DNA damage repair (DDR) pathways, which are strongly
associated with radiosensitivity (25), were enriched in the high-
risk group, and DEAH-box RNA helicases were upregulated in
this group; therefore, we examined the relationship between
DEAH-box RNA helicases and radiosensitivity. Among the 12
survival-related RNA helicases, DHX9 had the highest
expression level and amplification mutation frequency in liver
tumors (Figures 1B, C). In addition, DHX9 has been confirmed
to be involved in DDR in other cancer types (26). Therefore, we
explored the effects of DHX9 on DDR and radiosensitivity in
liver cancer. First, DHX9 protein expression was explored using
the HPA database. Immunohistochemistry showed that DHX9
was moderately expressed in normal liver tissue and highly
expressed in HCC (Figure 6A). DHX9 knockdown was
performed and validated in Hep3B and Huh7 cell lines, and
Frontiers in Oncology | www.frontiersin.org 7
the knockdown efficacy of shRNA and siRNA was confirmed by
western blot analysis (Figures 6B, S5A, S6A). CCK-8 assay was
conducted to show the inhibitory effect of DHX9 knockdown on
Hep-3B cells viability at different irradiation dose. The results
showed that transfection of two DHX9 siRNAs could affect the
viability of Hep-3B cells under irradiation conditions, and
the effect of siDHX9-3 was greater (p<0.0001). At dose of 8gy,
the difference between control group and the knockdown group
was the largest (Figure S5B). The results of the colony formation
assay indicated that DHX9 knockdown inhibited colony
formation in Hep-3B and Huh7 cells, and this inhibitory effect
was more significant when combined with irradiation (4 Gy)
(Figures 6C, S6B). To determine whether DHX9 regulates DDR,
we performed an alkaline comet assay, and the comet tail DNA
percentage was measured to estimate the overall DNA damage.
As shown in Figures 6D , S6C the DNA percentage in the comet
tail significantly increased in DHX9 knockdown cells after
irradiation (8 Gy), whereas DHX9 knockdown alone did not
exhibit an effect as pronounced. g-H2AX foci, which are at the
center of cellular responses to DSBs, have been found to be a
predictor of cell radiosensitivity (27). In our study, g-H2AX foci
A B

D E

C

FIGURE 2 | Identification of LIHC molecular subtypes based on the prognostic DEAH-box RNA helicases. (A) Consensus matrix heatmaps (k = 2) of prognostic
genes. (B) Curve of cumulative distribution function (CDF) (k = 2 to 9). (C) The relative variation of the area under the CDF curve (k = 2 to 9). (D) KM curves of overall
survival in the two LIHC clusters. (E) Heatmap of the expression of 12 survival-related genes in the different clusters and clinicopathological characteristics of the two
subtypes. *p < 0.05; **p < 0.01; and ***p < 0.001.
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FIGURE 3 | Construction and validation of the prognostic signature. (A) Construction of the LASSO regression model. The optimal log l value is shown as a vertical
dotted line. (B) The LASSO coefficient profile of DEAH-box RNA helicases, with each line representing an independent DEAH-box RNA helicase. Distribution of risk
scores and prognostic status in the (C) training and (D) validation cohorts. Expression levels of the six genes in the (E) training and (F) test cohorts. KM curves in the
(G) training and (H) test cohorts. Time-dependent receiver operating characteristic curve of the prognostic model in the (I) training and (J) test cohorts.
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detected by immunofluorescence analysis increased significantly
in DHX9 knockdown Hep-3B cells after irradiation (8 Gy),
suggesting that the cells were unable to efficiently repair DNA
damage upon DHX9 knockdown (Figure 7A). The increased
TABLE 3 | Proportion of each causative agents in training cohorts.

level Overall

Alcohol (%) (-) 122 (69.7)
(+) 53 (30.3)

Hepatitis_B (%) (-) 120 (68.6)
(+) 55 (31.4)

Hepatitis_C (%) (-) 141 (80.6)
(+) 34 (19.4)

NAFLD (%) (-) 169 (96.6)
(+) 6 ( 3.4)

Frontiers in Oncology | www.frontiersin.org 9
accumulation of g-H2AX was further confirmed by western blot
in DHX9 knockdown cells after irradiation (8 Gy) (Figures 7B,
S6D). The results showed that the increase in radiosensitivity due
to DHX9 knockdown was achieved by increasing DNA damage.
High Risk Low Risk P-value

62 ( 72.1) 60 ( 67.4) 0.611
24 ( 27.9) 29 ( 32.6)
60 ( 69.8) 60 ( 67.4) 0.863
26 ( 30.2) 29 ( 32.6)
72 ( 83.7) 69 ( 77.5) 0.399
14 ( 16.3) 20 ( 22.5)
82 ( 95.3) 87 ( 97.8) 0.438
4 ( 4.7) 2 ( 2.2)

June 2022 | Volume 12 | Article 900671
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FIGURE 4 | The risk score of the model was an independent prognostic factor for patients with LIHC. Univariate Cox regression analyses in the (A) training and (B)
validation cohorts. Multivariate Cox regression analyses in the (C) training and (D) validation cohorts.
TABLE 4 | Proportion of each causative agents in test cohorts.

level Overall High Risk Low Risk P-value

Alcohol (%) (-) 112 (63.6) 52 (62.7) 60 (64.5) 0.92
(+) 64 (36.4) 31 (37.3) 33 (35.5)

Hepatitis_B (%) (-) 127 (72.2) 60 (72.3) 67 (72.0) 1
(+) 49 (27.8) 23 (27.7) 26 (28.0)

Hepatitis_C (%) (-) 154 (87.5) 76 (91.6) 78 (83.9) 0.189
(+) 22 (12.5) 7 (8.4) 15 (16.1)

NAFLD (%) (-) 162 (92.0) 77 (92.8) 85 (91.4) 0.787
(+) 14 (8.0) 6 (7.2) 8 (8.6)
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Moreover, DHX9 knockdown had no effect on other four
DEAH-box RNA helicases expression, namely DHX8, DHX35,
DHX38 and DHX57(Figure S7), which indicated that DHX9
might contribute to radiosensitivity independently of other
proteins in the risk model.

However, as previously reported, in Ewing Sarcomas cell lines
(SK-N-MC cells), irradiation induced a new isoform of the RNA
helicase DHX9, which was targeted to nonsense-mediated decay
(NMD) and caused downregulation of DHX9 expression (28). In
LIHC cell lines, we also verified the effect of irradiation on DHX9
expression, the results showed that irradiation had no significant
effect on the mRNA(p>0.05)expression level and protein
expression level of DHX9 also had no evident alteration, which
Frontiers in Oncology | www.frontiersin.org 10
is not the same as the regulation in sarcoma cell lines (Figure
S8). This suggests that the effect of irradiation on DHX9 in
different cancer species may not be exactly the same.
DISCUSSION

LIHC has high levels of molecular and clinical heterogeneity and
is therefore one of the most complicated malignant cancers (29).
Although there are various treatments for LIHC, the survival rate
remains unsatisfactory. Thus, there is an urgent need to find
more molecular biomarkers to contribute novel insights into the
management of LIHC therapeutic decisions.
FIGURE 5 | Enrichment of the RIG-I-like receptor signaling pathway and three types of DNA repair pathways in the high-risk group as revealed by GSEA. ES,
enrichment score; NES, normalized enrichment score; Norm p, Nominal p-value.
June 2022 | Volume 12 | Article 900671

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Prognostic DEAH-Box Helicases in LIHC
DEAH-box RNA helicases are a group of proteins belonging
to the SF2 RNA helicases. They have a conserved structure and
participate in mRNAmetabolism. Moreover, they are involved in
the regulation of innate immunity and DNA repair. In terms of
tumor development, some DEAH-box RNA helicases have been
reported in many cancers, such as lung carcinoma, colorectal
carcinoma, neuroblastoma, and breast cancer (30–33). In LIHC,
DHX9, DHX32, and DHX15 play important roles in promoting
cancer cell motility and proliferation, inhibiting cell apoptosis,
and indicating a poor prognosis (34–36). In addition, DHX9 is
also involved in promoting oncogenic circular RNA CCDC66
expression and the development of chemoresistance after
oxaliplatin treatment (37). However, the function of DEAH-
box RNA helicase families in LIHC therapeutic strategies
remains unclear. Thus, we explored the relationship between
DEAH-box RNA helicase families and treatment strategies
for LIHC.

First, we confirmed that the DEAH-box RNA helicase family
members were mostly overexpressed in various types of cancers
and then identified 12 prognostic-related DEAH-box RNA
helicases. We grouped the patients according to the expression
levels of these 12 RNA helicases and compared survival time,
Frontiers in Oncology | www.frontiersin.org 11
clinical features, immune checkpoints, and KEGG pathways
between the two clusters. Consistent with previous studies, the
results showed that Cluster 2 patients with high helicase
expression levels had a poor prognosis and worse clinical
features. Similar outcomes were observed in the prognostic risk
model constructed through LASSO regression analysis based on
six prognostic-related DEAH-box RNA helicases. High-risk
patients harbored higher expression levels of RNA helicases
and shorter survival times. Univariate and multivariate Cox
regression analyses demonstrated that the risk model could
predict the prognosis of patients with LIHC. These data
suggest biological roles and the prognostic value of the DEAH-
box RNA helicase family in patients with LIHC.

Studies have shown the potential of radiotherapy in LIHC
patients with small lesions that are not amenable to resection or
transplantation. Improving radiosensitivity not only enhances
the curative effect but also decreases normal tissue damage. DDR
dysregulation affects the radiosensitivity of cancer cells to
radiotherapy (38). Recently, DHX9 has been found to
participate in the recruitment of BRCA1 to RNA and promote
DNA end resection in homologous recombination (39), as well
as prevent R-loop-associated DNA damage and be overexpressed
A C

DB

FIGURE 6 | Role of DHX9 in radiosensitivity of Hep-3B cells. (A) Immunohistochemistry of DHX9 protein in normal and tumor tissues from the HPA database. (B)
Western blot analysis of DHX9 expression in Hep-3B cells after stable transfection using lentivirus. (C) Representative images of the colony formation assay using
Hep-3B cells and quantification of the colonies. (D) Representative images of DNA comets using Hep-3B cells (scale bar: 25 mm) and quantification of the DNA
percentage of the comet tail (n>50 nuclei per sample). The data are presented as the mean ± standard deviation. Two-tailed, unpaired Student’s t-test was
performed for statistical analysis. ***p < 0.001; ****p < 0.0001.
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in cancer (40). DHX36 has been found to regulate p53 pre-
mRNA 3’-end processing following ultraviolet-induced DNA
damage (41). In our study, homologous recombination and
nucleotide excision repair, which are two types of DDR
pathways, were enriched in Cluster 2 with high helicase
expression levels. Because DHX9 had the highest expression
level and amplification mutation frequencies in liver tumors, we
explored its effect on DDR and radiosensitivity in liver cancer cell
lines through colony formation, alkaline comet assay,
immunofluorescence, and western blotting. The results showed
that the improvement in radiosensitivity after DHX9 knockdown
was achieved by increasing DNA damage. We speculate that
DHX9, together with other DEAH-box RNA helicase family
members, has the potential to act as an indicator and therapeutic
target to increase radiosensitivity during LIHC radiotherapy.

Immunotherapy has gradually become an important
treatment method for many cancer types. Some DEAH-box
RNA helicases participate in the regulation of innate immune
reactions. Previous studies have identified that in human
macrophages, DHX33 can sense RNA and subsequently
activate the NLRP3 inflammasome and trigger induction of
MAVS-dependent type I IFN (42). It has also been found that,
depending on MAVS, DHX9 regulates the cytokine reaction to
RNA virus infection through a RIG-I-independent mechanism
in myeloid dendritic cells (43). Macrophages are the primary
innate immune cells, and the liver contains the largest number
of resident macrophages, Kupffer cells (KCs) (44). In the HCC
TIM, activated KCs promote HCC via production of ROS and
IL-6 (21, 45). Another type of innate immune cells, myeloid-
Frontiers in Oncology | www.frontiersin.org 12
derived suppressor cells, are a key element to induce immune
suppression in the TIM (22). Myeloid dendritic cells can
promote immunotolerance through a variety of mechanisms
(46); concomitantly, neutrophils can enhance tumor cell
growth, metastasis, and angiogenesis to accelerate tumor
progression (23). The results of our study demonstrate that
the six DEAH-box RNA helicases in the risk model had a
significant positive correlation with innate immune cells
(myeloid-derived suppressor cells, macrophages, myeloid
dendritic cells, and neutrophils). Moreover, at the single-cell
transcription level, the results showed a positive association of
DEAH-box RNA helicases with innate immune cell infiltration.
Thus, the poor prognosis of LIHC may be partly due to the
dysregulation of DEAH-box RNA helicases, which are
associated with the upregulation of these innate immune cells
in the TIM. We further explored the relationship between
DEAH-box RNA helicases and inhibitory receptors as
upregulation of immune inhibitors, such as PD-1, PD-L1,
CTLA-4, and LAG3, can lead to poor prognosis (47). This
indicates that DEAH-box RNA helicases are significantly and
consistently related to immune inhibitors and may be an
indicator in immunotherapy.

Despite these findings, our study had some limitations. First,
we used a public database with retrospective data to validate the
DEAH-box RNA helicase prognostic model. Further verification
with multicenter prospective clinical data is needed. Second, the
correlation between DEAH-box RNA helicases and immune
cells, as well as immune inhibitors in LIHC, requires further
experimental validation.
A B

FIGURE 7 | Effect of DHX9 on DNA damage repair in Hep-3B cells. (A) Representative fluorescence images of g-H2AX (red) and DHX9 (green) immunostaining in
Hep-3B cells (scale bar: 5 mm). Nuclei were stained with DAPI (blue). (B) Western blot analysis of g-H2AX expression in Hep-3B cells. DAPI, 4’,6-diamidino-2-
phenylindole.
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CONCLUSION

Our results indicate that the DEAH-box RNA helicase signature is
a reliable biomarker for the prognosis of LIHC. In addition, innate
immune cells may be promoters of DEAH-box RNA helicases in
the malignant progression of LIHC, and DEAH-box RNA helicases
may be a reliable biomarker for immunotherapy. Moreover, DHX9,
a DEAH-box RNA helicase, is related to radiosensitivity and may
be an indicator and therapeutic target in LIHC radiotherapy.
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