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Background: Although deep learning systems (DLSs) have been developed to diagnose
urine cytology, more evidence is required to prove if such systems can predict
histopathology results as well.

Methods: We retrospectively retrieved urine cytology slides and matched histological
results. High-power field panel images were annotated by a certified urological
pathologist. A deep learning system was designed with a ResNet101 Faster R-CNN
(faster region-based convolutional neural network). It was firstly built to spot cancer cells.
Then, it was directly used to predict the likelihood of the presence of tissue malignancy.

Results: We retrieved 441 positive cases and 395 negative cases. The development
involved 387 positive cases, accounting for 2,668 labeled cells, to train the DLS to spot
cancer cells. The DLS was then used to predict corresponding histopathology results. In
an internal test set of 85 cases, the area under the curve (AUC) was 0.90 (95%CI 0.84–
0.96), and the kappa score was 0.68 (95%CI 0.52–0.84), indicating substantial
agreement. The F1 score was 0.56, sensitivity was 71% (95%CI 52%–85%), and
specificity was 94% (95%CI 84%–98%). In an extra test set of 333 cases, the DLS
achieved 0.25 false-positive cells per image. The AUC was 0.93 (95%CI 0.90–0.95), and
the kappa score was 0.58 (95%CI 0.46–0.70) indicating moderate agreement. The F1
score was 0.66, sensitivity was 67% (95%CI 54%–78%), and specificity was 92% (95%CI
88%–95%).

Conclusions: The deep learning system could predict if there was malignancy using
cytocentrifuged urine cytology images. The process was explainable since the prediction
of malignancy was directly based on the abnormal cells selected by the model and can be
verified by examining those candidate abnormal cells in each image. Thus, this DLS was
not just a tool for pathologists in cytology diagnosis. It simultaneously provided novel
histopathologic insights for urologists.
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INTRODUCTION

Urothelial carcinoma (UC) is one of the most common cancers
worldwide (1). UCs are often multifocal and tend to recur. Thus,
thorough screening and frequent surveillance are mandatory.
The diagnosis of UC typically relies on the histopathological
assessment of tissue resected by cystoscopy, yet it is an invasive
approach and not easily accessible.

Urine cytology has played an important role in the screening
and surveillance of UCs for many years for its effective,
inexpensive, noninvasive nature (2–4). However, in the context
of urine cytology, there is currently no gold standard for cyto-
histo correlation in urine (5).

One possible solution could be to use the deep learning
systems (DLSs) to build such links. DLSs have demonstrated a
capacity superior to manual workflows in shifting through
massive images to retrieve similar patterns and establish
associations with novel traits in many medical data analysis
tasks (6–8). Three studies have successfully automated the urine
cytology diagnosis through the use of DLSs (9–11). One of these
previous studies has further proven that DLSs might be able to
determine the malignant potential of tumors more accurately
than classical cytology (11). Researchers used a 16-layer
convolutional neural network (CNN). Weights trained for
initial UC cell detection were reused for the first 7 layers.
New training with histopathological data started at the eighth
layer. The DLS determined the presence of stromal invasion and
performed a nuclear grading of tumor cells in the corresponding
histological specimens. Therefore, DLSs have become a method
that could potentially link cytopathology findings with
histopathology results.

In this study, we hypothesized that routine urine cytology
images contain information about the presence of malignant
tissue in urinary tracts. The rationale for this cyto-histo
correlation is that malignant tissues in urinary tracts undergo
constant exfoliation, which sheds tumor cells and influences
tumor cell morphology in urine. Building on those previous
studies, we systematically investigated the presence of such
correlation and aimed to capture it through our DLS. We
trained and tested the DLS to spot UC cells in cytology images
before using it to predict if a case would get malignant surgical
pathology within the next 1 year. The results demonstrated that
the DLS could predict the presence of malignancy and display
such associations between cytopathology and histopathology
through likelihood even without further training with
histopathology data. Thus, DLS cytology can be used as not
only a pathological tool to assist cytopathological diagnosis but
also a novel risk-stratification tool to predict histopathology.
This could help urologists make therapeutic decisions.
MATERIALS AND METHODS

Data Acquisition
All images were obtained from the archival glass of hematoxylin
and eosin-stained urine cytocentrifugation cytology from
Frontiers in Oncology | www.frontiersin.org 2
consecutive patients who underwent examination, surgery, or
both at Peking University First Hospital from 2014 to 2020
(Figure 1, Table 1). Urine cytology was routinely diagnosed
using Papanicolaou’s classification at our institute (12). Classes
III, IV, and V were defined as positive; class I and II (atypical)
were defined as negative.

Among the 441 positive cases (patients diagnosed with
UC based on cytologic examination), 211 received surgery
(surgery within the next 1 year, if not otherwise clarified), all
of which were diagnosed with UC based on histological
examination (Table 2).

Among the 395 negative cases (patients diagnosed with
benign diseases based on cytologic examination), all received
surgery, of which 333 were diagnosed with UC based on
histological examination and the rest 62 were diagnosed with
benign disease based on histological examination (Table 2). For
the above 333 cases with contradicted cytopathological and
histopathological results, a blinded pathologist’s review was
carried out to check for overlooked cancer cells. As a result, 63
cases actually had cancer cells in their cytology images confirmed
by a pathologist and should be deemed as positive cases.

From the original slides, 1,280×960-pixel, Joint Photographic
Experts Group (jpeg) format images were exported: 466 images
from positive cases and 417 images from negative cases.
Subsequently, the training–validation set and preliminary test
set, internal test set, and extra test set were defined by the
different cytopathological and histopathological diagnoses. The
training–validation set and preliminary test set were allocated by
8:1 stochastically. This study was approved by the institutional
review board of Peking University First Hospital.

Deep Learning System
We built our DLS on a ResNet101 Faster-RCNN (Figure 2).
ResNet101 is a 101-layer Reidual Network proposed on the 2016
IEEE Conference on Computer Vision and Pattern Recognition
by He et al. (13). Deeper and restructured, ResNet101 has shown
a high performance in many contexts of use including skin lesion
detection and brain disease detection in magnetic resonance
images (14, 15).

Faster-RCNN, short for faster region-based convolutional
neural network, is a CNN that combines object detection and
classification into one network (16). It extracts features, makes
detections through these features, and quantifies the degree of fit
at each detection using a value of possibility ranging from the
worst of 0 to the optimum of 100. Evidence has shown that
Faster-RCNN is especially good at detecting objects at multiple
scales and aspect ratios, such as abnormal cervical cells in
cytology images and cancer regions in colorectal biopsies
(17, 18).

The model was implemented in Python 3.8 using TensorFlow
(1.12.0) and Keras (2.0.3). Malignant cells with remarkable
atypia in the jpeg images were annotated by a certified
urological pathologist using the open-source software LabelMe
(19). The images were then divided into 175 × 200-pixel panel
subimages automatically, which were used for the training of
the DLS.
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ResNet101 was pretrained on the ImageNet database
consisting of 1.2 million training images, with 1,000 classes of
objects (20). The weight pretrained with ImageNet was used to
initiate the weights of all convolutional layers, and all weights
were trained with cytology images afterwards. The images passed
through 33 convolution blocks and then through 1 dense layer.
The SoftMax function was used as the activation function.
Frontiers in Oncology | www.frontiersin.org 3
The training set and validation set were further allocated by 5:1
stochastically, for early stopping during network training to
suppress overfitting. Spatial augmentation, including 90°
rotation and vertical and horizontal flip, was applied in network
training.We set 80 as the maximum epoch and stopped training if
validation loss did not improve after 15 epochs.

For the prediction of malignancy, an additional classifier was
added at the end of the initial DLS. The function of the classifier
was to select the highest value of the possibilities in an image and
to make a binary classification (benign or malignant) by
comparing this value to the threshold (Figure 2). More details
were provided in the Supporting Materials (Supporting File 1).

Evaluation Metrics
Performance was evaluated based on the testing results.

For the detection of UC cells, the annotations served as the
reference standard. We used sensitivity, accuracy, and average
false-positive cells per image. Sensitivities and accuracies were
calculated using following formulas:

Sensitivity =
True Positives

Total Annotations
 ; Accuracy =

True Positives
True Positives  +  False Positives

For the prediction of the malignancy, the surgical results
served as the reference standard. We used sensitivity, specificity,
the F1 score, and kappa score for evaluation. Cohen kappa
TABLE 1 | Baseline characteristics.

Training
and

Validation

Preliminary
Test

Negative Cytology
with Benign

Histopathology

Negative Cytology
with Malignant
Histopathology

Age
<60 79 10 26 26
≥60 308 44 36 307
Sex
Female 260 11 23 95
Male 127 43 43 238
Cytology diagnosis1

I 0 0 57 248
II 0 0 5 85
III 260 40 0 0
IV 127 14 0 0
V 0 0 0 0
1Cytology was diagnosed following Papanicolaou classification.
FIGURE 1 | The data acquisition process is illustrated here. We collected the cytology images retrospectively and consecutively from Sep 2014 to Jan 2020 and
built a series of data sets for training, validation, and tests. For those who underwent surgeries within the next 1 year, surgical results were also followed. The
preliminary test set was only used for cancer cell detection, while the internal and extra test sets were used for both cancer cell detection and malignancy prediction.
May 2022 | Volume 12 | Article 901586
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scores reflect the agreement of the DLS with the pathologist
reference standard (21). F1 scores were calculated using the
following formula:

F1 Score =
2� Precision� Recall
Precision + Recall
RESULTS

Development of the Deep Learning System
The first step of our model is to detect just cancer cells.
Therefore, we only annotated the cancer cells in the jpeg
images for training and validation purposes, and treated all the
other cells in the same image as background (Supporting File1).
In total, 1,364 cells from 411 1,280×960-pixel images were
labelled. A total of 1953 subimages were obtained. Each
subimage contained at least one label in it. Sub-images were
subsequently randomly allocated into the training and validation
sets by the ratio of 5:1, and subjected to the pretrained DLS, as
mentioned inMaterials and Methods. Both the total loss and the
system accuracy stabilized after 45–50 epochs for the validation
set. A final model was chosen at 48 epochs when the total loss for
the validation set hit the lowest point of 1.6. It was also where
the classification accuracy for the validation set hit the highest
point of 0.77.
Frontiers in Oncology | www.frontiersin.org 4
Deep Learning System Performance to
Detect Cancer Cells
We evaluated the ability of the DLS to detect cancer cells in the
three test sets (Figure 3). We took advantage of the value of
possibility generated by the DLS and adopted it as the threshold
for cell detection.

For all sets, sensitivities increased at the cost of more cells
mistakenly spotted as malignant by the DLS (Figure 4A). The
accuracy initially increased with the thresholds for cell detection,
and the rate of increase slowed down by approximately 50–55
(Figure 4B). Such a trend was observed in both preliminary and
internal tests. Therefore, we chose 55 as the optimal threshold.
Under this threshold, the sensitivity is 41% for the preliminary
test at the cost of an average of 3.09 false-positive cells per image,
36% for the internal test at the cost of an average of 0.72 false-
positive cells per image, and 41% for the extra test at the cost
of an average of 0.31 false-positives cell per image (Figure 4A).
The accuracy of cancer cell detection was 50.0, 50.3, and
14.5 for the preliminary test, internal test, and extra test,
respectively (Figure 4B).

For the subgroups of the extra test set, results are also
calculated under the optimal threshold of 55: for the positive
64 images, sensitivity is 41% with an average of 0.95 false-positive
cells per image; for the 281 negative images, the average false-
positive cell per image is 0.16 while the sensitivity is not available
due to no true positive (cancer cell).
TABLE 2 | Surgical follow-up.

Training and Validation Set1 Positive Cytology with Malignant Histology Negative Cytology with Benign Histology Extra Test Set

N 188 23 62 333
Sex
Female 63 5 19 95
Male 125 18 43 238
Age
<60 26 3 26 74
≥60 162 20 36 259
Surgery2

TUR-Bt or biopsy 102 16 48 310
nephroureterectomy 100 6 13 34
Radical cystectomy 9 1 1 20
Tumor
Negative 0 0 62 0
upper urinary tract 89 6 0 15
Lower urinary tract 92 17 0 301
Synchronous U&L 7 0 0 17
tumor grade
Low grade 24 7 117
High grade 164 16 213
NA3 0 0 3
Tumor stage
Muscle non-invasive 104 16 277
Muscle invasive 82 6 52
NA4 2 1 4
May 2022 | Volume 12
Cytology was diagnosed following Papanicolaou criteria. Cancer grade was diagnosed using WHO2004. Tumor stage was diagnosed using TNM staging AJCC UICC 8th edition.
Synchronous U&L, synchronous tumors in both upper and lower urinary tract. NA, not available.
1Only cases in the training and validation set who underwent surgery were listed here.
2Many cases undertook more than 1 procedure, either at one time or many times.
3Tumor grades were missing due to the following: a case reported as unable to rule out for low grade (n = 1); grade not reported for a case with in situ carcinoma (n = 1); a case reported as
Grade 2 using WHO 1999 but not using WHO 2004 (n=1).
4Tumor stages were missing for those undertaken biopsies with no further operation available (n = 2 + 1 + 4).
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Deep Learning System Performance to
Predict Malignancy
We evaluated whether the exact same DLS can predict malignancy
with no further transfer learning. Because the gold standard of
malignancy is histopathology, we paired cytology with its
corresponding surgical pathology. A total of 97 1,280×960-pixel
images in the internal test set and 345 1,280×960-pixel images in
the extra test set that could be paired with corresponding
histopathological specimens were used. Here, we proposed a
Frontiers in Oncology | www.frontiersin.org 5
hypothesis that a case with positive cytology was more likely to
have malignant surgical pathology. Therefore, the maximal value
of possibility (the threshold for cell detection) in each image was
adopted as the threshold for malignancy prediction.

Notably, the DLS was able to predict malignancy through
cytology images. For the internal test, the AUC was 0.90 (95%CI
0.84–0.96) (Figure 5A). The highest kappa score is 0.71 at the
threshold of 57 for malignancy prediction, and the highest F1
score is 0.78 at the threshold of 58 (Table 3). For the extra test,
FIGURE 3 | The examples of snapshot images from positive cases and the results by the deep learning system were provided. The malignant cells detected were
labeled by the Faster-RCNN, and the possibilities of each detection were also shown.
FIGURE 2 | The overall design of the deep learning system. The ResNet 101 Faster-RCNN detected the UC cells while assigning a possibility to each of the cell,
and an additional classifier picked the maximal possibility and predicted the histopathological malignant state according to the set threshold.
May 2022 | Volume 12 | Article 901586
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the AUC was 0.93 (95%CI 0.90–0.95) (Figure 5A). The highest
kappa score is 0.60 at the threshold of 52 for malignancy
prediction, and the highest F1 score is 0.69 at the threshold of
52 (Table 4).

Under the optimal threshold (threshold=55), the DLS also
achieved good performance. For the internal test, 4 images that
scored higher than 55 have benign histologic results (Figure 5B).
Thus, sensitivity is 71% (95%CI 52%–85%); specificity is 94% (95%
CI 84%–98%); the F1 score is 0.76; and there was a substantial
agreement with the reference standard (kappa = 0.68 [95%CI 0.52–
0.84]). For the extra test, 22 images that scored higher than 55 have
benign histologic results (Figure 5C). Thus, sensitivity is 67% (95%
CI 54%–78%); specificity is 92% (95%CI 88%–95%); the F1 score is
0.66; and there was a moderate agreement with the reference
standard (kappa = 0.58 [95%CI 0.46–0.70]).
DISCUSSION

In this study, we developed a DLS to predict the likelihood of the
presence of tissue malignancy through urine cytopathology.
Frontiers in Oncology | www.frontiersin.org 6
Notably, the system achieved an AUC of 0.90 for the internal
test and of 0.93 for the extra test. Under the optimal threshold,
sensitivity is 71%, and specificity is 94% for the internal test;
sensitivity is 67%, and specificity is 92% for the extra test. These
results proved that the DLS was able to predict the presence of
malignant tissue merely from urine cytology images.

It has been fully demonstrated that deep learning models can
be used to establish a cytology diagnosis system. Vaickus et al.
were the first to show that the analysis of urine cytology specimens
could be reliably automated. They achieved an accuracy of more
than 90% using a hybrid deep-learning and morphometric
algorithm (9). Pantanowitz et al. further proved this idea using a
much larger data set. They used a pure neural network to exploit
and integrate both slide-level and cell-level features and achieved a
sensitivity of 79.5% and a specificity of 84.5% for cytopathological
diagnosis (10). For both studies, features were carefully engineered
to ensure biological interpretability and reproducibility. Features
such as the nuclear-cytoplasm ratio, chromatin quality, and the
quantity of cells were included (Figure 6). Such a design made the
system explainable and enables it to fulfill the aim to assist
pathologists in cytology reading.
A B C

FIGURE 5 | The DLS performance to predict malignancy is illustrated. (A) The receiver operating characteristics curve for the performance to predict malignancy for
the internal and extra tests. (B) The distribution of maximal possibilities in the internal test set. Most images from benign histology were scored below 55. (C) The
distribution of maximal possibilities in the extra test set. Most images from negative cases were also scored below 55 (highlighted by the dashed line).
A B

FIGURE 4 | The DLS performance to detect malignant cells is illustrated. (A) As the system tried to find more malignant cells (to achieve higher sensitivity), it made
more mistakes classifying benign cells as malignant. The sensitivities at the optimal threshold for three sets were marked. (B) The accuracy at different thresholds.
Thresholds were represented by their middle value (for example, x = 52.5 represented the interval of 50–55 points). Higher thresholds tend to have better detection
accuracy. The performance at the optimal threshold of 50–55 points is highlighted by the dashed line. At this point, the increasing rates began to slow down.
May 2022 | Volume 12 | Article 901586
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Although the principal indications for the use of cytology
include the diagnosis, follow-up, and monitoring of patients with
urothelial tumors, the gold standard for the diagnosis of tumor is
still histopathology. Therefore, the cyto-histo correlation has
become the bottleneck for the use of cytology in clinical
settings. Previous studies have shown that deep learning
techniques could discern subtle differences in image features
that are not readily noticeable to pathologists between tissues
from patients with different genetic subtypes, cancer grades,
and survival (6–8). Thus, it was reasonable to wonder if deep
learning could also distinguish differences in cytology images
with different histopathological results.

Fujita et al. were the first to observe that the DLS could not
only accurately detect UC cells but also distinguish
characteristics traditionally determined using histopathology.
They probed two specific characters: whether the lesions were
invasive and whether the lesions were high grade. For both, the
DLS achieved an AUC higher than 0.86 and F1 score higher than
0.82 (11). The study used a mixing-training model with the first
half trained with cytopathological data and the other half trained
with histopathological data (Figure 6). The results proved that at
least part of the features could be shared for cytopathology
diagnosis and histopathology prediction. This laid the
foundation for a complete cyto-histo correlation.

For the purpose of proving this correlation more stringently,
we improved the design of this study on the basis of previous
ones. First, we trained the system with only positive cytology
images instead of adding negative images as in previous studies.
Therefore, this design could insure all the features used by the
Frontiers in Oncology | www.frontiersin.org 7
DLS derived from malignant cases. Second, during malignancy
prediction, we did not train the initial DLS again. Instead, we
added an additional classifier at the end of the initial DLS. This
design rendered two models that shared a same set of
convolutional network and detector and, thus, a same set of
features. The additional classifier was designed based on the
biological meaning of the degree of fit calculated by the DLS.
During cancer cell detection, the degree of fit was the likelihood
of a cell to be a cancer cell. Therefore, the maximal degree offit in
a certain image represented the likelihood of a case to get
malignancy. There were no manually designed features in the
DLS. Therefore, the process was explainable since the prediction
of malignancy was directly based on the abnormal cells selected
by the model and can be verified by examining those candidate
abnormal cells in each image. Thus, the design made the DLS not
only possible to testify the hypothesis better but also explainable
in a unique way.

The test sets in this study included preliminary, internal, and
extra test sets. The extra test set came from patients whose
cytology was initially diagnosed as negative but later proved to
have malignant histopathological results. Overlooked cancer cells
TABLE 3 | Performance on the internal test set.

Threshold Sensitivity Specificity F1 Score Kappa Score

40.00 0.94 0.61 0.67 0.45
42.00 0.94 0.62 0.67 0.51
43.00 0.90 0.68 0.70 0.54
44.00 0.90 0.71 0.72 0.56
45.00 0.90 0.73 0.71 0.55
46.00 0.87 0.74 0.72 0.57
47.00 0.87 0.76 0.73 0.57
49.00 0.81 0.79 0.71 0.58
50.00 0.81 0.80 0.69 0.56
51.00 0.74 0.83 0.71 0.56
53.00 0.74 0.88 0.72 0.64
54.00 0.71 0.91 0.75 0.68
55.00 0.71 0.94 0.77 0.68
57.00 0.68 0.95 0.76 0.71
60.00 0.65 1.00 0.78 0.71
65.00 0.61 1.00 0.76 0.68
68.00 0.48 1.00 0.59 0.50
69.00 0.42 1.00 0.56 0.46
70.00 0.39 1.00 0.41 0.32
71.00 0.26 1.00 0.32 0.25
73.00 0.19 1.00 0.32 0.25
75.00 0.16 1.00 0.23 0.17
76.00 0.13 1.00 0.23 0.17
78.00 0.10 1.00 0.18 0.13
83.00 0.06 1.00 0.12 0.09
88.00 0.00 1.00 NA NA
NA, not available.
TABLE 4 | Performance on the extra test set.

Threshold Sensitivity Specificity F1 Score Kappa Score

40.00 1.00 0.56 0.52 0.35
41.00 1.00 0.59 0.54 0.37
42.00 0.98 0.62 0.57 0.42
43.00 0.98 0.67 0.58 0.44
44.00 0.97 0.69 0.60 0.47
45.00 0.97 0.72 0.62 0.50
46.00 0.94 0.75 0.63 0.51
47.00 0.91 0.78 0.67 0.56
48.00 0.91 0.81 0.68 0.58
49.00 0.88 0.84 0.68 0.59
50.00 0.86 0.85 0.68 0.60
51.00 0.83 0.86 0.68 0.60
52.00 0.80 0.88 0.69 0.60
53.00 0.77 0.89 0.66 0.58
54.00 0.72 0.90 0.67 0.59
55.00 0.67 0.92 0.66 0.58
56.00 0.63 0.94 0.64 0.57
57.00 0.59 0.94 0.61 0.54
58.00 0.55 0.95 0.58 0.51
59.00 0.48 0.96 0.55 0.48
60.00 0.45 0.96 0.53 0.45
61.00 0.42 0.96 0.52 0.45
62.00 0.41 0.96 0.53 0.47
63.00 0.39 0.98 0.50 0.44
64.00 0.36 0.98 0.49 0.44
65.00 0.34 0.99 0.47 0.41
66.00 0.31 0.99 0.37 0.32
67.00 0.23 0.99 0.24 0.20
68.00 0.14 1.00 0.24 0.20
70.00 0.13 1.00 0.19 0.16
71.00 0.11 1.00 0.14 0.11
72.00 0.08 1.00 0.09 0.07
73.00 0.05 1.00 0.06 0.04
74.00 0.03 1.00 NA NA
78.00 0.00 1.00 NA NA
May 2022
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in these images were carefully revised in the blinded review at the
beginning of this study. Results showed that the extra test set had
higher AUC than the internal test set during malignancy
prediction. This indicated that the DLS had a good
performance for the extra test despite the fact that these cases
were among the most difficult to diagnose by traditional
cytology. However, the sensitivity and specificity for the extra
test under the optimal threshold were lower than that for the
internal test. Moreover, during cancer cell detection, the accuracy
for the extra test was also lower than that for the preliminary and
the internal tests under the optimal threshold, and the accuracy
for the extra test was still increasing after the threshold reached
the optimal threshold. This indicated that the current optimal
threshold using in this study, which was chosen based on the
preliminary and internal tests, might not serve as the optimal
threshold for the extra test. Future studies are needed for a better
strategy to find the optimal threshold for DLS application. At the
same time, it is also important to understand that pathologists
are not able to spot every true cancer cell since no
cytopathological scoring system used for cytology diagnosis at
present is perfect. A DLS learnt from pathologists’ annotations
inevitably inherited these bias and errors. Therefore, as
pathologists had failed to perform excellent in the extra test set
Frontiers in Oncology | www.frontiersin.org 8
themselves, the DLS would only detect cancer cells with
additional difficulties.

The results of the DLS performance to predict malignancy
showed a relatively high specificity. The sensitivity, however,
was not as good as the specificity. This indicated that most cases
predicted to have tissue malignancy were indeed patients with
UC, while some patients with UC were not successfully
identified. This may be attributed to the fact that the DLS still
needs further improvement or that some UCs do not present
morphologically abnormal cells in urine. Meanwhile, it was not
necessary to spot every cancer cell to make a prediction.
Instead, it was adequate to find most of the cancer cells while
mistaking as few normal cells as possible. These successfully
spotted cancer cells were likely to be among the most atypical
and, thus, gave the highest scores in an image. Biologically, it
was also the patients whose cells in cytology had a higher degree
of atypia who were more likely to get UC. Future studies are
needed to identify UC in those patients without abnormal cells
in urine.

There is currently no gold standard for cyto-histo correlation
in urine. Many argue that a negative cytology with a concurrent
positive surgical result is not a false negative. Similarly, a positive
urine followed by a negative surgical result is not a false positive.
FIGURE 6 | Different designs in between different DLSs. The current DLS could make both cytopathological diagnosis and histopathological prediction, yet it did not
need histopathological data in its training.
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However, results in this current study imply that when the DLS
predicts a malignant state, it might focus on characteristics that
are partially same with those used for UC cell detection. This
indicates that there are features on cytology images correlated to
histopathology results. Nevertheless, due to the lack of technical
maneuver to untangle representative features in Faster-RCNN,
we are not able to define each feature and apply them in classical
cytology. This is one of the limitations of this study. Another
limitation is that this is a retrospective study in a single center.
Multicentered prospective studies are warranted to further prove
these findings.

Collectively, the current results demonstrated that DLS
cytology could be used to predict the likelihood of a case to
have histological confirmed malignancy through a cyto-histo
correlation. If a DLS can serve as a risk-stratification tool to
distinguish clinically relevant malignancy at the time of cytology,
urologists can plan in time therapeutic strategies at lower cost
that benefit more patients.
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