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Background: Endoplasmic reticulum (ER) stress had a crucial impact on cell

survival, proliferation, and metastasis in various cancers. However, the role of

ER stress in lung adenocarcinoma remains unclear.

Method: Gene expression and clinical data of lung adenocarcinoma (LUAD)

samples were extracted from The Cancer Genome Atlas (TCGA) and three

Gene Expression Omnibus (GEO) datasets. ER stress score (ERSS) was

constructed based on hub genes selected from 799 ER stress-related genes

by least absolute shrinkage and selection operator (LASSO) regression. A Cox

regression model, integrating ERSS and the TNM stage, was developed to

predict overall survival (OS) in TCGA cohort and was validated in GEO cohorts.

Gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA), and gene

mutation analyses were performed to further understand the molecular

features of ERSS. The tumor immune infiltration was evaluated by ESTIMATE,

CIBERSORT, and xCell algorithms. The receiver operating characteristic (ROC)

curves were used to evaluate the predictive value of the risk model. p< 0.05 was

considered statistically significant.

Results: One hundred fifty-seven differentially expressed genes (DEGs) were

identified between tumor and para-carcinoma tissues, and 45 of them

significantly correlated with OS. Next, we identified 18 hub genes and

constructed ERSS by LASSO regression. Multivariate analysis demonstrated

that higher ERSS (p< 0.0001, hazard ratio (HR) = 3.8, 95%CI: 2.8–5.2) and TNM

stage (p< 0.0001, HR = 1.55, 95%CI: 1.34–1.8) were independent predictors for

worse OS. The prediction model integrating ERSS and TNM stage performed
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well in TCGA cohort (area under the curve (AUC) at five years = 0.748) and three

GEO cohorts (AUC at 5 years = 0.658, 0.717, and 0.739). Pathway enrichment

analysis showed that ERSS significantly correlated with unfolded protein

response. Meanwhile, pathways associated with the cell cycle, growth, and

metabolism were significantly enriched in the high ERSS group. Patients with

SMARCA4, TP53, and EGFRmutations showed significantly higher ERSS (p = 4e

−04, 0.0027, and 0.035, respectively). Tissues with high ERSS exhibited

significantly higher infiltration of M1 macrophages, activated dendritic cells,

and lower infiltration of CD8+ T cells and B cells, which indicate an activated

tumor antigen-presenting but suppressive immune response status.

Conclusion: We developed and validated an ER stress-related risk model that

exhibited great predictive value for OS in patients with LUAD. Our work also

expanded the understanding of the role of ER stress in LUAD.
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Introduction

Lung cancer is the most lethal malignant tumor worldwide

(1) and contributes to the highest morbidity and mortality in

China (2). Lung cancer consists of small cell carcinoma,

adenocarcinoma, squamous cell carcinoma, and large cell

carcinoma. Lung adenocarcinoma (LUAD) accounts for more

than 40% of lung cancer, the most numerous histological type of

lung cancer (3).

Under the condition of proteostasis in normal cells, the sensors

of endoplasmic reticulum (ER) stress, including activating

transcription factors 6 (ATF6), inositol-requiring enzyme 1a
(IRE1a), and PRKR-like ER kinase (PERK), are in an inactivated

state, while in the tumor microenvironment, multiple factors, such

as hypoxia (4), abnormal nutrient supply (5), intracellular

accumulation of reactive oxygen species (ROS) (6), and low pH

(7), can disturb protein folding in ER. Accumulation of misfolded

protein breaks proteostasis, activates sensors, and consequently

drives robust ER stress in cancer cells. The activation of sensors

promotes unfolded protein response (UPR), which restores ER

homeostasis andpromotes cell adaptation to stress and survival (8).

Interestingly, ER stress acts as an oncogenic factor only when it is

moderate,while extremeUPRcausedbyuncontrolledER stresswill

induce cell death (9).

The role of ER stress in LUAD remains controversial. A

study reported that ER stress was upregulated by the

overexpression of POU4F3 and therefore inhibits tumor

progression in LUAD (10). ROS-mediated ER stress

suppresses tumors in lung cancer cells (11). ER stress pathway

can be upregulated by neutrophil arginase-1, released from

activated human neutrophils or dead cells, and induces
02
apoptosis of cancer cells (12). Besides, ER stress is also

reportedly involved in cisplatin resistance in lung cells (13). In

contrast, Yamashita et al. demonstrated that ER stress promotes

epithelial–mesenchymal transition (EMT) and cell invasion in

LUAD (14). Collectively, these findings indicate that ER stress

might be a promising therapeutic target in LUAD, and

comprehensive exploration of the relationship between ERSS

stress and LUAD is necessary.
Methods

Datasets and data collection

Gene expression and clinical data of LUAD patients from

The Cancer Genome Atlas (TCGA) database were obtained via

the UCSC Xena repository (https://xenabrowser.net/) (15). The

GSE30219, GSE31210, and GSE720924 datasets were procured

from the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/). Table 1 shows the clinical

characteristics of patients from four cohorts. ER stress-related

genes were downloaded from GeneCards websites (https://www.

genecards.org/), which provides comprehensive information on

all annotated human genes.
Construction and evaluation of a
prediction model

We developed a prediction model in TCGA cohort and

externally validated the model in GEO cohorts. Differentially
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expressed genes (DEGs) between tumor and para-carcinoma

tissues were identified by the limma R package in TCGA cohort.

Univariate Cox regression analyses were conducted by survival R

package to select overall survival (OS) related genes. Intersecting

genes were identified and visualized by the VennDiagram R

package. The intersecting genes were further analyzed by least

absolute shrinkage and selection operator (LASSO) regression to

seek OS-related genes further, using the glmnet R package.

Expression heatmap of 18 hub DEGs was realized by

ComplexHeatmap R package. The ER stress score (ERSS) was

computed as follows:

ERSS =on
k=1(

n
k)Coefk * Expk

Expk is the expression value of the ERSS genes in the

equation and Coefk is the coefficient of each gene calculated by

LASSO regression. The Kaplan–Meier survival plot and the Cox

proportional-hazards regression were performed by the survival

R package to clarify the predictive value of ERSS for OS. Our

prediction model was constructed based on ERSS and Tumor-

Node-Metastasis (TNM) stage using Cox proportional-hazards

regression, as follows:

Prognostic index

= CoefERSS * ERSS + Coefstage * TNM stage

In this equation, CoefERSS means the coefficient of ERSS.

Coefstage is the coefficient of the TNM stage, including 1, 2, 3, and

4 (representing stages I, II, III, and IV, respectively). Nomogram

was created by the rms R package to visualize the prediction

model. Time-dependent receiver operating characteristic (ROC)

analysis was performed by timeROC and survival R package to
Frontiers in Oncology 03
compare the predictive value of ERSS alone, TNM stage alone,

and prediction model. For external validation, univariate

survival, multivariate survival, and time-dependent ROC

analyses were used to test the model’s performance in three

GEO cohorts.
Clinical and molecular feature analyses
of endoplasmic reticulum stress score

To further explore the biological significance of ERSS, we

analyzed the relationship between clinical, molecular, genetic,

and immunological features and ERSS in patients with LUAD

from TCGA cohort. The correlations between ERSS and clinical

characteristics were analyzed in the ggpubr R package. Univariate

Cox regression analyses were performed to calculate the hazard

ratio (HR) and p-value of ERSS in different subgroups of patients.

The results of subgroup survival analyses were visualized via forest

plot by the forestplot R package. Patients were divided into ERSS

high and low groups according to theirmedian value for functional

enrichment analysis. Then pathways of the hallmark, Gene

Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes

(KEGG)were analyzed by theGSVARpackage. The randomForest

R package provided a random forest algorithm to screen gene

mutations most related to ERSS. Estimation of STromal and

Immune cells in MAlignant Tumours using Expression data

(ESTIMATE) (16), cell type identification by estimating relative

subsets of RNA transcripts (CIBERSORT) (17), and xCell (18)

algorithms were performed to evaluate tumor infiltration of the

immune cell by estimate, CIBERSORT, and xCell R

packages, respectively.
TABLE 1 Clinical characteristics of LUAD patients from TCGA and GEO databases.

TCGA (n, %) GSE30219 (n, %) GSE31210 (n, %) GSE72094 (n, %)
Total number 517 (100) 73 (100) 204 (100) 389 (100)

Age (years)

<65 221 (42.7) 51 (69.9) 145 (71.1) 105 (27.0)

≥65 277 (53.6) 22 (30.1) 59 (28.9) 284 (73.0)

Unknown 19 (3.7) 0 (0) 0 (0) 0 (0)

Gender

Male 240 (46.4) 56 (76.7) 95 (46.6) 172 (44.2)

Female 277 (53.6) 17 (33.3) 109 (53.4) 217 (55.8)

Smoking history

Yes 427 (82.6) – 105 (51.5) 297 (76.3)

No 76 (14.7) – 99 (48.5) 29 (7.5)

Unknown 14 (2.7) – 0 (0) 63 (16.2)

TNM stage

I 277 (53.6) 69 (94.5) 162 (79.4) 252 (64.8)

II 122 (23.6) 3 (4.1) 42 (20.6) 65 (16.7)

III 84 (16.2) 1 (1.4) 0 (0) 57 (14.7)

IV 26 (5.0) 0 (0) 0 (0) 15 (3.8)

Unknown 8 (1.6) 0 (0) 0 (0) 0 (0)
LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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Statistical analyses

All statistical analyses and plots were accomplished in R

software (4.1.0). DEGs were defined as p< 0.05 and fold change

>2. The log-rank t-test was used to compare two survival curves

in the Kaplan–Meier plot. The Wilcoxon test was applied to

compare the statistical differences between the two groups with

continuity values. The Kruskal–Wallis H test was employed to

compare multiple groups with continuity values. p< 0.05 was

considered statistically significant.
Results

Development of endoplasmic reticulum
stress score based on 18 endoplasmic
reticulum stress-associated genes

We selected 799 ER stress-associated genes with a relevance

score of >7 from theGeneCardsdatabase. Sevenhundred sixty-four

genes were detected in tumor tissue from LUAD patients in TCGA

cohort (Table S1). One hundred fifty-seven DEGs were identified,

comparing tumor and para-carcinoma tissues (Figure 1). In

univariate Cox regression, 153 genes significantly correlated with

OS. Forty-five intersectinggeneswere identifiedbetweenDEGsand

OS-related genes (Figure 1). Based on these intersecting genes, we

performed LASSO regression and identified 18 OS-related hub

genes (Figures 1D). The heatmap shows the relative gene

expression of the 18 hub genes in tumor and para-carcinoma

tissues (Figure 1). Integrating these 18 genes, we developed ERSS,

which included 11 protective factors (DMD, NR3C2, CFTR,

CYP1A2, MAPT, SYT2, CYP2D6, SCN4A, NUPR1, PIK3CG, and

DERL3) and seven risk factors (SERPINH1,DSG2,GPR37, PCSK9,

TRPA1, F2, and CDKN3) for LUAD survival (Figure 1). The

equation of ERSS was as follows: ERSS = 0.13882291 *

SERPINH1 + 0.09216343 * DSG2 + 0.07294183 * GPR37 +

0.06978185 * PCSK9 + 0.06473978 * TRPA1 + 0.03490076 * F2 +

0.02606376 *CDKN3− 0.01049731 *DMD − 0.01071941 *NR3C2

− 0.01443196 * CFTR − 0.01872414 * CYP1A2 − 0.01915136 *

MAPT− 0.03551274 * SYT2− 0.03613574 *CYP2D6− 0.0400695 *

SCN4A− 0.0432351 *NUPR1− 0.07008271 *PIK3CG− 0.0722234

* DERL3.
Construction and evaluation of a
prediction model by integrating
endoplasmic reticulum stress score and
TNM stage in patients with lung
adenocarcinoma from The Cancer
Genome Atlas cohort

Compared with the low ERSS group, the high ERSS group

showed significantly shorter OS (p< 0.0001; Figure 2). Cox
Frontiers in Oncology 04
proportional-hazards regression demonstrated that higher

ERSS (p< 0.0001; HR = 3.8, 95%CI: 2.8–5.2) and TNM stage

(p< 0.0001; HR = 1.55, 95%CI: 1.34–1.8) were independent

predictors for worse OS (Figure 2). Integrating ERSS and

TNM stage, we constructed a prediction model and visualized

the model by nomogram (Figure 2). The equation of the

prediction model was as follows:

Prognostic index

= 1:563 * TNM Stage  + 3:709 * ERSS

ROC curve analysis showed that ERSS alone had a great

predictive value for OS (area under the curve (AUC) at 5 years =

0.703;Figure2),while theTNMstage showeda lowerpredictivevalue

(AUC at 5 years = 0.685; Figure 2). Interestingly, our prediction

model showed a significantly higher predictive value forOS (AUCat

5 years = 0.748) than for ERSS or TNM stage alone (Figure 2).
External validation of the prediction
model in Gene Expression Omnibus
datasets

To further validate the predictive value of the prediction

model, we used three cohorts from GEO datasets for external

validation. In the GSE30219 cohort, 73 patients were diagnosed

with LUAD, more than 90% of whom were stage I. Patients with

high ERSS had significantly shorter OS in univariate analysis and

multivariate analysis (p = 0.005 and p< 0.001, respectively;

Figures 3B). AUC values at 1, 3, and 5 years of the prediction

model were 0.775, 0.675, and 0.658, respectively (Figure 3).

Interestingly, the TNM stage showed no significant

contribution to OS in multivariate analysis. In GSE31210

datasets, 204 patients were LUAD. Although the statistical

difference was insignificant in the Kaplan–Meier survival

analysis (p = 0.059; Figure 3), high ERSS was a substantial risk

factor for worse OS in Cox regression analysis (p = 0.015;

Figure 3). The prediction model had an excellent predictive

value for predicting 1-year survival (AUC = 0.919; Figure 3) in

this cohort. In another cohort, GSE72094, which had the most

significant number of LUAD patients (n = 389), ERSS still played

as an independent predictor (p = 0.0035 for univariate analysis

and p< 0.001 for multivariate analysis; Figures 3H). Our

prediction model also performed well in this cohort (AUC at

1, 3, and 5 years = 0.695, 0.710, and 0.739, respectively; Figure 3).
The correlation between clinical
characteristics and endoplasmic
reticulum stress score

Next, we analyzed the correlation between clinical

characteristics with ERSS and the predictive value of ERSS in
frontiersin.org
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B

C D

E F

A

FIGURE 1

Identification of key ER stress-related genes correlated with tumorigenesis and survival in LUAD patients from TCGA cohort. (A) Among 764 ER
stress-associated genes, 157 were DEGs between tumor and normal lung tissues. (B) One hundred fifty-three genes significantly correlated with
OS in univariate Cox regression, 45 of which were DEGs. (C, D) LASSO regression and cross-validation identified 18 hub genes that correlated
with OS. (E) Heatmap shows the expression of 18 hub genes. (F) Different hub genes had different coefficients. Among the 18 hub genes, seven
correlated with a worse prognosis, and 11 correlated with a better prognosis. ER, endoplasmic reticulum; LUAD, lung adenocarcinoma; TCGA,
The Cancer Genome Atlas; DEGs, differentially expressed genes; OS, overall survival; LASSO, least absolute shrinkage and selection operator.
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different subgroups inTCGAcohort. ERSS had no correlationwith

age or smoking history (p = 0.5 and 0.16, respectively; Figures 4B).

Women had significantly lower ERSS as compared with men

(p = 0.0033; Figure 4). Besides, higher ERSS also correlated with

the higher TNM stage (Figure 4). For subgroup analysis, higher

ERSS still predicts worse OS inmost of the subgroups (Figure 4). It

should be noted that ERSS had a significant association with OS in

all stages, whether in the early stage or advanced stage.
Frontiers in Oncology 06
The molecular features of endoplasmic
reticulum stress score

We next sought to determine the molecular features of ERSS.

Unfolded protein response pathway is closely related to the

degree of ER stress. Thus, we first calculated the UPR by single

single-sample gene set enrichment analysis (ssGSEA) and

analyzed the correlation between UPR and ERSS, and we
B

C D

E F

A

FIGURE 2

Constructing ERSS to predict OS in LUAD patients from TCGA cohort. (A) Patients with high ERSS showed significantly shorter OS (p< 0.0001). (B)
Cox regression analysis showed that higher TNM stage (p< 0.001, HR = 1.55, 95%CI: 1.34–1.8) and higher ERSS (p< 0.001, HR = 3.83, 95%CI: 2.8–
5.2) were independent predictors for shorter OS. (C) We constructed a prediction model consisting of the TNM stage and ERSS by Cox regression.
Nomogram was used to visualize the Cox model. (D) AUC at 1, 3, and 5 years of ERSS for OS. (E) AUC at 1, 3, and 5 years of TNM stage for OS. (F)
AUC at 1, 3, and 5 years of the prediction model for OS. ERSS, endoplasmic reticulum stress score; LUAD, lung adenocarcinoma; TCGA, The Cancer
Genome Atlas; OS, overall survival; ROC, receiver operating characteristic; AUC, the area under curve. ***p <0.0001.
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found that ERSS positively correlated with UPR (R = 0.38, p< 2.2e

−16; Figure5).Comparedwith the lowERSS group, 643DEGswere

found in the high ERSS group (Figure 5). Hallmark pathway

enrichment showed that the top five gene ratio pathways were

Myc targets V1, E2F targets, Myc targets V2, mTORC1 signaling,

and MARK G2M Checkpoint (Figure 5). The top five significant

KEGG terms enriched were Proteasome, DNA replication,

spliceosome, asthma, and nucleotide excision repair (Figure 5).

The top five important GO BP terms were cell cycle DNA

replication, B-cell receptor signaling pathway, axoneme assembly,

calcium-mediated signaling, and cilium or flagellum-dependent

cell motility (Figure 5). The top five significant GOMF terms were

glycerophospholipid flippase activity, DNA replication origin
Frontiers in Oncology 07
binding, single-stranded DNA helicase activity, DNA secondary

structure binding, and immune receptor activity (Figure5). The top

five significant GO CC terms were MHC class II protein complex,

9PLUS2 motile cilium, ciliary plasm, external side of the plasma

membrane, and condensed chromosome centromeric

region (Figure 5).
Endoplasmic reticulum stress score was
associated with driver gene mutations

Using a random forest algorithm, we selected gene

mutations closely correlated with ERSS and listed genes with
B

C D

E F

A

FIGURE 3

External validation of ERSS in GEO cohorts. (A, B) Validation in GSE30219 cohort showed that high ERSS significantly correlated with shorter OS
(p = 0.005) and independently predicted shorter OS (p< 0.001). (C) The AUC values of ERSS for 1-, 3-, and 5-year OS were 0.775, 0.675, and
0.658, respectively. (D) In the GSE31210 cohort, patients with high ERSS showed shorter OS (p = 0.059). (E) Higher ERSS was an independent
predictor for worse OS (p = 0.015). (F) The AUC values of ERSS for 1, 3, and 5 years OS were 0.919, 0.799, and 0.717, respectively. (G, H)
Similarly, univariate and multivariate analyses showed that high ERSS predicts worse OS in the GSE72094 cohort. (F) The AUC values of ERSS for
1, 3, and 5 years OS were 0.695, 0.710, and 0.739, respectively. ERSS, endoplasmic reticulum stress score; OS, overall survival; AUC, the area
under curve. *p <0.05, **p <0.01, ***p <0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.902353
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shu et al. 10.3389/fonc.2022.902353
top 30 importance (Figure 6). SMARCA4 mutation had the

highest importance, and patients with SMARCA4 mutation

showed significantly higher ERSS (p = 4e−04; Figure 6).

Meanwhile, we found driver gene mutations were also

associated with ERSS. TP53 mutation group had substantially

higher ERSS (p = 0.0027; Figure 6). In contrast, patients with
Frontiers in Oncology 08
EGFR mutation had lower ERSS (p = 0.035; Figure 6), which

aroused our interest in exploring the prognostic significance of

ERSS in patients with different EGFR mutation statuses. The

results showed that high ERSS predicted worse OS, whether in

patients with EGFR mutation or wild-type (both p<

0.0001; Figures 6F).
B

C D

E

A

FIGURE 4

The correlation between clinical features and ERSS in TCGA cohort. (A) ERSS had no correlation with age. (B) Men had higher ERSS compared
with women. (C) Smoking history had no association with ERSS. (D) Patients with advanced stage showed significantly higher ERSS than patients
with early stage. (E) High ERSS significantly correlated with worse OS in different subgroups. ERSS, endoplasmic reticulum stress score; TCGA,
The Cancer Genome Atlas; OS, overall survival. *p <0.05, **p <0.01, ns means p >0.05.
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Endoplasmic reticulum stress score was
associated with tumor infiltration of
lymphocytes

To understand the association between ERSS and tumor immune

microenvironment, we performed ESTIMATE, CIBERSORT, and

xCell algorithms in patients with lung adenocarcinoma from TCGA

database and analyzed the relationship between ERSS and immune

checkpoints. The immune score was calculated by ESTIMATE

algorithms and represents the abundance of tumor infiltration of

immune cell negatively correlated with ERSS (p = 3.1e−06, R = −0.2;

Figure 7), which suggested that higher ERSS was accomplished with

less immune cell infiltration. CIBERSORT algorithms showed that

M2macrophages accounted for the highest proportion of all immune

cells, followed by resting CD4+memory T cells (Figure 7). Compared

with the low ERSS groups, the high ERSS group had significantly

higher infiltration of antigen-presenting cells, such as M1

macrophages and activated dendritic cells, but lower memory B

cells (Figure 7). The xCell algorithms showed that Th1 cells (p = 2.8e
Frontiers in Oncology 09
−08, R = 0.24) and Th2 cells (p< 2.2e−16, R = 0.48) were positively

associated and regulatory T cells (p = 0.033, R = −0.094) were

negatively associated with ERSS (Figures 7–F). Meanwhile, xCell

algorithms showed that ERSS negatively correlated with infiltration of

B cells (p = 1e−09, R = −0.26), CD8+ T cells (p = 5.1e−05, R = −0.18),

and central memory CD8+ T cells (p = 0.00098, R = −0.14)

(Figures 7–I). Gene expression association analyses suggested that

higher ERSS was significantly associated with lower expression of

CTLA-4 (p = 5e−05, R = −0.18) and PD-1 (p = 0.0067, R = −0.12)

and higher expression of PD-L1 (p = 0.022, R = 0.1) (Figures 7–L).
Discussion

Machine learning has many advantages in analyzing datasets

with large samples and features compared with traditional

biostatistical methods, which makes it deployable to build

prediction models for survival and treatment efficacy in cancer

patients (19, 20). LASSO and Cox regression analyses are
A B C

D E

F G

FIGURE 5

The pathway enrichment analysis explored molecular features of ERSS in TCGA cohort. (A) Single-sample GSEA showed that ERSS significantly
and positively correlated with unfolded protein response pathway. (B) Differentially expressed genes were analyzed between patients with high
ERSS and low ERSS. (C) The hallmark pathways significantly activated or suppressed in high ERSS group. The top 20 significant KEGG (D), GO BP
(E), MF (F), and CC (G) terms enriched in high ERSS group. ERSS, endoplasmic reticulum stress score; GSEA, gene set enrichment analysis;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process; MF, molecular function; CC, cell component.
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commonly employed as machine learning methods to develop

risk models (21). In this study, we identified 18 hub genes among

799 ER stress-related genes in 563 patients with LUAD by

LASSO regression. Cox regression analysis demonstrated that

higher ERSS and TNM stage can independently predict worse

OS. Integrating both, we constructed a simple and efficient

prediction model. To promote the clinical application of the

model, we also developed a nomogram only combing ERSS and

TNM stages. Previous studies have reported risk models for

LUAD (22–26). The following differences distinguish our study

from other prediction models. First, external validation is one of

the most important parts of model destruction. Some studies

used one or two external cohorts (25, 26), while some only used

internal validation (22–24). We used three independent external

cohorts, and the model performed well in all cohorts. Second,

our model consists of ER stress-related hub genes. Thus, the

model also expanded our understanding of ER stress in LUAD.

Of the 18 hub genes, 11 were protective factors (DMD,

NR3C2, CFTR, CYP1A2, MAPT, SYT2, CYP2D6, SCN4A,

NUPR1, PIK3CG, and DERL3), and seven were risk factors

(SERPINH1, DSG2, GPR37, PCSK9, TRPA1, F2, and CDKN3).

DMD, the Duchenne muscular dystrophy gene, encodes

dystrophin protein and is known for its role in the disease of

the same name (27). Multiple studies reported that DMD

suppresses tumor progression in human cancer (28). NR3C2

(nuclear receptor subfamily 3, group C, member 2) is a

transcription factor and encodes mineralocorticoid receptor

protein, which inhibits cancer angiogenesis (29). A recent
Frontiers in Oncology 10
study demonstrated that NR3C2 suppresses colon cancer

progression by inhibiting the AKT/ERK pathway (30). CFTR

(cystic fibrosis transmembrane conductance regulator), which

belongs to the ATP-binding cassette transporter superfamily,

regulates several fundamental cellular processes, including

development and epithelial differentiation (31). Studies

reported that CFTR acts as a tumor suppressor and is

downregulated in lung cancer (32), and dysfunctional CFTR is

associated with cancer progression (33). CYP1A2 (cytochrome

P450 1A2) and CYP2D6 (cytochrome P450 2D6) both belong to

the cytochrome P450 superfamily, which regulates the

metabolism of commonly used drugs and is predominantly

distributed in the liver (34). In hepatocellular carcinoma,

CYP1A2 inhibits cancer progression through antagonizing

HGF/MET signaling (35). CYP2D6 is necessary for the

activation of tamoxifen, and higher expression of CYP2D6 is

associated with better survival in patients with breast cancer

(36).MAPT, encoding microtubule-associated protein tau, plays

an important role in nervous system disease (37). Low

expression of MAPT has been linked to poor prognosis in

prostate and clear cell renal cell cancer (38, 39). NUPR1

(nuclear protein 1) reduces ER stress by interacting with eIF2a
(40) and plays a tumor promoter role in lung cancer (41, 42).

However, the influence of NUPR1 on cancer behavior is still

unclear (43). PIK3CG is a candidate suppressor for myeloid

tumors (44). Silencing the PIK3CG inhibits the PI3K-Akt/PKB

pathway, resulting in tumorigenesis and progression of

colorectal cancer (45). However, recent studies demonstrated
B C

D E F

A

FIGURE 6

ERSS correlated with driver gene mutations. (A) Random forest selected the top 30 important mutant genes that associated with ERSS. (B, C)
Patients with SMARCA4 and TP53 mutations showed significantly higher ERSS (p = 4e−04 and 0.0027, respectively). (D) Patients with EGFR
mutation showed lower ERSS (p = 0.035). (E, F) Patients with high ERSS had significantly longer OS neither in EGFR mutant nor in wild-type
group (both p< 0.0001). ERSS, endoplasmic reticulum stress score; TCGA, The Cancer Genome Atlas; OS, overall survival.
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FIGURE 7

High ERSS correlated with a suppressive tumor immune microenvironment. (A) ESTIMATE algorithms showed that ERSS negatively correlated
with immune score (p = 3.1e−06, R = −0.2), suggesting that higher ERSS was accomplished with less immune cell infiltration. (B) Twenty-two
types of immune cells were evaluated by CIBERSORT algorithms. M2 macrophages accounted for the highest proportion of all immune cells,
followed by resting CD4+ memory T cells. (C) The level of infiltrating immune cells was well compared by a multi-group box diagram between
high and low ERSS groups (median value of ERSS was used to distinguish high and low groups). Compared with the low ERSS groups, the high
ERSS group had significantly higher infiltration of M0 macrophages, M1 macrophages, resting NK cells, activated dendritic cells, and activated
CD4+ memory T cells and lower infiltration of resting CD4+ memory T cells, resting mast cells, plasma cells, monocytes, memory B cells, and
resting dendritic cells. (D–F) We performed xCell algorithms to further clarify the changes in different subtypes of CD4+T cells. Th1 cells (p =
2.8e−08, R = 0.24) and Th2 cells (p< 2.2e-16, R = 0.48) were positively with ERSS. Regulatory T cells were negatively associated with ERSS (p =
0.033, R = −0.094). (G–I) Meanwhile, xCell algorithms showed that ERSS negatively correlated with infiltration of B cells (p = 1e−09, R = −0.26),
CD8+ T cells (p = 5.1e−05, R = −0.18), and central memory CD8+ T cells (p = 0.00098, R = −0.14). (J–L) Higher ERSS was significantly
associated with lower expression of CTLA-4 (p = 5e−05, R = −0.18) and PD-1 (p = 0.0067, R = −0.12) and higher expression of PD-L1 (p =
0.022, R = 0.1). ERSS, endoplasmic reticulum stress score; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma. *p <0.05, **p <0.01,
***p <0.0001, and ns means p >0.05.
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that PIK3CG promotes tumor progression in prostate cancer and

breast cancer (46, 47). DERL3 encodes a derlin-3 protein that

belongs to the Derlin family and functions in the endoplasmic

reticulum. During the UPR, DERL3 is upregulated by ATF6 and

enhances the degradation of misfolded proteins (48). Several

studies reported the role of DERL3 as a tumor suppressor in

colorectal (49), gastric (50), and lung cancers (51). SERPINH1

(serpin peptidase inhibitor, clade H, member 1) is a kind of

serine proteinase inhibitor. A pan-cancer analysis reported that

SERPINH1 strongly correlated with worse survival in various

cancers (52). DEG2 (desmoglein2) is a component of the

desmosome-mediated intercellular adhesion complex. High

expression of DEG2 correlated with poor survival in patients

with colon (53), cervical (54), and lung cancers (55). A recent

study demonstrated thatDEG2mediated hypoxia-derived tumor

metastasis in breast cancer (56). PCSK9 (proprotein convertase

subtilisin/kexin type-9), a critical protein that regulates

cholesterol metabolism, promotes the incidence and

progression of several cancers (57). A recent study reported

that PCSK9 inhibits the expression ofMHC-I on tumor cells and

consequently decreases tumor infiltration of cytotoxic T cells.

Meanwhile, inhibiting PCSK9 effectively enhances PD-1

inhibitor therapy for cancers (58). TRPA1 belongs to the

transient receptor potential family and regulates the

transportation of Ca(2+). TRPA1 decreases ROS accumulation

in cancer cells and thus promotes cell survival (59). CDKN3

(cyclin-dependent kinase inhibitor 3) plays a vital role in cell

cycle regulation. Deletion, mutation, and overexpression of

CDKN3 were associated with tumor progression in several

cancers (60, 61). The role of SYT2, SCN4A, GPR37, and F2 in

cancers has not been well studied.

To expand our understanding of the role of ERSS in LUAD,

we further exploited the molecular features of ERSS.

Enrichment analysis showed that besides UPR, pathways

related to cell cycle, growth, and metabolism were

significantly enriched in the high ERSS group, suggesting that

ER stress was closely correlated with tumorigenesis and

progression. The status of gene mutation and tumor immune

microenvironment (TIME) play crucial roles in the treatment

strategies for patients with LUAD. This study found that

SMARCA4 mutation is the most relevant mutation to ERSS,

and patients with SMARCA4 mutation showed significantly

higher ERSS. SMARCA4, which encodes a fundamental unit of

SWI/SNF (switch/sucrose non-fermentable) chromatin

remodeling complex, acts as a tumor suppressor but is

frequently inactivated by mutations in non-small cell lung

cancer (NSCLC) (62). In patients with metastatic NSCLC,

SMARCA4 mutation significantly correlated with shorter OS

(63). Currently, no researchers have reported the relationship

between SMARCA4 mutation and ER stress. EGFR mutations

account for nearly 50% of Asian patients with advanced

NSCLC. Tyrosine kinase inhibitors (TKIs) that targeted

EGFR mutation were the standard first-line treatment for
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these patients (64, 65). However, EGFR-targeted therapy

usually develops drug resistance after 10–14 months (66). An

in vivo study reported that ROS-mediated ERSS might affect

the efficacy of EGFR inhibitors in EGFR wild-type cells (67).

We found that patients with EGFR mutation had significantly

higher ERSS, and ERSS was a powerful predictor for prognosis

in patients with EGFR mutation, which indicates that ERSS

might help overcome EGFR-TKI resistance by screening high-

risk population in EGFR mutant patients. The immune

phenotype analysis demonstrated that the high ERSS group

had a distinct tumor immune microenvironment as compared

with a low ERSS group. Tumors from patients with high ERSS

had higher infiltration of antigen-presenting cells, such as M1

macrophages and activated dendritic cells. However, ERSS

negatively correlated with the infiltration of CD8+ T cells

and B cells and positively correlated with the expression of

PD-L1. These results indicated that the antigen presentation in

tumor tissue with higher ERSS might be more activated, but the

anti-tumor function was more suppressive because of other

regulatory factors, such as the increased expression of PD-L1.

Considering the close correlation between ERSS and the

immune status of TIME, it is worthwhile to further explore

the role of ER stress in immune therapy.

This study has several limitations. First, we did not validate

the predicted value of the 18 hub genes by experiments in vitro

or in vivo. More functional experiments are necessary to specify

the biological roles of every hub gene. Second, although the ERSS

showed independent predictive value for OS in external cohorts

from GEO datasets, further research remains necessary to

confirm the performance of ERSS in expanded cohorts. In

addition, our study indicated that ERSS correlated with the

efficacy of targeted therapy and immune therapy; however, the

correlation needs to be validated in other patients

under treatment.
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