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The value of intravoxel
incoherent motion model-based
diffusion-weighted imaging for
predicting long-term outcomes
in nasopharyngeal carcinoma

Yuhui Qin †, Chen Chen †, Haotian Chen and Fabao Gao*

Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
Objective: The aim of this study was to evaluate the prognostic value for survival

of parameters derived from intravoxel incoherent motion diffusion-weighted

imaging (IVIM-DWI) in patients with nasopharyngeal carcinoma (NPC).

Materials: Baseline IVIM-DWI was performed on 97 newly diagnosed NPC

patients in this prospective study. The relationships between the pretreatment

IVIM-DWI parametric values (apparent diffusion coefficient (ADC), D, D*, and f)

of the primary tumors and the patients’ 3-year survival were analyzed in 97 NPC

patients who received chemoradiotherapy. The cutoff values of IVIM

parameters for local relapse-free survival (LRFS) were identified by a non-

parametric log-rank test. The local-regional relapse-free survival (LRRFS), LRFS,

regional relapse-free survival (RRFS), distant metastasis-free survival (DMFS),

progression-free survival (PFS), and overall survival (OS) rates were calculated

by using the Kaplan–Meier method. A Cox proportional hazards model was

used to explore the independent predictors for prognosis.

Results: There were 97 participants (mean age, 48.4 ± 10.5 years; 65 men)

analyzed. Non-parametric log-rank test results showed that the optimal cutoff

values of ADC, D, D*, and f were 0.897 × 10−3 mm2/s, 0.699 × 10−3 mm2/s,

8.71 × 10−3 mm2/s, and 0.198%, respectively. According to the univariable

analysis, the higher ADC group demonstrated significantly higher OS rates than

the low ADC group (p = 0.036), the higher D group showed significantly higher

LRFS and OS rates than the low D group (p = 0.028 and p = 0.017, respectively),

and the higher D* group exhibited significantly higher LRFS and OS rates than

the lower D* group (p = 0.001 and p = 0.002, respectively). Multivariable

analyses indicated that ADC and Dwere the independent prognostic factors for
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LRFS (p = 0.041 and p = 0.037, respectively), D was an independent prognostic

factor for LRRFS (p = 0.045), D* and f were the independent prognostic factors

for OS (p = 0.019 and 0.029, respectively), and f acted was an independent

prognostic factor for DMFS (p = 0.020).

Conclusions: Baseline IVIM-DWI perfusion parameters ADC and D, together

with diffusion parameter D*, could act as useful factors for predicting long-

term outcomes and selecting high-risk patients with NPC.
KEYWORDS

nasopharyngeal carcinoma, chemoradiotherapy, prognosis, intravoxel incoherent
motion, diffusion-weighted imaging, long-term outcome
Introduction

Nasopharyngeal carcinoma (NPC) is an aggressive tumor

that is common in Southern China and Southeast Asia (1).

Unlike most other head and neck cancer, which are mainly

treated by surgery, definitive radiotherapy and concurrent

chemoradiotherapy are the primary treatment for NPC (2–4).

With the application of advanced radiation therapy equipment

and multimodal therapy, the 5-year overall survival rate of NPC

has improved obviously with a range from 75% to 83.5%

according to the latest studies from Southern China (5, 6).

However, local residue and recurrence remain the main

reasons for treatment failure for NPC (7, 8). Therefore, the

management of recurrent NPC remains a challenging clinical

problem. Predicting the prognosis for chemoradiotherapy may

provide helpful information to improve the therapeutic regimen,

so it is important to identify biomarkers that are valuable to

predict outcomes and provide more accurate information on the

selection of the most effective treatment strategy for NPC.

Nowadays, magnetic resonance imaging (MRI) plays an

important role in managing NPC patients such as clinical

staging, detecting lesions, and evaluating therapy effects (9–

12). Convention morphology-based MRI provides little benefit

in the prediction of treatment effects in NPC. Diffusion-weighted

imaging (DWI) has the ability to measure the motion of water

molecules by calculating the apparent diffusion coefficient

(ADC) value; thus, it can quantitatively analyze the tissue

microstructure (11). Intravoxel incoherent motion diffusion-

weighted imaging (IVIM-DWI) is an advanced DWI

technique based on the bi-exponential model (13), which can

simultaneously obtain diffusion and perfusion information in

tissues. Previous studies have shown the potential of IVIM-DWI

in the evaluation of head and neck cancer (11, 14–16). Most of

these studies have focused on estimating therapeutic effects

within 6 months (11, 14, 17), and few reports have assessed
02
the usefulness of IVIM-DWI in predicting the long-term

outcome in NPC. Thus, the present study was conducted to

evaluate the utility of IVIM-DWI parameters derived from the

primary lesion in predicting the long-term outcome for NPC.
Methods and materials

Patient selection and treatment

This prospective study was approved by the Medical Ethics

Committee of our institution. Informed consent documents

were signed by all participants. Patient inclusion criteria were

as follows: a) was diagnosed with NPC and had pathological

confirmation of NPC, b) age ≥ 18 years, and c) had plans for

chemoradiotherapy. Patient exclusion criteria were as follows: a)

had previously undergone anti-tumor therapy for NPC; b) did

not sign the informed consent; c) had contraindications for MRI,

chemotherapy, or radiotherapy; d) allergic to gadolinium

contrast media. Patients were eliminated if a) their imaging

quality was poor, b) they dropped out of treatment, c) intensity-

modulated radiotherapy (IMRT) was discontinued for more

than 1 week, or d) they received anti-tumor treatment other

than chemoradiotherapy.

The primary tumor (T-staging) and nodal metastases (N-

staging) were determined according to the 8th edition of the

Union for International Cancer Control/American Joint

Committee on Cancer (UICC/AJCC) staging system (18). All

patients underwent contrast-enhanced MRI on the neck and

nasopharynx, chest X-ray, chest CT, liver ultrasonography or CT

scan, and a whole-body single-photon emission computed

tomography (SPECT) bone imaging, together with a complete

medical history, physical checkup, hematology, and serum

biochemistry profiles for baseline evaluation. Those patients at

risk of distant metastases received a whole-body 18F-
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fluorodeoxyglucose positron emission tomography (PET)/CT. A

biopsy of the primary lesion before treatment was performed to

determine pathological types for NPC. Patients received IMRT

combined with induction, concurrent , or adjuvant

chemotherapy according to their clinical stage.

All patients received IMRT for their primary and neck lesions.

In total, 87 patients with stage II–IVa/b were treated with platinum-

based induction chemotherapy + chemoradiotherapy, concurrent

chemoradiotherapy, or concurrent chemoradiotherapy + adjuvant

chemotherapy. Ten cases with stage IVc underwent platinum-based

doublet chemotherapy for 3 to 6 cycles or until the presence of

disease progression, death, or intolerable toxicities or at the patients’

request to cease.
MRI scans

The MRI examinations were performed on a 1.5-Tesla MRI

scanner (Optima MR360, GE Healthcare, Milwaukee, WI, USA)

at baseline using a head and neck coil. The imaging protocols

included axial T1-weighted spin-echo images (repetition time

(TR) = 580 ms, echo time (TE) = 7.8 ms, field of view (FOV) = 38

cm, slice thickness = 5 mm, slice space = 1 mm, slice number =

36, number of excitations (NEX) = 2) and axial T2- weighted fast

spin-echo images (TR = 6,289 ms, TE = 85 ms, FOV = 38 cm,

slice thickness = 5 mm, slice space = 1 mm, slice number = 36,

NEX = 2).
Intravoxel incoherent motion diffusion-
weighted imaging protocol

After conventional MRI scans, IVIM-DWI was performed

using a single-shot diffusion-weighted spin-echo echo-planar

(SS-SE-DW-EPI) sequence with 10 different b values (0, 50, 80,

100, 150, 200, 400, 600, 800, and 1,000 s/mm2). Multifarious b

values were measured in one series by adjusted lookup table of

gradient directions. Parallel imaging with an acceleration factor

of 2 was applied. The susceptibility artifacts were minimized by a

local shim box covering the nasopharynx. Twelve axial slices

covering the nasopharynx were obtained using the following

parameters: FOV = 22 cm, slice thickness = 5 mm, slice space = 1

mm, TR/TE = 4,225/106 ms, matrix = 128 × 130, NEX = 4, and

scan time = 2 min 55 s.
Data analysis

All the MRI data were transmitted to an Advantage

Workstation (version AW 4.6; GE Medical Systems, Milwaukee,

WI, USA) for postprocessing. IVIM analysis was performed using a

MADC Kit, and four parameters derived from IVIM-DWI (ADC;
Frontiers in Oncology 03
pure diffusion coefficient, D; pseudo-diffusion coefficient, D*;

perfusion fraction, f) of each primary NPC lesion were generated

on the basis of a pixel-by-pixel fitting according to the Levenberg–

Marquardt algorithm (19). The IVIM-DWI parametric values for

each tumor were measured by two radiologists (A and B; both had

more than 10 years of experience in head and neck radiology)

independently and double-blindly. Tomeasure the four IVIM-DWI

parametric values, the axial image covering the widest cross-section

of the primary tumor was determined using the T2-weighted and

contrast-enhanced T1-weighted images as references. Then free-

hand regions of interest (ROIs) were delineated on the axial T2-

weighted images by each observer for each tumor at its widest

section to cover as much of the nasopharyngeal tumor as possible

but avoiding the areas of necrosis, air, large vessels, and adjacent

anatomical structures (i.e., fat, muscle, and bone). To avoid volume

averaging, the most superior and inferior slices for each tumor were

excluded. According to all the ROIs of the tumor, a three-

dimensional (3D) volume of interest (VOI) for this tumor was

generated by the MADC kit automatically and then output the

mean ADC value of this VOI. Other IVIM-DWI maps were

evaluated as the same, and the corresponding parametric values

were generated.
Clinical endpoint

Patients received regular clinical and endoscopic examinations

every 3months in the first 2 years and every 6months for the next 3

years or until death. General examination (clinical symptoms and

physical examination) and imaging examination were performed

for the follow-up of all patients. Local recurrence was determined

based on pathological diagnosis (endoscopic biopsy) or MRI

findings (detection of a new nasopharyngeal mass, continuous

increase in tumor size, or progressive erosion of the skull base

bone). Any cervical lymph node recurrence detected by physical

examination, needle aspiration biopsy, and/or MRI exam on the

neck was regarded as a regional relapse. Local-regional relapse was

defined as a patient who had both local and regional recurrence.

Distant failure was defined as the detection of metastases in any

location (except for the cervical node) such as in the bone, liver,

lung, or mediastinum. If necessary, PET/CT would be performed to

determine relapse or metastases for doubtful cases.
Statistical analysis

Local-regional relapse-free survival (LRRFS), local relapse-

free survival (LRFS), regional relapse-free survival (RRFS),

distant metastasis-free survival (DMFS), progression-free

survival (PFS), and overall survival (OS) were the survival

endpoints in the present study. LRRFS, LRFS, RRFS, DMFS,

and OS were respectively defined as the period from the initial
frontiersin.org
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day of therapy to the first local-regional relapse, local recurrence,

regional relapse, distant metastasis, and death. PFS was

measured from the first day of treatment to disease

progression or death from any cause (20, 21).

SPSS version 22.0 (SPSS Inc., Chicago, IL, USA) was used for

statistical analyses. p < 0.05 was considered significant. The

interclass correlation coefficient (ICC) was used to evaluate the

interobserver agreement for IVIM parameters and was

interpreted as follows: 0.21–0.40, fair correlation; 0.41–0.60,

moderate correlation; 0.61–0.80, good correlation; 0.81–1.00,

excellent correlation (22). The cutoff values of IVIM

parameters for LRFS were identified by a non-parametric log-

rank test. The Kaplan–Meier estimator with the log-rank test

was utilized to calculate the survival rate in order to compare the

differences between groups. To identify independent predictors

for the outcome, significant IVIM-DWI- derived parameters,

together with confounding factors (gender, age, clinical stage,

treatment regimen, and pathological type), were selected as

input variables in subsequent multivariate logistic regression

analysis based on the Cox proportional hazards model to

investigate their associations with survival.
Results

Study participants

From November 2016 to May 2018, a total of 116 patients

were initially enrolled. The flowchart shows the initial number of

patients, patients excluded, and the final study population in this

study (Figure 1). Finally, 97 patients (48.4 ± 10.5 years [standard

deviation]; age range, 26–67 years; 65 men and 32 women) were
Frontiers in Oncology 04
enrolled, with clinical stages of II–IV. The mean follow-up

period for the 97 NPC patients was 38.7 months (range, 8–49

months). During the follow-up period, eight patients were lost to

follow-up, and their survival time was 8–19 months. The clinical

characteristics of the patient cohort in this study are shown

in Table 1.
Clinical and intravoxel incoherent motion
diffusion-weighted imaging findings

Table 1 shows the clinical features of the 97 patients and

their demographics. All the clinical factors were not associated

with LRFS in the study; their p-value, hazard ratio (HR), and

95% confidence interval (CI) were as follows: sex, HR, 3.271;

95% CI: 0.734–14.576, p = 0.120; age, HR, 1.057; 95% CI: 0.985–

1.135, p = 0.122; T stage, HR, 1.711; 95% CI: 0.158–18.491,

p = 0.658; N stage, HR, 0.770; 95% CI: 0.072–8.284, p = 0.829;

M stage, HR, 0; 95% CI: 0–0, p = 0.819; overall stage, HR, 0.385;

95% CI: 0.020–7.445, p = 0.528; pathological type, HR,

0.694; 95% CI: 0.111– 4.317, p = 0.695; treatment regimen,

HR, 0.109; 95% CI: 0.004–2.916, p = 0.186 (Table 1). The ICC

values of ADC, D, D*, and f were 0.82 (95% CI: 0.79–0.96), 0.94

(95% CI: 0.73–0.98), 0.85 (95% CI: 0.41–0.94), and 0.71 (95% CI:

0.61–0.90), respectively, indicating that the consistency of the

data from the two observers is good. Therefore, the IVIM-DWI

data obtained by the first observer were calculated in this study.

The average values of ADC, D, D*, and f in the selected ROI

were 0.960 × 10−3 ± 0.202 mm2/s, 0.720 × 10−3 ± 0.180 mm2/s,

18.823 × 10−3 ± 17.379 mm2/s, and 0.278% ± 0.092%,

respectively (Table 1). Spearman’s rank correlation coefficient

showed that ADC was correlated with D (Spearman’s r = 0.631,
FIGURE 1

The flowchart of patient inclusion and exclusion.
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p = 0.012), and there was no correlation between ADC and D*

(Spearman’s r = 0.149, p = 0.144), ADC and f (Spearman’s

r = 0.126, p = 0.222), D and D* (Spearman’s r = 0.008, p = 0.940),

D and f (Spearman’s r = 0.097, p = 0.349), and D* and f

(Spearman’s r = 0.107, p = 0.298), as shown in Table 2.
Intravoxel incoherent motion diffusion-
weighted imaging parameters for
predicting survival outcomes

By using a non-parametric log-rank test, the optimal thresholds

of the IVIM-DWI parameters for LRFS were set at 0.897 ×

10−3 mm2/s for ADC (>0.897 × 10−3 mm2/s, n = 57; ≤0.897 ×
Frontiers in Oncology 05
10−3 mm2/s, n = 40), 0.699 × 10−3 mm2/s for D (>0.699 × 10−3

mm2/s, n = 48; ≤0.699 × 10−3 mm2/s, n = 49), 8.71 × 10−3 mm2/s for

D* (>8.71 × 10−3 mm2/s, n = 66; ≤8.71 × 10−3 mm2/s, n = 31), and

0.198% for f (>0.198%, n = 73; ≤0.198%, n = 24). According to the

results of the log-rank test, the higher ADC group demonstrated

significantly higher OS rates than the low ADC group (p = 0.036),

the higher D group showed significantly higher LRFS and OS rates

than the low D group (p = 0.028 and p = 0.017, respectively), and

the higher D* group exhibited significantly higher LRFS and OS

than the lower D* group (p = 0.001 and p = 0.002, respectively).

There were no significant differences in the LRFS, LRRFS, RRFS,

DMFS, and PFS between the high ADC and low ADC groups; in

the LRRFS, RRFS, DMFS, and PFS between the high D and low D

groups; in the LRRFS, RRFS, DMFS, and PFS between the high D*
TABLE 1 Clinical and imaging features of the 97 patients with nasopharyngeal carcinoma.

Characteristic Result p

Sex 0.120

Men 65 (67.0%)

Women 32 (33.0%)

Mean age (years) 0.122

All patients 48.4 ± 10.5

Men 49.0 ± 10.0

Women 47.1 ± 11.5

T stage 0.658

T1 12 (12.3%)

T2 33 (33.9%)

T3 26 (26.9%)

T4 26 (26.9%)

N stage 0.829

N0 4 (4.1%)

N1 12 (12.3%)

N2 57 (58.8%)

N3 24 (24.8%)

M stage 0.819

M0 93 (95.8%)

M1 4 (4.2%)

Overall stage 0.385

II 8 (8.2%)

III 43 (44.3%)

IV 46 (47.5%)

Pathological type 0.695

Keratinizing 6 (6.2%)

Differentiated non-keratinizing 72 (74.2%)

Undifferentiated non-keratinizing 19 (19.6%)

Treatment regimen 0.186

Chemoradiotherapy 87 (89.7%)

Chemotherapy 4 (4.1%)

Radiotherapy 6 (6.2%)

(Continued)
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and lowD* groups; and in the LRRFS, LRFS, OS, RRFS, DMFS, and

PFS between the high f and low f groups (all p > 0.05, Table 3).

Table 1 shows the numerical values of the parameters. IVIM

parametric maps of ADC, D, D*, and f in two patients are

illustrated in Figure 2. The Kaplan–Meier survival curves for

LRFS and OS stratified by D, D*, and ADC are shown in

Figures 3A, B, 4A, B, and 5, respectively.
Independent prognostic parameters for
nasopharyngeal carcinoma

When IVIM-DWI derived parameters, together with

confounding factors (sex, age, clinical stage, treatment regimen,
Frontiers in Oncology 06
and pathological type), were calculated in multivariable Cox

proportional hazards analysis, ADC and D were found to be the

independent prognostic factors for LRFS (p = 0.041 and p = 0.037,

respectively), D was found to be the independent prognostic factor

for LRRFS (p = 0.045), D* and f were the independent prognostic

factors for OS (p = 0.019 and 0.029, respectively), and f acted as an

independent prognostic factor for DMFS (p = 0.020) (Table 4).
Discussion

Compared with traditional DWI models, the IVIM model fits

signal attenuation in a bi-exponential decay mode, which enables

its parameters to more accurately reflect water molecular diffusion

and blood perfusion (19). In recent years, the IVIM model has

been widely used to investigate renal perfusion and characterize

prostate and breast cancers (23–25). In this study, we aimed to

determine the feasibility of perfusion and diffusion parameters

derived from IVIM-DWI in predicting the long-term outcome for

NPC. Data from this study showed that baseline IVIM-DWI

parameters D, D*, and ADC were associated with the prognosis of

NPC, but f showed no relationship with the treatment outcome.

We found that patients with lower ADC values demonstrated

significantly lower OS rates than the patients with higher ADC

values, the higher D group showed significantly higher LRFS and

OS rates than the low D group, and the higher D* group exhibited

significantly higher LRFS and OS than the lower D* group.

Moreover, ADC and D acted as independent prognostic factors
TABLE 2 Correlations between ADC, D, D*, and f of IVIM-DWI
parameters.

Parameter Spearman’s rank correlation coefficient
(Spearman’s r)

p

ADC and D 0.631 0.012

ADC and D* 0.149 0.144

ADC and f 0.126 0.222

D and D* 0.008 0.940

D and f 0.097 0.349

D* and f 0.107 0.298
IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; ADC, apparent
diffusion coefficient. *p<0.05.
TABLE 1 Continued

Characteristic Result p

Median follow-up (months)† 38 (8-49)

Mean IVIM-DWI parameters

ADC‡ 0.960 ± 0.202 0.062

≤0.897 × 10−3 mm2/s 0.792 ± 0.068

>0.897 × 10−3 mm2/s 1.077 ± 0.180

D‡ 0.720 ± 0.181 0.028

≤0.699 × 10−3 mm2/s 0.568 ± 0.089

>0.699 × 10−3 mm2/s 0.827 ± 0.149

D*‡ 18.824 ± 17.379 0.001

≤8.71 × 10−3 mm2/s 7.044 ± 1.882

>8.71 × 10−3 mm2/s 24.356 ± 18.633

f (%)‡ 0.278 ± 0.092 0.257

≤0.198 0.164 ± 0.025

>0.198 0.315 ± 0.074

Status

Local relapse 7 (7.2%)

Non-local relapse 90 (92.8%)
frontiersi
Data are the number of participants, and data in parentheses are percentages. Mean data are ± standard deviation.
IVIM-DWI, intravoxel incoherent motion diffusion-weighted imaging; ADC, apparent diffusion coefficient.
†Data in parentheses are range.
‡Data are dichotomized by using a non-parametric log-rank test.
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for LRFS, D was found to be the independent prognostic factor for

LRRFS, D* and f were the independent prognostic factors for OS,

and f acted as an independent prognostic factor for DMFS.

However, the clinical characteristics failed to show a significant

correlation with survival for NPC.

The potential of ADC in therapy assessment and prognosis

prediction of NPC has been reported earlier (20, 21, 26–31).

Several previous studies have shown that primary tumors with

lower baseline ADC values had a better response to

chemoradiotherapy as compared to those with higher baseline

ADC values for NPC (32, 33). In regard to long-term outcomes,

low pretreatment ADC was reported to be a good prognostic

factor for shorter OS for patients with NPC in Yan’s study (29).

Similar to the research, the results from our study showed that

patients who had ADC value over a pre-specified cutoff had

longer OS than those who had ADC value below the cutoff,

which indicated that higher pretreatment ADCmay be related to

better long-term outcomes for NPC patients. The underlying

mechanism for these similar findings may be that lower

pretreatment ADC levels generally predict more aggressive

biological features of tumors (33). These consistent findings

suggest that tumors with high ADC values indicate low

proliferation and consequently less cell subtype resistance to

chemotherapy and thus respond better to chemoradiotherapy

than tumors with low ADC values (33). However, contrary to

our results, lower ADC value was found to be related to longer

LRFS and DFS in NPC treated with chemoradiation (20, 31).

Nevertheless, no significant relationship was demonstrated

between pretreatment ADC and long-term outcomes in several
TABLE 3 Univariate analyses of the prognostic factors in the 97
patients with nasopharyngeal carcinoma.

Endpoint Variable p

LRFS ADC 0.062

D
D*

0.028
0.001

f 0.257

LRRFS ADC 0.335

D
D*

0.315
0.686

f 0.388

RRFS ADC 0.051

D
D*

0.063
0.125

f 0.440

DMFS ADC 0.769

D
D*

0.689
0.666

f 0.723

PFS ADC 0.380

D
D*

0.590
0.715

f 0.972

OS ADC 0.036

D
D*

0.017
0.002

f 0.300
LRFS, local relapse-free survival; LRRFS, local-regional relapse-free survival; RRFS
regional relapse-free survival; DMFS, distant metastasis-free survival; PFS, progression
free survival; OS, overall survival; ADC, apparent diffusion coefficient. *p<0.05.
B C D E

F G H I J

A

FIGURE 2

Representative T2WI and IVIM-DWI images from two NPC patients with different outcomes. (A–E) Images of a patient (case A) who suffered local
failure. (A) Pretreatment T2WI. (B–E) Pretreatment ADC, f, D*, and D maps, respectively. The ADC, f, D*, and D values of the nasopharyngeal tumor
in case A were 0.666 × 10−3 mm2/s, 0.354%, 3.78 × 10−3 mm2/s, and 0.581 × 10−3 mm2/s, respectively. The bottom row shows images from a
patient (case B) who did not suffer local failure. (F) Pretreatment T2WI. (G–J) P retreatment ADC, f, D*, and D maps. The ADC, f, D*, and D values of
the nasopharyngeal tumor in case B were 1.24 × 10−3 mm2/s, 0.192%, 17.9 × 10−3 mm2/s, and 0.927 × 10−3 mm2/s, respectively. IVIM-DWI,
intravoxel incoherent motion diffusion-weighted imaging; ADC, pure diffusion coefficient; f, perfusion fraction; D*, pseudo-diffusion coefficient; D,
pure diffusion coefficient; NPC, nasopharyngeal carcinoma; T2WI, T2-weighted image.
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studies (21, 30). These conflicting findings may be due to tumor

heterogeneity and the differences in treatment regimens and

imaging protocols across different studies.

The IVIM-DWI theory indicates that D is one of the

diffusion-related parameters and corresponds to pure diffusion

(34). Previous studies have reported that the low D values were

related to high cell densities, indicating restricted Brownian

motion of water (35–37). Similarly, the increase in cell density

and different amounts of stromal tissues could reduce the
Frontiers in Oncology 08
molecular diffusivity (38), the same as the diffusion of oxygen,

and lead to hypoxia, which can cause less sensitivity to

radiotherapy and chemotherapy in NPC. In a previous study,

lower D was proved to be significantly linked to poor treatment

effect (39). Our study further certified that patients with low D

values exhibited significantly lower LRFS and OS rates than the

patients with high D values, which demonstrated that higher

baseline D may be related to better survival for NPC patients.

This may imply that tumors with low pretreatment diffusion
BA

FIGURE 4

Kaplan–Meier curves of LRFS (A) and OS (B) for NPC patients stratified as the low D* and high D* groups. Low D* group = patients with a
primary lesion pretreatment D* value ≤ 8.71 × 10−3 mm2/s; high D group = patients with a primary lesion pretreatment D value > 8.71 × 10−3

mm2/s. NPC, nasopharyngeal carcinoma; D*, pseudo-diffusion coefficient; LRFS, local relapse-free survival; OS, overall survival.
BA

FIGURE 3

Kaplan–Meier curves of LRFS (A) and OS (B) for NPC patients stratified as the low D and high D groups. Low D group = patients with a primary
lesion pretreatment D value ≤ 0.699 × 10−3 mm2/s; high D group = patients with a primary lesion pretreatment D value > 0.699 × 10−3 mm2/s.
NPC, nasopharyngeal carcinoma; D, pure diffusion coefficient; LRFS, local relapse-free survival; OS, overall survival.
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values, indicating high cellularity and restricted diffusion,

exhibited worse outcomes after chemoradiotherapy than

tumors with high diffusion values, indicating low cellularity

and much necrosis and cystic change. However, conflicting

findings are present in the NPC literature for D, with studies

showing the opposite results; that is, patients with low D values

are related to better tumor response or long-term outcomes (21).

D* and f are both perfusion-related parameters derived from

IVIM-DWI and depended on tumor microvascular attenuation.

The D* value was defined according to the signal intensity ratios

of the blood capillaries. Our data revealed that patients in the

higher pretherapy D* value group showed significantly higher

LRFS and OS rates than the low D* value group, which indicated

that a higher D* value may imply better long-term outcomes in

NPC. Similar to our observations, Chen et al. found that D* was

significantly higher in the effective group than in the poor-

effective group for NPC after treatment (39). These similar

findings may be attributed to more neovascularization in

tissues in the high D* group than in the low D* group. The

new vessels can improve oxygenation by delivering blood and

oxygen to the tumor lesions. Previous studies also have

confirmed that high D* values have been shown to reflect

neovascularization and increased tissue perfusion, and well-
Frontiers in Oncology 09
perfused tumors respond better to radiotherapy and

chemotherapy (19). However, many other studies failed to

show any relationship between D* and therapeutic effect

evaluation and prognosis (17, 21). The differences in treatment

regimens and time points selected for evaluating therapeutic

response among these studies might account for the

abovementioned inconsistent results.

As another perfusion-related parameter derived from IVIM-

DWI, f showed no correlation with any of the survival endpoints in

the present study. A similar consequence of f was previously

reported in many other studies, which suggested that f was not a

good predictor of treatment response and prognosis for NPC (11,

21, 40). The possible explanation for this result comes from prior

studies that demonstrated the f value’s measurement was found to

largely rely on the TE and the T2 relaxation time (41, 42). In

addition, the technical restrictions of using f have been shown in

prior investigations on head and neck cancer (14, 43, 44).

Our multivariable data showed that all the IVIM-DWI

parameters were independent prognostic factors for survival in

NPC, but the clinical factors including sex, age, clinical stage,

treatment regimen, and pathological type were not, which

implied that IVIM-DWI is superior to clinical factors in

predicting the long-term outcome of NPC. In addition,
FIGURE 5

Kaplan–Meier curves of OS for NPC patients stratified as the low ADC and high ADC groups. Low ADC group = patients with a primary lesion
pretreatment ADC value ≤ 0.897 × 10−3 mm2/s; high ADC group = patients with a primary lesion pretreatment ADC value > 0.897 × 10−3 mm2/s.
NPC, nasopharyngeal carcinoma; ADC, apparent diffusion coefficient; OS, overall survival.
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the treatment regimen of NPC is mainly determined according

to the clinical TNM stage at present, and only anatomical

changes are considered. Therefore IVIM-DWI parameters

have an advantage in predicting long-term outcomes in

comparison with clinical factors because they are non-invasive.

This study has several limitations. First, the correlation between

IVIM parameters and histologic characteristics was not measured

in the study; this would help clarify the pathophysiologic sense of

the IVIMparameters. Second, patients’ images were processed on a

1.5-T scanner in this study, which suggests that the spatial

resolution was suboptimal, and it could be improved in further

study by using 3.0- T scanners. Third, it is monocentric, and the

cohort studied is relatively small, which may affect the analysis of

TNM stages. Therefore, further studies with larger cohorts and

analysis between IVIM-DWIparameters or texture features derived

from IVIM-DWI and histologic characteristics are warranted to

comprehensively understand the prognostic value of IVIM-DWI

in NPC.
Frontiers in Oncology 10
In conclusion, pretreatment IVIM-DWI parameters ADC,

D, and D* could act as useful factors for predicting long-term

outcomes and selecting high-risk patients with NPC.
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TABLE 4 Multivariate analyses of the prognostic factors in the 97 nasopharyngeal carcinoma patients.

Variable RRFS LRFS LRRFS

p HR (95% CI) p HR (95% CI) p HR (95% CI)

ADC 0.451 7.383 (0.037–9.916) 0.041 0.005 (0–2.373) 0.144 0.020 (0–3.849)

D
D*

0.747
0.975

0.419 (0.002–2.910)
1.001 (0.942–1.064)

0.037
0.181

4.596 (4.070–8.973)
0.999 (0.942–1.060)

0.045
0.854

4.320 (0.551–7.685)
0.995 (0.946–1.047)

f 0.839 0.427 (0.001–6.296) 0.688 5.234 (0.002–16.836) 0.783 0.375 (0–0.762)

Age 0.944 1.003 (0.933–1.077) 0.304 1.042 (0.964–1.126) 0.897 0.996 (0.933–1.063)

Sex 0.802 1.227 (0.248–6.069) 0.353 1.025 (0.182–5.777) 0.991 1.008 (0.257–3.956)

T stage 0.827 1.688 (0.016–3.013) 0.397 2.683 (0.273–26.364) 0.565 2.248 (0.143–35.364)

N stage 0.748 2.157 (0.020–3.021) 0.853 0.807 (0.083–7.834) 0.515 0.376 (0.020–7.153)

M stage 0.250 0.210 (0.015–2.995)` 0.969 0 (0–0) 0.141 0.131 (0.009–1.956)

Overall stage 0.655 0.326 (0.002–4.657) 0.300 0.217 (0.012–3.906) 0.963 0.923 (0.031–27.126)

Pathological type 0.988 0 (0–0) 0.805 0.771 (0.098–6.049) 0.242 4.299 (0.373–49.532)

Treatment regimen 0.995 2.853 (0–4.786) 0.244 0.109 (0.003–4.523) 0.322 0.203 (0.009–4.762)

Variable RRFS LRFS LRRFS

p HR (95% CI) p HR (95% CI) p HR (95% CI)

ADC 0.339 0.014 (0–90.022) 0.072 0.060 (0.003–1.289) 0.871 0.560 (0.001–3.123)

D
D*

0.685
0.019

7.274 (0.001–11.793)
0.647 (0.449–0.932)

0.060
0.903

1.225 (0.892–2.733)
0.998 (0.958–1.038)

0.746
0.913

3.682 (0.001–6.252)
0.997 (0.938–1.059)

f 0.029 0.004 (0–0.115) 0.387 0.076 (0–25.966) 0.020 0.002 (0–0.072)

Age 0.614 1.044 (0.884–1.233) 0.663 0.990 (0.944–1.037) 0.047 0.933 (0.872–0.999)

Sex 0.578 0.378 (0.012–11.724) 0.135 2.218 (0.780–6.307) 0.742 1.343 (0.231–7.793)

T stage 0.105 0.009 (0–2.638) 0.088 0.272 (0.061–1.215) 0.062 0.100 (0.009–1.123)

N stage 0.051 0.005 (0–0.294) 0.083 0.108 (0.009–1.341) 0.064 0.014 (0.001–0.266)

M stage 0.063 0.034 (0.001–1.202) 0.061 0.062 (0.011–0.337) 0.976 0 (0–0)

Overall stage 0.938 0.005 (0.202–9.479) 0.613 1.658 (0.233–11.783) 0.746 3.682 (0.001–13.123)

Pathological type 0.579 0.285 (0.003–23.888) 0.464 2.026 (0.307–13.371) 0.071 8.528 (1.972–74.099)

Treatment regimen 0.942 1.270 (0.002–8.954) 0.425 3.186 (0.185–54.800) 0.583 0.233 (0.001–42.096)
ADC, apparent diffusion coefficient; D, pure diffusion coefficient; D*, pseudo-diffusion coefficient; f, perfusion fraction; LRRFS, local-regional relapse-free survival; LRFS, local relapse-free
survival; RRFS, regional relapse-free survival; HR, hazard ratio; CI, confidence interval.
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