
Frontiers in Oncology | www.frontiersin.org

Edited by:
Stella Koutros,

National Cancer Institute (NIH),
United States

Reviewed by:
Nosheen Masood,

Fatima Jinnah Women University,
Pakistan

Vijaya Kumar Pidugu,
National Cancer Institute (NIH),

United States

*Correspondence:
Cibele Rodrigues Bonvicino
cibele.bonvicino@gmail.com

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 25 March 2022
Accepted: 06 June 2022
Published: 08 July 2022

Citation:
Scandolara TB, Valle SF, Esteves C,

Scherer NdM, de Armas EM,
Furtado C, Gomes R, Boroni M,
Jaques HdS, Alves FM, Rech D,

Panis C and Bonvicino CR (2022)
Somatic DNA Damage Response and
Homologous Repair Gene Alterations
and Its Association With Tumor Variant
Burden in Breast Cancer Patients With
Occupational Exposure to Pesticides.

Front. Oncol. 12:904813.
doi: 10.3389/fonc.2022.904813

ORIGINAL RESEARCH
published: 08 July 2022

doi: 10.3389/fonc.2022.904813
Somatic DNA Damage Response and
Homologous Repair Gene Alterations
and Its Association With Tumor
Variant Burden in Breast Cancer
Patients With Occupational Exposure
to Pesticides
Thalita Basso Scandolara1, Sara Ferreira Valle1, Cristiane Esteves2,
Nicole de Miranda Scherer2, Elvismary Molina de Armas2,3, Carolina Furtado4,
Renan Gomes4, Mariana Boroni2, Hellen dos Santos Jaques5, Fernanda Mara Alves5,
Daniel Rech5,6, Carolina Panis5 and Cibele Rodrigues Bonvicino1,4*

1 Department of Genetics, Biology Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2 Bioinformatics
and Computational Biology Laboratory, Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro,
Brazil, 3 Department of Informatics, Pontificia Universidade Católica (PUC)-Rio, Rio de Janeiro, Brazil, 4 Division of Genetics,
Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Rio de Janeiro, Brazil, 5 Laboratory of Tumor Biology,
State University of West Paraná, Francisco Beltrão, Brazil, 6 Francisco Beltrão Cancer Hospital, Francisco Beltrão, Brazil

Homologous recombination is a crucial pathway that is specialized in repairing double-
strand breaks; thus, alterations in genes of this pathway may lead to loss of genomic
stability and cell growth suppression. Pesticide exposure potentially increases cancer risk
through several mechanisms, such as the genotoxicity caused by chronic exposure,
leading to gene alteration. To analyze this hypothesis, we investigated if breast cancer
patients exposed to pesticides present a different mutational pattern in genes related to
homologous recombination (BRCA1, BRCA2, PALB2, and RAD51D) and damage-
response (TP53) concerning unexposed patients. We performed multiplex PCR-based
assays and next-generation sequencing (NGS) of all coding regions and flanking splicing
sites of BRCA1, BRCA2, PALB2, TP53, and RAD51D in 158 unpaired tumor samples
from breast cancer patients on MiSeq (Illumina) platform. We found that exposed patients
had tumors with more pathogenic and likely pathogenic variants than unexposed patients
(p = 0.017). In general, tumors that harbored a pathogenic or likely pathogenic variant had
a higher mutational burden (p < 0.001). We also observed that breast cancer patients
exposed to pesticides had a higher mutational burden when diagnosed before 50 years
old (p = 0.00978) and/or when carrying BRCA1 (p = 0.0138), BRCA2 (p = 0.0366), and/or
PALB2 (p = 0.00058) variants, a result not found in the unexposed group. Our results
show that pesticide exposure impacts the tumor mutational landscape and could be
associated with the carcinogenesis process, therapy response, and disease progression.
Further studies should increase the observation period in exposed patients to better
evaluate the impact of these findings.
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INTRODUCTION

Brazil is one of the leading agricultural pesticide-consuming
countries in the world (1). The extensive use of pesticides raises
concerns about human health (2). Since 2008, Brazil has become
the world’s top pesticide importer, with more than 1,400
formulations authorized by the government legislation (3). Only
3.5% of the total pesticides authorized in Brazil are approved in
other countries due to their high toxicity and their recognized
carcinogenic potential. In this context, a total of 52 pesticides used
in Brazil are classified as “probable” or “possible” carcinogens for
humans, 16 had evidence suggestive of the carcinogenic potential
for humans, and eight had insufficient information about the
carcinogenic potential for humans (4). Although the use of
pesticides has been widespread in Brazil since the 1960s, the
exact data concerning pesticide consumption from small-scale
farmers are scarce (5–7). Improper pesticide application associated
with farmers’ limited knowledge regarding its harmful effects and
poor adherence to safety precautions, such as the correct use of
personal protective equipment, represent a considerable health
risk for chronically exposed populations (8, 9).

Pesticide exposure has the potential to increase cancer risk
through several mechanisms, including oxidative stress generation,
changes in adhesion molecules, acetylcholinesterase inhibition,
endocrine disruption, and contribution to genomic instability (5),
which are known hallmarks of cancer (10). Double-strand breaks
can be a threat to genomic stability. Multiple DNA repair
mechanisms are available to counteract its deleterious effects, as
failure to repair double-strand breaks can result in chromosome
aberrations, apoptosis, and oncogenesis (11). In this regard,
homologous recombination is a crucial pathway specialized in
repairing double-strand breaks that occur mainly during DNA
replication and through cell damage (12). Specific hereditary cancer
predisposition syndromes, such as hereditary breast and ovarian
cancer (HBOC) and Fanconi anemia, are associated with germline
mutations in BRCA1/2 and PALB2 genes, respectively (13). These
genes are essential for homologous recombination, and alterations
in genes involved in this pathway are closely associated with
carcinogenic features such as high mutational burden, which is
caused by the accumulation of unrepaired DNA damage (11, 13).
The loss of function of tumor suppressor genes in tumors, such as
TP53 gene, has shown that DNA damage response pathways must
be downregulated to guarantee cell proliferation and for cells to
avoid apoptosis (14). Thus, tumoral cells often harbor alterations in
genes responsible for these DNA damage response pathways,
which may lead to loss of genomic stability and cell growth
suppression (10, 15).

It is suggested that only 5%–10% of breast cancer cases are
hereditary; the remaining ~90% are associated, to a greater or lesser
extent, with environmental factors that result in the occurrence and
accumulation of somatic and epigenetic alterations during a
person’s life (16). Thus, lifestyle and environmental conditions
have a significant impact on breast cancer risk. Evaluation of
mutational patterns related to DNA damage and repair processes
in cancer revealed that several signatures could be associated with
carcinogen exposures and defects in DNA maintenance pathways,
such as specific base transversions found in smoking-associated
Frontiers in Oncology | www.frontiersin.org 2
lung cancer and caused by tobacco exposure (17). While factors
such as obesity, physical activity, and consumption of tobacco and
alcohol are known to be associated with breast cancer risk (18–20),
the potential roles of environmental exposure to pesticides in breast
cancer development are not well understood. Even so, the lack of
high-quality and significant evidence, concerning the relationship
between pesticide exposure and cancer risk from epidemiological
studies, makes it challenging to infer causality. While most studies
indicate a trend toward increased risk, only a few are statistically
significant, as reviewed elsewhere (21). Although inconsistent
results are found in the literature regarding pesticide exposure
and breast cancer risk, it is suggested that hormone-positive
breast cancer could have an increased association with pesticide
exposure (22).

Considering the genotoxicity potential of pesticides, and that
the homologous repair pathway may be an essential mechanism
for DNA maintenance under such circumstances, we
investigated if the profile of acquired genetic mutations in
breast tumors is related to patients’ occupational exposure. We
hypothesized that it might be associated with increased genomic
instability and truncating variants, especially in genes responsible
for DNA damage response and known tumor suppressor genes,
which could directly impair cell response against genotoxicity
and favor oncogenesis and/or disease progression.
MATERIALS AND METHODS

Study Population
A total of 541 patients were enrolled in this study between
January 2015 and September 2019. They were managed at
Francisco Beltrão Cancer Hospital (Ceonc), which assists 27
municipalities in Paraná state, Brazil. After patients signed
consent forms, tumor samples were collected consecutively
with no selection bias during the diagnostic breast cancer
biopsy surgery. The study was reviewed and approved by the
Ethics Committees of the State University of West Paraná, under
the number CAAE 35524814.4.0000.0107, and was performed
following the Declaration of Helsinki.

All enrolled patients were invited to answer a questionnaire
with 61 questions about their current and past occupational
history (23). Among the 167 women diagnosed with breast
cancer, 158 were eligible for this study. Based on their answers,
the study population was categorized as occupationally exposed
or not to pesticides. The study was composed of 91 exposed
patients and 67 unexposed to pesticides (Figure 1).

DNA Extraction and Clinicopathological
Data Obtention
Tumor samples were stored under refrigeration at −20°C until
genomic DNA extraction with QIAamp DNeasy Blood & Tissue
kit (QIAGEN, Valencia, CA, USA), following the manufacturer’s
recommendations. All clinicopathological variables were collected
from medical records. Patients were categorized based on their
age, tumor grade, hormonal receptor status (estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2)), molecular subtype, lymph nodal
July 2022 | Volume 12 | Article 904813
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invasion, tumor size, distant metastasis, menopausal status,
chemoresistance and/or tumor persistence, disease relapse, and
survival status. For HER2 status, an immunohistochemistry score
of 0 and 1+ was considered negative, and 2+ and 3+ were
considered positive, where fluorescence in situ hybridization
(FISH) further confirmed 2+. Early disease onset was
categorized as <50 years old and late disease onset as ≥50 years old.

Sample Preparation and Next-Generation
Sequencing of Unpaired Tumor
Multiplex PCR-based assays were performed on 158 unpaired
tumor samples, designed to cover the entire coding regions and
flanking splicing sites of BRCA1, BRCA2, PALB2, TP53, and
RAD51D (25). Tumor DNA sequencing was prepared with
Nextera XT DNA Kit (Illumina, San Diego, CA, USA) and
performed in three independent runs, using paired-end
methodology on MiSeq Genome Analyzer (Illumina), with up
to 150 bp of reading length.

Somatic Variants Calling and Enrichment
in Unpaired Tumor Samples
Basequality score recalibration, indel realignment, andvariant calling
wereperformed following theGenomeAnalysisToolkit v4.1 (GATK,
Broad Institute) best practice (https://software.broadinstitute.org/
gatk/best-practices) (26). Somatic variants were called by Mutect2
from GATK, using default parameters for unpaired tumor samples.
Somatic variants were functionally annotated using GATK
Funcotator (27) and the Ensembl Variant Effect Predictor (VEP)
(28). To enrich in true positives, all the following parameters were
applied: i) removal of single-nucleotide polymorphisms (SNPs)
observed in the 1000 Genomes Project, the Exome Aggregation
Consortium (ExAC), observed in common populations with minor
allele frequency >0.5%, according to GenomeAggregationDatabase
(gnomAD); ii) support from ≥20 reads in the tumor; iii) a variant
allele fraction (VAF)of≥0.02; iv) support fromreadsmapped toboth
strands; v) synonymous variants were excluded.
Frontiers in Oncology | www.frontiersin.org 3
Tumor Mutational Burden Analysis
To explore the mutational landscape according to pesticide
exposure, somatic variant data were processed and analyzed
using the R programming language (version 4.0.2) with the
“maftools” package (29). Tumor mutational burden (TMB)
was measured by the total number of somatic non-
synonymous variants in the target region by the total size of
the target region per mega-base. Breast cancer patients were then
separated into low- and high-TMB groups using the median
value (Supplementary Table I). To analyze the correlations with
clinicopathological features of patients with breast cancer, the
mutational burden data were merged with corresponding clinical
information. TheWilcoxon rank-sum test (30) and Fisher’s exact
test (31) were used for comparisons between two groups of
clinical variables, with p < 0.05 considered significant.

Classification of Somatic Variants
All intronic, 5′Flank, 3′UTR, and silent variants were excluded.
The pathogenicity of variants was determined predominantly
based on the clinical data reported in ClinVar (http://www.ncbi.
nlm.nih.gov/clinvar/), including benign, likely benign, variant of
uncertain significance (VUS), likely pathogenic, and pathogenic.
All nonsense and frameshift mutations not registered in the
ClinVar, Catalogue of Somatic Mutations in Cancer (COSMIC),
or International Agency for Research on Cancer (IARC)
database were determined as pathogenic, according to the
American College of Medical Genetics and Genomics (ACMG)
standard terminology (32). Novel variants in a splice site that
were not yet described were determined as likely pathogenic if
there were known pathogenic variants in the same splice site
already registered in ClinVar. Variants registered in ClinVar as
“conflicting interpretations of pathogenicity” were classified as
benign if “benign” or “likely benign” reports were predominant
and were classified as likely pathogenic if “pathogenic” or “likely
pathogenic” reports were predominant. If there was no
meaningful information on the pathogenicity of variants in
A B

C

FIGURE 1 | (A) Study design and map showing the sample distribution according to exposure. (B) Amplified map of Brazilian Paraná State with symbols representing
exposed (pink triangle) and unexposed (gray circle) patients’ localities. (C) Detail of pesticide consumption in the study area; modified from Gaboardi et al. (24).
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ClinVar, the COSMIC (http://cancer.sanger.ac.uk/cosmic)
database was referred to. For TP53 variants, a functional
classification based on its translational activity in the IARC
TP53 Database (http://p53.iarc.fr/) was also referred to. All
variants classified as “benign” and “likely benign” were lumped
together into benign.

Statistical Analysis
Statistical models included subjects with complete data on the
specific environmental variable of interest and the adjustment
variables. All statistical analyses and the visualizations were
performed in the R programming language (version 4.0.2). The
Shapiro–Wilk test (33) was applied to determine the normality of
the data. Fisher’s exact test was used to compare frequencies
between groups. Fisher’s exact test for co-occurrence analysis
between mutated genes and clinical features was performed. For
continuous variables and group comparisons, the Mann–
Whitney U test (34) was performed. p-Values <0.05 were
considered statistically significant.
RESULTS

Clinical and demographic characteristics of 158 women included
in this study were observed (Table 1). The median age of
Frontiers in Oncology | www.frontiersin.org 4
diagnosis was 56.8 years (31–86 years). Statistically significant
data showed that exposed patients presented a higher frequency
of ER-negative (p = 0.0161) and PR-negative (p = 0.0014) tumors
than did unexposed patients. Tumor samples were sequenced
with a high depth, with a mean coverage of samples of 520×
(102× to 1,068×). After processing and filtering steps for somatic
variant identification, of 158 samples, 120 harbored 258 variants
that were classified as missense, frameshift, nonsense, or splice-
site variants and were distributed in BRCA1, BRCA2, PALB2,
TP53, and RAD51D genes. We found 78 samples with variants in
BRCA2 (65%), 47 in PALB2 (39.1%), 36 in BRCA1 (30%), 27 in
TP53 (22.5%), and 13 in RAD51D (10.8%). The proportion of
missense variants was the highest among other mutation types
(~88.4%), and all variants were found in heterozygosity.

Variant Landscape of Breast Cancer
Samples and Grouped According to
Patients’ Pesticide Exposure
The distribution of variants in all samples showed BRCA2 as the
most affected gene (Figure 2A). The most frequent variant type
was SNPs/single-nucleotide variants (SNVs), and the most
frequent nucleotide substitution was T>C, followed by T>G
(Figures 2B, C). Approximately 75% of all variants identified
by our study were classified as benign, 3.5% as likely pathogenic,
13.5% as pathogenic, 5% as VUS, and 3.5% have no classification
TABLE 1 | Comparison of selected characteristics of the 158 breast cancer patients exposed and unexposed to pesticides.

Variable Exposed (n = 68) Unexposed (n = 52) p-Value

Age at diagnosis (years, mean ± SD) 57.66 ± 14.5 55.63 ± 11.7
Tumor grade I/II 44 (64.7%) 40 (76.9%) 0.06

III 24 (35.3%) 12 (23.1%)
ER status Positive 40 (58.8%) 39 (75%) 0.0161

Negative 28 (41.2%) 13 (25%)
PR status Positive 26 (38.2%) 31 (59.6%) 0.0014

Negative 42 (61.8%) 20 (38.4%)
Not informed – 1 (1%)

HER2 status Positive 9 (13.2%) 7 (13.5%) >0.9999
Negative 59 (86.8%) 45 (86.5%)

Molecular subtype Luminal A 19 (28%) 19 (36.5%) 0.2899
Luminal B 21 (30.9%) 17 (32.7%)
HER2+ 9 (13.1%) 7 (13.5%)
Triple negative 19 (28%) 9 (17.3%)

Lymph node metastasis Positive 30 (44.1%) 23 (44.2%) >0.9999
Negative 38 (55.9%) 29 (55.8%)

Tumor size <2 cm 22 (32.3%) 20 (38.5%) 0.5885
2–5 cm 35 (51.5%) 23 (44.2%)
>5 cm 11 (16.2%) 9 (17.3%)

Distant metastasis Yes 10 (14.7%) 8 (15.4%) >0.9999
No 58 (85.3%) 44 (84.6%)

Menopausal status Premenopause 19 (28%) 16 (30.8%) 0.6418
Postmenopause 49 (72%) 36 (69.2%)

Chemoresistance Positive 22 (32.3%) 14 (27%) 0.4382
Negative 46 (67.7%) 38 (73%)

Disease relapse Yes 8 (11.3%) 9 (17.3%) 0.3153
No 60 (88.2%) 43 (82.7%)

Survival status Alive 60 (88.2%) 46 (88.4%) >0.9999
Deceased 8 (11.3%) 6 (11.6%)
July 2022 | Volume 12 | Article
The bold values represent significant statistical differences (Fisher’s exact test, p < 0.05).
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
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in any database. Afterward, we explored whether variants were
mutually exclusive or likely to co-occur (Figure 2C), and we
observed the co-occurrence of variants in BRCA1 and TP53 in a
significant manner (p < 0.05). In general, missense variants were
the most frequent type (~88.5%), followed by frameshift (~7%),
nonsense (3.5%), and splicing variants (1%) (Figure 2D).

Among breast cancer samples with variants detected, 56.6%
(n = 68) belonged to patients with occupational exposure to
pesticides whereas 43.3% (n = 52) to patients with no exposure.
The most mutated genes in the exposed group were BRCA2 and
PALB2 (Figure 3A) and in the unexposed group were BRCA2
and BRCA1 (Figure 3B). Concerning the co-interaction
analysis, we observed a different correlation result among the
exposed and unexposed groups (Figures 3C, D). Variants in
TP53 co-occur with BRCA1 mutations in the exposed group
(p < 0.05), while PALB2 variants were found to occur in a
mutually exclusive manner concerning BRCA2 in the
unexposed group (p < 0.05). Transversions T>G were higher
Frontiers in Oncology | www.frontiersin.org 5
in the exposed group than in the unexposed group, with more
T>C transitions (Figures 3E, F).

Frequency of Pathogenic, Likely Pathogenic,
and Uncertain Significance Variants
We identified 28 pathogenic, 10 likely pathogenic, and 12 VUS
variants (Table 2; Supplementary Figure 1). All variants were
identified in 47 tumor samples from different patients. Several
variants were detected in more than one sample: a) the
pathogenic variants p.M296fs* in PALB2 (6 samples), p.C61G
in BRCA1 (2 samples), and p.E198* in TP53 (2 samples); b) the
likely pathogenic variant p.H193R in TP53 (2 samples); c) the
VUS p.S46C in RAD51D (2 samples). Concerning TP53, we
found 26 variants classified as pathogenic and likely pathogenic
on ClinVar, being 21 of them also predicted as pathogenic on
COSMIC. Six BRCA1 variants are classified as pathogenic on
ClinVar, 21 as pathogenic on the COSMIC database, and only
one ranked as pathogenic in both databases (BRCA1
A

B

D

C

FIGURE 2 | Genomic landscape and potential associations between mutations identified in tumor breast cancer samples. (A) Oncoplot showing the mutational
profile of each gene in all tumor samples ordered by variant frequency. (B) Distribution of transitions and transversions in all tumor samples showing boxplot with
overall summary of single-nucleotide variants (SNV) classified into six substitution classes, boxplot with distribution of SNVs classified into transitions (Ti) and
transversions (Tv), and proportion of SNVs per sample classified into six substitution classes. (C) Co-occurrence or exclusive variant associations of the
evaluated genes. (D) Panels with variant classification, type (SNP, single-nucleotide polymorphism; INS, insertion; DNP, double nucleotide polymorphism; DEL,
deletion), SNV class, number of variants per sample, variant classification summary, and genes ordered by total number of variants. Color legend of panel A is
the same for panels (B, D).
July 2022 | Volume 12 | Article 904813
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c.181T>G). Four BRCA2 variants are pathogenic on ClinVar
and six on COSMIC, without concordance among both
databases. Eight PALB2 variants were classified as pathogenic
on ClinVar, 12 on COSMIC, and only one classified as
pathogenic in both databases (PALB2 c.1240C>T). We found
two RAD51D classified as VUS on ClinVar, and one of them
was predicted as pathogenic in COSMIC (RAD51D c.137C>G).

Pathogenic or likely pathogenic variants represented 18% of
all variants detected (Figure 4A) and included missense,
frameshift deletions, and nonsense variants, with a high
prevalence in TP53 and PALB2 (Figure 4B). The proportion of
pathogenic and/or likely pathogenic variants was higher in the
tumor sample of exposed patients than in unexposed patients
(Figure 4C). When analyzing variants predicted as pathogenic,
likely pathogenic, or VUS, exposed patients also presented a
significantly higher number than individuals unexposed to
pesticides (p = 0.017, Figure 4D). We also found a significant
difference in the frequency of variant types (missense, splice site,
frameshift, and nonsense) in the group of patients exposed or not
to pesticides (p = 0.043, Figure 4E).
Frontiers in Oncology | www.frontiersin.org 6
The Correlation Between Tumor
Mutational Burden and Breast Cancer
Clinicopathological Parameters and
Pesticide Exposure
Weanalyzed themutational burden and its associationwith different
clinicopathological variables and pesticide exposure. In general,
samples that presented a pathogenic or likely pathogenic variant
hadahighermutationalburden(Figure5A).Weobserved thatbreast
cancer patients exposed to pesticides had no difference regarding
mutational burden in the presence or absence of pathogenic variants
in the tumor. However, in the unexposed group, tumors harboring
any deleterious variant had a higher mutational burden than those
with variants of no clinical and/or functional impact (p < 0.02,
Figure 5B). We also found that only the exposed group of patients
diagnosed with breast cancer before 50 years old (p = 0.00978,
Figure 5C) and patients carrying tumors with BRCA1 (p = 0.0138,
Figure 5D), BRCA2 (p = 0.0366, Figure 5E), and/or PALB2 (p =
0.00058, Figure 5F) variants had a higher mutational burden; the
same was not observed in the unexposed group (Supplementary
Figure 2). We found mutational burden increased in tumors that
A B

D

E F

C

FIGURE 3 | Genomic landscape and potential associations between mutations in tumor breast cancer samples grouped according to pesticide occupational exposure.
(A, B) Oncoplots showing the mutational profile of each gene in groups exposed and unexposed to pesticides. (C, D)Mutational co-occurrence or exclusive associations
between evaluated genes in (C) exposed and (D) unexposed groups. (E, F) Distribution of transitions and transversions in (E) exposed and (F) unexposed groups showing
boxplot with overall summary of SNVs classified into six substitution classes, boxplot with distribution of SNVs classified into transitions (Ti) and transversions (Tv), and
proportion of SNVs per sample classified into six substitution classes. Color legend of panels (A, B) is the same for panels (E, F), respectively. The symbol * means statistical
significance (p < 0.05).
July 2022 | Volume 12 | Article 904813

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Scandolara et al. Somatic Variants and Occupational Pesticide Exposure
harbor a TP53 pathogenic or likely pathogenic variant only in
unexposed patients (Supplementary Figure 3).
DISCUSSION

Breast cancer tumors and other neoplasias tend to present TP53 as
the most mutated gene (35, 36). However, we found BRCA2
(~41.5%) with the highest mutational frequency in our study.
Frontiers in Oncology | www.frontiersin.org 7
We highlight that somatic variants of clinical relevance or interest,
i.e., classified as pathogenic, likely pathogenic, or VUS, do not
usually occur in BRCA genes, and we found a slightly higher
frequency of BRCA2 and BRCA1 (3.1% and 3.5%) variants in
comparison to other studies (37–39). Our study also showed the
co-occurrence of BRCA1 and TP53mutations in exposed patients,
a condition already observed in germline BRCA1mutation carriers
(40, 41) and found in colorectal cancer tumors, in which co-
occurrence of BRCA1 and TP53 mutations resulted in poorer
TABLE 2 | List of variants classified as pathogenic, likely pathogenic, and VUS.

Gene cDNA change Protein change Type Mutated samples Previously reported Pesticide exposure

BRCA1 c.181T>G p.C61G SNP 2 Yes Exposed/unexposed
BRCA1 c.3329delA p.K1110fs DEL 1 Yes Exposed
BRCA1 c.3790_3797delAAGAATAG p.K1264fs DEL 1 No Exposed
BRCA1 c.1687C>T p.Q563* SNP 1 Yes Exposed
BRCA1 c.3765_3786delCACAGAGGAGAATTTATTATCA p.T1256fs DEL 1 No Exposed
BRCA1 c.5129G>A p.G1710E SNP 1 Yes Exposed
BRCA1 c.546G>T p.L182F SNP 1 Yes Unexposed
BRCA1 c.1996C>G p.L666V SNP 1 Yes Unexposed
BRCA2 c.2806_2809delAAAC p.A938fs DEL 1 Yes Unexposed
BRCA2 c.7879A>T p.I2627F SNP 1 Yes Exposed
BRCA2 c.5067delA p.K1691fs DEL 1 Yes Exposed
BRCA2 c.1314delT p.T441fs DEL 1 Yes Exposed
BRCA2 c.5687C>T p.A1896V SNP 1 Yes Exposed
BRCA2 c.5096A>G p.D1699G SNP 1 Yes Unexposed
BRCA2 c.670G>A p.D224N SNP 1 Yes Unexposed
BRCA2 c.3562A>G p.I1188V SNP 1 Yes Exposed
PALB2 c.1314delA p.F440fs DEL 1 Yes Exposed
PALB2 c.886delA p.M296fs DEL 6 Yes Exposed
PALB2 c.1240C>T p.R414* DEL 1 Yes Unexposed
PALB2 c.2453T>C p.F818S SNP 1 Yes Unexposed
PALB2 c.2201C>A p.T734N SNP 1 Yes Unexposed
PALB2 c.2608G>A p.V870I SNP 1 Yes Exposed
TP53 c.481delG p.A161fs DEL 1 No Exposed
TP53 c.592G>T p.E198* SNP 2 Yes Exposed
TP53 c.856G>A p.E286K SNP 1 Yes Exposed
TP53 c.730G>A p.G244S SNP 1 Yes Exposed
TP53 c.734G>A p.G245D SNP 1 Yes Unexposed
TP53 c.578A>C p.H193P SNP 1 Yes Unexposed
TP53 c.617delT p.L206fs DEL 1 No Unexposed
TP53 c.736A>G p.M246V SNP 1 Yes Exposed
TP53 c.454_466delCCGCCCGGCACCC p.P152fs DEL 1 Yes Exposed
TP53 c.586C>T p.R196* SNP 1 Yes Exposed
TP53 c.626_627delGA p.R209fs DEL 1 Yes Exposed
TP53 c.637C>T p.R213* SNP 1 Yes Exposed
TP53 c.742C>T p.R248W SNP 1 Yes Unexposed
TP53 c.818G>A p.R273H SNP 1 Yes Exposed
TP53 c.447delC p.T150fs DEL 1 No Unexposed
TP53 c.517G>A p.V173M SNP 1 Yes Exposed
TP53 c.796G>A p.G266R SNP 1 Yes Exposed
TP53 c.535C>A p.H179N SNP 1 Yes Unexposed
TP53 c.536A>G p.H179R SNP 1 Yes Unexposed
TP53 c.578A>G p.H193R SNP 2 Yes Exposed/unexposed
TP53 c.711G>T p.M237I SNP 1 Yes Unexposed
TP53 c.832C>T p.P278S SNP 1 Yes Exposed
TP53 c.614A>G p.Y205C SNP 1 Yes Exposed
TP53 c.613T>C p.Y205H SNP 1 Yes Unexposed
TP53 c.96+2T>CTGGT Splice site INS 1 No Unexposed
TP53 c.559+1G>C Splice site SNP 1 No Exposed
RAD51D c.56T>C p.L19P SNP 1 Yes Unexposed
RAD51D c.137C>G p.S46C SNP 2 Yes Exposed/unexposed
July 2022 | Volum
cDNA and protein change, variant type, and number of tumors harboring each variant in patients exposed and unexposed to pesticides.
VUS, variant of uncertain significance; SNP, single-nucleotide polymorphism; INS, insertion; DEL, deletion.
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prognosis (42). It must be noticed that there are discordances
between variant annotations in ClinVar, a large public archive
composed mainly of germline variants and the phenotype
consequence (43), and COSMIC, the largest public resource of
somatic mutations in human cancer (44).

Increased BRCA1/2 variants are frequent in triple-negative
tumors, a tumor type associated with the presence of germline
BRCA1 variants (45). We also detected BRCA1/2 variants in
HER2+, Luminal A, and Luminal B tumors, which indicates an
underlying mechanism behind these mutations, but also a
publication bias regarding germline variants of triple-negative
tumors. It has been demonstrated that environmental exposure
to certain toxins can induce haploinsufficiency, a mechanism
proposed to contribute to breast cancer development, especially
in BRCA2 cells bearing heterozygous mutations (40, 46). This
haploinsufficiency causes the reduction of BRCA2 function,
which sensitizes cells to DNA damage and compromises DNA
repair, and under prolonged exposure to these toxins, it can even
promote BRCA2 protein depletion in wild-type cells (40). We
speculate that pesticide exposure could cause the same effect, as it
tends to occur during a long lifetime, not only for tumors bearing
deleterious mutations in DNA damage response genes but also in
tumors with both functional alleles.

Moreover, there are several studies suggesting the endocrine-
disrupting potential of certain pesticides, as reviewed elsewhere
(41, 42). This capability enables these substances to mimic and/
or antagonize the hormone function. Although current evidence
Frontiers in Oncology | www.frontiersin.org 8
is not fully conclusive of their mechanism of action, exposure to
these compounds has been associated with an increased risk of
breast cancer (47). We found that exposed patients present an
increased frequency of hormone (ER/PR) negative tumors. This
result could also be due to the increased presence of BRCA1/2
mutations and may be indicative of higher genome instability
and a decrease in DNA repair, which is in agreement with other
studies that show a higher frequency of somatic mutations,
mainly in BRCA2, in triple-negative tumors (45). Interestingly,
it has also been shown that farmers under pesticide exposure that
presented chromosomal abnormalities also had lower expression
of BRCA2 (48). This further reinforces that BRCA2 is essential
for DNA stability.

The T>G nucleotide transversion was the most frequent
substitution in the exposed patients, whereas unexposed patients
presented more T>C substitutions. An Egyptian study found a
correlation between T>G and T>C substitutions regarding
PIK3CA variants in breast cancer patients and suggested that
the oxidative damage accumulation due to age could induce these
specific substitutions (49). A high frequency of T>G was found in
the presence of oxidized guanine nucleotides (8-oxo-dGTP), an
established biomarker of oxidative stress (50). Another study
observed that oxidation of the 5-methyl group of thymine
generates 5-formyluracil (5-fU), which could induce T>G
transversions, has a mutagenic potential, as it could pair
wrongly with several bases (51). Another indication that T>G
transversions could be associated with oxidative damage and
A B

D E

C

FIGURE 4 | Distribution and frequency of pathogenic, likely pathogenic, and variant of uncertain significance (VUS) variants. (A) Graphical representation of variant
classification detected in all samples. (B) Frequency and type of pathogenic, likely pathogenic, and VUS variant identified in each gene. (C) Proportion of pathogenic and
likely pathogenic variants detected according to patient exposure status. (D) Frequency of variants classified as pathogenic, likely pathogenic, or VUS in exposed and
unexposed groups. (E) Frequency of variants classified as missense, frameshift, nonsense, and splice site according to exposed and unexposed samples.
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exposure to exogenous substances is the high proportion found in
whole-genome sequencing of arsenic exposed lung cancer patients
(52). As pesticides increase oxidative stress biomarkers (53) and
cause direct DNA damage (54), it is plausible to state that the
higher frequency of T>G substitution might be related to the
pesticide exposure in this group, as we observe a lower frequency
in unexposed patients. As we did not perform whole-exome
sequencing (WES), it is impossible to associate our results with
any mutational signature for now. However, if we speculate that
WES T>G substitutions are predominant in the tumors herein
analyzed, it is not a signature associated with any mutational
process yet (55, 56).

We found TP53 variants in 17% of tumors, similar to other
breast cancer studies, including one with a Brazilian cohort (36, 57).
We identified higher TP53missense variants frequency (67.9%, 17/
28) than frameshift/nonsense (32.1%, 9/28), with the latter mostly
identified in pesticide-exposed patients (77.7%). Two novel splicing
variants were identified in canonical splice sites, one in intron 3
(c.96+2T>CTGGT) from an unexposed patient and another in
intron 5 (c.559+1G>C) from an exposed patient. Regarding the
latter, a variant in this position, but with a different nucleotide
change (G>A), was already predicted as pathogenic (58, 59). The
missense TP53 c.578A>G (p.H193R) variant found in two patients
(one exposed and one unexposed) in our study was already
documented in lung cancer tumors (60). Missense mutations in
Frontiers in Oncology | www.frontiersin.org 9
TP53 usually produce a stable protein with a significant loss of
activity, but frameshift and/or nonsense mutations cause loss of
function (61). The nonsense variant c.592G>T (p.E198*) found in
two exposed patients causes the premature truncation of the protein
and is predicted to result in a loss of the protein function. In
summary, all variants were clustered within exons 5–8, the
evolutionary conserved DNA-binding region of TP53 protein,
which is considered a hotspot area by the IARC database (62).
This indicates that patients under pesticide exposure are more
prone to DNA damage in comparison to unexposed ones.

PALB2 presented the second-highest proportion of pathogenic
or likely pathogenic variants in our study. PALB2 has an important
role in cancer development and progression as even heterozygous
mutations appear to contribute to early events of oncogenesis (63).
We identified two frameshift variants in PALB2 in seven patients of
the exposed group andonenonsense variant, c.1240C>T (p.R414*),
in an unexposed patient, also reported in several individuals with
HBOC syndrome. The nonsense variant c.1240C>T (p.R414*) and
the frameshift c.1314delA (p.F440fs) found in the same sample are
localized at the evolutionary conserved chromatin-associatedmotif
(ChAM) domain, which is responsible for PALB2 chromatin
association and DNA repair function (64). It is postulated that
variants with strong evidence for pathogenicity in PALB2 are
commonly located in the coiled-coil (CC) motif or the WD40
domain (65). The recurrent frameshift variant found in six patients
A
B

D E FC

FIGURE 5 | Tumor mutational burden (TMB) and clinicopathological variables according to pesticide exposure. (A) Frequency of high and low mutational burden
levels in tumor samples with a pathogenic and/or likely pathogenic variant detected or not. Tumors harboring any deleterious variant present increase in mutational
burden (p < 0.001). (B) TMB levels in samples according to pesticide exposure status and grouped by presence or absence of any predicted pathogenic variant.
Tumors from unexposed patients present increased TMB when harboring any deleterious variant (p = 0.0214); this result is not observed in tumors from exposed
patients. (C) TMB levels in exposed patient samples grouped according to disease onset. We found early-onset tumors (patients with <50 years old) with significantly
higher TMB (p = 0.00978) in comparison to late-onset tumors (patients with ≥50 years old). (D–F) TMB levels in exposed patient samples grouped according to
BRCA1, BRCA2, and PALB2 statuses, respectively. Tumors harboring a mutation in BRCA1 (p = 0.01308), BRCA2 (p = 0.0366), and/or PALB2 (p = 0.000588)
presented higher TMB than wild-type tumors. The expanded form of “NS” means “No significance”.
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exposed to pesticides occurs in the PALB2 c.886delA (p.M296fs)
and is localized at the CCmotif on the amino-terminal region that
mediates PALB2 interaction with BRCA1 and RAD51D.

All BRCA1 pathogenic variants were found in exposed patients,
except for the c.181T>G (p.C61G), observed in two samples, one
from an unexposed patient (Table 2). This variant is described as a
founder mutation in the Polish population and has already been
reported as both germline and somatic origin (66, 67), thus called a
“shared variant” (68). Thismissensemutation occurs in theBRCA1
RINGdomain, decreasingBRCA1 availability atDNAdamage sites
and hindering DNA repair. It has also been demonstrated that
BRCA1C61G mammary tumors develop cisplatin (platinum
therapy) resistance, a drug that induces oxidative damage in cells
(69). As for BRCA2 pathogenic variants, three of them were in
exposed patients, and only one in an unexposed patient,
c.2806_2809delAAAC (p.A938fs), which was already detected in
breast, ovary, and lung cancer patients by another study (70).

The increased frequency of pathogenic alterations observed
for TP53, PALB2, and BRCA1/2 in patients under pesticide
exposure shown by our results suggests that exposure may
have a role in oncogenesis. Mutations in these genes hinder
DNA repair, leaving cells more vulnerable to DNA damage and
prone to therapy-induced lethality (71) and are also related to
therapy resistance mechanisms (69, 72). Somatic mutations may
change over time due to selective pressure derived from therapy
and genetic instability (72), and the genotoxicity effect of
pesticide exposure may also impact this mutational landscape,
as several toxic substance exposures produce a characteristic
mutational pattern that impaired DNA repair capacity (73–75).

Deleterious variants in DNA damage response genes, mainly in
lung cancer, are associated with a higher mutational burden (76),
as observed in breast carcinomas with DNA damage repair gene
variants (77) and in our tumor samples with BRCA1, BRCA2, and
PALB2 variants. We found a high mutational burden in patients
carrying a pathogenic, likely pathogenic, or VUS variant in both
groups analyzed, with the highest frequency of truncating and
likely deleterious variants in exposed in comparison to unexposed
patients. We found a higher mutational burden in patients
exposed to pesticides with early onset of breast cancer (<50
years old) in comparison to patients with late onset (≥50 years
old); usually, this finding is expected in older patients (78) due to
life accumulation. Evidence suggests that the variation of high
mutational burden in cancer types could also be related to chronic
mutagenic exposure, i.e., lung cancer patients exposed to tobacco
(79). Indeed, individuals exposed to several pesticides have
increased DNA damage, including DNA strand breaks, a
consequence of the direct exposure and of the oxidative stress
generated from it (80–83), which could be the mechanism behind
our findings in the exposed group. Interestingly, tumors from
unexposed patients harboring TP53 mutations presented
significantly higher TMB than those with wild-type tumors;
however, this result was not observed in the exposed group.
Usually, TP53 mutations are found in tumors with a high
mutational burden. For example, in lung cancer, high TMB and
TP53 mutations are frequently observed in tumors with the SBS4
signature, which is associated with tobacco smoking (84). This
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indicates that TP53 mutations are related, at least to some extent,
to carcinogen exposure. Still, it has been shown, in a population
chronically exposed to pesticides, that there is accumulation of
DNA lesions due to low DNA repair activity even at low doses of
exposure (85). We found mutations in BRCA1/2 and PALB2
genes to be significantly associated with TMB in exposed patients.
Therefore, we presume that these tumors present increased
mutational burden due to DNA repair deficiency and thus
accumulation of DNA damage without even needing to have
impairment of TP53 function.

Regarding an epidemiological overview, a study analyzed the
genotoxicity of pesticides approved in the United Kingdom in
workers exposed during manufacturing, formulation, or use. The
authors reported that, although possible confounding variables
were not considered—such as age—and the difficulty to infer
causality, there is evidence of an increase in genotoxic biomarkers
in pesticide-exposed workers (84). A very recent meta-analysis
highlights a significant impact of DNA damage for the pesticide-
exposed farmers, regardless of gender, age, pesticide type, or use of
personal protective equipment (85). It is important to state that 1/3
of the products recently registered in Brazil contain active
substances not approved, or even banned, by the European
Commission and that the maximum residue level (i.e., pesticide
concentration) considered acceptable in Brazil is higher than that
allowed in the United States, Canada, European Union, and other
BRICS countries (86). SeveralBrazilian reports, including one in the
same region of our study (87), have described highDNAdamage in
pesticide-exposed patients. Their results were assessed mainly by
cytogenetic analysis and indicate that these individuals are more
prone to genetic damage and increased mutation rate (80, 88–90).
Moreover, in a population from another Brazilian southern state,
global DNAmethylation was found to increase in exposed patients
in comparison to the unexposed group, a result associated with the
inactivation of DNA damage repair genes (91).
CONCLUSION

This is the first time a study has shown that occupational exposure
to pesticides increases the mutational burden and the mutational
status of DNA damage response genes in human breast cancer.
Our results reinforce the literature that pesticide exposure causes
direct DNA damage. We observed increased mutational burden
and deleterious variants in the exposed group, which could be
associated primarily with oncogenesis, therapy response, and
disease progression. In future studies, an increased observation
period should be done in these exposed patients to gather
information regarding disease progression and therapeutic
response, as our group has not completed a 10-year follow-up yet.
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Aperfeiç oamento de Pessoal de Nı́ vel Superior, CNPq—
Conselho Nacional de Desenvolvimento Cient ı́ fico e
Tecnológico, Fundaç ão Araucária e Programa de Pesquisa para
o SUS (PPSUS), and FAPERJ—Fundaç ão de Amparo à Pesquisa
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