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Objectives: To investigate the role of immune escape encoding genes on the

prognosis of BC, and to predict the novel targeting agents.

Methods: Human immune genes and immune escape encoding genes were

obtained from the IMMPORT database and the previous study. Sample

information and clinical data on BC were obtained from the TCGA and GTEX

databases. Obtaining differentially expressed protein data from cBioportal

database. To construct a risk score model by lasso analysis, and nomogram

was used to predict score core. GSCA, TIMER and CELLMINER databases were

used for immune and drug susceptibility correlation analyses. Cell experiments

were verified by MTT, Western blotting, and RT-qPCR.

Results: We found prognostic models consisting of eleven immune escape

related protein-coding genes with ROC curves that performed well in the

ontology data (AUC for TCGA is 0.672) and the external data (AUC for

GSE20685 is 0.663 and for GES42568 is 0.706). Five core prognostic models

are related to survival (EIF4EBP1, BCL2A1, NDRG1, ERRFI1 and BRD4) were

summarized, and a nomogram was constructed to validate a C-index of 0.695,

which was superior to other prognostic models. Relevant drugs targeting core

genes were identified based on drug sensitivity analysis, and found that

Vemurafenib downregulates the PI3K-AKT pathway and BCL2A1 protein in

BC, as confirmed by external data and cellular assays.
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Conclusions: Briefly, our work establishes and validates an 11-immune escape

risk model, and five core prognostic factors that are mined deeply from this

model, and elucidates in detail that Vemurafenib suppresses breast cancer by

targeting the PI3K/AKT signaling pathway to inhibit the immune escape

biomarker BCL2A1, confirms the validity of the prognostic model, and

provides corresponding targeted agents to guide individualized treatment of

BC patients.
KEYWORDS

Immune escape, breast cancer, prognostic model, bioinformatics, biomarker, BCL2A1,
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Introduction
The World Health Organization’s International Agency for

Research on Cancer (IARC) released the latest data on the global

cancer burden in 2020. New cases of breast cancer (BC) increased

rapidly to 2.26 million, accounting for 11.7% of all new cancer

patients, officially overtaking lung cancer (2.2 million cases) as the

world’s leading cancer for the first time (1). Effective prevention,

diagnosis, treatment, and whole-process management strategies

for BC have become important mediums for improving the global

cancer burden.

The efficacy of local and systemic treatment of BC

has improved greatly in recent years, and avoid the

underutilization of medical resources has become a focus (2).

The clinical decision of BC is mainly dependent on the abnormal

expression of estrogen, progesterone endocrine receptors (ER,

PR) and HER2. Immunotherapy has been shown to have salvage

implications in many cancers. Antibodies against the

immunomodulators PD-L1/PD-1 and CTLA4 have had staged

clinical success, but more in-depth studies of immunotherapy

are still needed. Proper functioning of the immune system

requires constant modulation to ensure protection against

foreign factors and the tolerance of autoantigens (3).

Immune editing is a dynamic process that regulates tumor

evolution through the immune system, including elimination,

homeostasis and escape (4). Immune escape is key to the

persistence of most solid tumors, and it is a key obstacle

to the success of cancer (immune) treatment (5). The

mechanisms of immune escape include a decrease in immune

analysis, downregulation of co-stimulatory molecules, and

overexpression of co-inhibitory molecules, causing a decrease

in CD8+ T cell activity and weakening the body’s anti-tumor

immunity (6). Immune escape is a necessary condition for the

formation and development of breast tumors and a key step

in the transition from pre-invasive lesions to aggressive

tumors (7).
02
Current work is focused on developing combination

therapies to convert non-responders into responders, deepen

existing responses, and overcome acquired immunotherapy

resistance (8). The response elicited by immunotherapy is

expected to clearly target and destroy tumor cells while

preserving normal cells. Immunotherapeutic approaches

include the use of antibodies to neutralize or block immune

checkpoints, induction of proliferation and/or increased activity

of tumor infiltrating lymphocytes (CTL), and it regulating the

tumor microenvironment (TME) (9). Effective anti-tumor

strategies must focus on targeting multiple immune pathways

to fully activate endogenous tumor immunity (10, 11). In

advanced BC patients, immunotherapy combined with

targeted therapy is undergoing basic and clinical trials to

confirm biomarkers in the tumor and TME, as well as to

identify the pharmacokinetics and pharmacodynamics of drug

combinations, and to optimize drug dosing in order to find the

optimal combination of treatments for individual patients (12).

BC is extremely heterogeneous at the clinical and molecular

level. Because of the use of various histological techniques

(genomics, transcriptomics or proteomics, etc.), we have

gained deep understanding of the complexity of the

development of BC (13). Multiomic is an emerging analytical

approach that combines next-generation DNA and RNA

sequencing with protein characterization to provide features

such as protein expression levels, post-translational

modifications, and protein-protein interactions (14).

Keith A. Lawson et al. have found a key set of genes and

pathways, which make tumor cells dodge CTL-mediated killing.

They found 182 immune escape related genes by the genome

wide CRISPR screen on a set of mouse BC cell lines cultured in

the presence of CTL, and disrupting these genes alone increased

the sensitivity and resistance of cancer cells to CTL killing (15).

There are no comprehensive studies on the genes encoding

immune escape in BC, and endocrine therapy plus CDK4/6

inhibitors have become the standard of care for estrogen

receptor-positive (ER+) BC. Although immune checkpoint
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inhibitors (ICIs) have shown promising antitumor activity in a

variety of cancer types, only limited success has been achieved in

patients with metastatic breast cancer (mBC), particularly the

ER+ subtype, with typically exhibiting a lower tumor mutational

load (TMB) compared to other subtypes and are therefore

considered immunostasis. This may lead to missed treatment

opportunities and overdosing (16, 17).

Targeted therapies have been greatly developed in BC, such

as Toremifene and Pertuzumab (18). Vemurafenib is often used

in BRAF-mutated melanoma and is gradually being explored in

BC. A xenograft model of vemurafenib-treated MDA-MB-231

showed growth-inhibitory activity associated with inhibition of

tumor angiogenesis (19). Magdalena Pircher et al. reported the

first successful control of multiple lung metastases from triple-

negative BC with vemurafenib (20). The specific mechanism by

which vemurafenib inhibits breast cancer needs to be

further explored.

The main objective of this study is to screen for immune

escape related genes, and to identify hub genes that are

associated with prognosis and efficacy of BC, and to provide

new targets for the treatment of BC.
Materials and methods

Data

182 core immune escape encoding genes were extracted

from a study by Keith A. Lawson. et al. IMMPORT database

(https://www.immport.org/) provided 2483 immune encoding

genes (21). Venn diagram was drawn by Hiplot mapping tool

(https://hiplot.com.cn/) to identify two sets of intersection genes.

Downloaded data from TCGA database (https://tcga-Data.Nci.

nih.gov/TCGA/), GTEX database (https://www.Gtex-portal.org/

home/) and UCSC database (http://xena.Ucsc.edu/), which

provided us with clinical data from 1095 BC cases and 292

normal controls, and their matched transcriptome RNA second-

generation sequencing data.
Differentially expressed protein analysis
and enrichment analysis

The “t-test” of “GraphPad Prism 8” were used for differential

expression analysis of normal and tumor samples, and the

“survival” R package for survival analysis. The cBioportal

database (http://www.cbioportal.org/) was used for further

differentially expressed proteins analysis (22). Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses of differential expression of protein-coding

genes were performed using “clusterprofiler” package. Category,

Count, and -log10pvalue were used by GO analysis to obtain

important metabolic pathways.
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Cox regression analysis to establish
a risk model

First, the gene sequencing data and patient survival data

were combined, and univariate Cox analysis was performed

using the “surviving” and “forestplot” R packages, and critical

genes associated with prognosis were further explored using the

“glmnet” R package. Multivariate cox analysis of candidate genes

was performed with the “surv” package, and it constructed a

prognostic risk assessment model.

Risk score =o
n

i=0
(Expi*Coei)

Then, risk prediction and risk score calculation were

performed using a prediction model. Based on the risk scores,

patients were divided into high- and low- risk groups.
Measure the risk model

The “Hiplot” plotting tool was used to show the distribution

of survival situation of low- and high- risk patients. The

“pheatmap” R package was used to observe the difference in

expression levels between high- and low- risk groups. Kaplan-

Meier Survival analysis was used to assess the survival rates of

BC patients in both groups. The validity of candidate genes in

predicting the prognosis of BC patients was measured by

plotting ROC curves using the “pROC” R package, which

based on survival status, survival time and candidate gene

expression in BC patients. The TCIA database (https://tcia.at/

home) was used to analysis the enrichment of immune cells in

the high- and low- risk groups (23). The prognostic model was

externally validated by GSE20685 and GES42568 datasets.
Screening of core prognostic factors and
construction of nomogram

The “T test” of “GraphPad Prism 8” was used for differential

expression analysis of normal and tumor samples, and “survival”

package was used to obtain survive-related hub genes, and

P<0.05 was regarded statistically significant. The nomogram

was used to predict the effect of each differentially expressed

protein coding genes on 1-, 3-, and 5- year overall survival. The

nomogram is composed of central prognostic factors, whose

point scale is assigned to each variable. We used a horizontal line

to determine the points for each variable and calculated the total

points for each patient by adding points for all variables by

normalizing the distribution from 0 to 100. Then we established

the performance of the calibration curve for the visual

nomogram. We compared the predictions in the calibration

curves with the observed results. The best prediction was when

the slope was close to 1.
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Immunoassay database

The “XY” of “GraphPad Prism 8” performed correlation

analysis of central protein-encoding genes with immune

checkpoints PD-1, PD-L1 and CTLA4 and showed the

relationship between them using Hiplot’s chord charts. The

Gene Set Cancer Analysis (GSCA) database (http://bioinfo.life.

hust.edu.cn/GSCA/) was used to analyze the expression of

central protein-encoding genes and associated immune

infiltration (24). The TIMER database (https://cistrome.

shinyapps.io/timer/) was used to capture the immune cells and

the correlation of tumor purity and quantity of gene expression,

and represented by the heat map of the Hiplot (25).
Drug sensitivity analysis database

Used the CELLMINER database (https://discover.nci.nih.

gov/cellminer/) download the processed data “Processed Data

Set” (26), and the data was processed by the “readxl” package.

There were some “NA” missing values in the drug sensitivity

data, and the “impute. KNN ()” function was used to evaluate

and complement the missing values. Pearson correlation

coefficients between each gene expression and different drugs

were calculated and the two groups of drugs with the maximum

and minimum correlation for each protein-coding gene were

found based on the correlation coefficients. Correlation analysis

was performed using “XY” of “GraphPad Prism 8” for

visualization and validation purposes. The GES97681 dataset

was used to verify whether Vemurafenib affects the expression of

B-cell lymphoma 2-associated protein A1 (BCL2A1) and to find

the pathway of drug effects through the literature, integrating the

genes and pathways in the KEGG data (https://www.genome.jp/

kegg/) to discover the effects of drugs on genes.
Cell culture

Human BC lines (MCF-7, MDA-MB-231, SK-BR-3) were

obtained from the School of Biomedical Sciences, Chinese

University of Hong Kong. MCF-7 maintained in RPMI-1640

medium and MDA-MB-231 were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) (Gibco; Thermo Fisher

Scientific, Inc.). Both media contained 10% fetal bovine serum

(FBS; Thermo Fisher Scientific, Inc.) and 100 mg/ml

streptomycin/100 U/ml penicillin (Gibco; Thermo Fisher

Scientific, Inc.). SK-BR-3 were cultured in DMEM complete

medium (iCell-h189-001b). Human breast epithelial cells (MCF-

10A) purchased from iCell Bioscience Inc, China. MCF-10A was

cultured in special medium (iCell-h131-001b). Vemurafenib

(MedChemExpress, HY-12057) was dissolved in dimethyl

sulfoxide (DMSO, final concentration is 0.1%) to prepare
Frontiers in Oncology 04
required concentrations. All cell lines were kept at 37°C in a

humidified incubator with 5% CO2.
MTT assay

For the MTT assay, MCF-7, SK-BR-3 and MDA-MB-231

cells were detached by trypsinization and counted in a

haemocytometer. Cells were seeded in 96-well plates at a

density of 4000 cells/well in 100 ml medium per well. Twenty-

four hours after incubation in the CO2 incubator, adherent cells

were treated with increasing concentrations of drugs:

vemurafenib (0, 20, 40, and 60 mM) in fresh 1640 and DMEM

medium. For measuring the concentration of vemurafenib that

resulted in 50% control growth inhibition (IC50), at 48 hours

following drug treatment, 10 ml MTT (3-(4,5-Dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide) (Sigma-Aldrich) solution

(5 mg/ml in PBS) was added to each well after 48h of drug

treatment. In addition, cell viability was measured by adding

MTT at 0, 24, 48, 72h. Then incubation was continued for

additional 4h in the CO2 incubator. The blue formazan product,

formed by reduction in live attached cells, was dissolved by

adding 100 ml of 100% DMSO per well. The plates were gently

swirled at room temperature for 10 minutes to dissolve the

precipitate. Absorbance was monitored at 490 nm using a

microplate reader (CYTATION 3; Agilent Technologies, Inc.).

The effect of vemurafenib on cell viability was assessed as the

percent of cell viability compared with vehicle-treated control

cells, which were arbitrarily assigned 100% viability. Dose-

response curves and IC50 values were obtained using

GraphPad Prism software. At least 3 dose-response

experiments were performed for each compound, and the

mean IC50 ± SD was calculated.
Real-Time Quantitative Polymerase
Chain Reaction (RT-qPCR)

Cells were seeded at the density described above and

incubated for 24 hours before the addition of vemurafenib.

The compounds were added to the final concentrations of 0,

20, 40, and 60 mM. After 48 hours of treatment, Cell pellets were

collected for experiments. Total RNA was isolated from MCF-7,

SK-BR-3 and MDA-MB-231 by using Trizol reagent (Thermo

Fisher Scientific, Inc.) according to the manufacturer’s

instructions. Total RNA (1 mg) from each group of treated

cells was converted to cDNA using a FastKing RT reagent kit

(Tiangen, Inc.). The RT reaction was performed at 42°C for

15 min and 95°C for 3 min. qPCR was performed with a SYBR

Green Real Time PCR kit (Thermo Fisher Scientific, Inc.) on

CFX96 Touch Real Time PCR System (BioRad Laboratories,

Inc.) under the following conditions: 95°C for 1 min, then 40

cycles of 95°C for 5 sec and 60°C for 15 sec. The gene expression
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level was calculated as 2(−△△Ct) method, and the △Ct means

the Ct of target gene minus the Ct of reference gene. The primers

used for real-time PCR were BCL2A1 (forward) 5’-AAATTGC

CCCGGATGTGGAT-3 ’ and (reverse) 5 ’-ACAAAGC

CATTTTCCCAGCCT-3’; GAPDH (forward) 5’-CTGGGC

TACACTGAGCACC-3’ and (reverse) 5’-AAGTGGTCGT

TGAGGGCAATG-3’.
Western blot analysis

Western blotting was used to test the PI3K/AKT signaling

pathway and BCL2A1 protein. RIPA lysis buffer (Beijing

Solarbio Science & Technology Co., Ltd.) containing protease

inhibitor PhosSTOP EASYpack (Roche Diagnostics) was used

for total protein extraction according to the manufacturer’s

protocol. Protein concentration was measured by the BCA kit

(Beyotime Biotechnology, China). Then, protein samples were

separated by 10% SDS−PAGE gel and transformed into PVDF

membranes (Millipore, USA). Afterwards, membranes were

incubated using 5% bovine serum albumin (BSA, Sigma

−Aldrich; Merck KGaA) at room temperature for 1h and

incubated with primary antibodies under 4°C overnight. The

antibodies are as follows: anti-PI3K (1: 1,000, 4249, CST), anti-

AKT (1: 1,000, 9272S, CST), anti-phosphorylated (p)−AKT (1:

1,000, 9271S, CST), anti-BCL2A1 (1: 1,000, 14093, CST), and

anti-GAPDH (1: 2,000, GTX100118, GENE TEX) with GAPDH

being the endogenous control. Afterwards, membranes were

incubated with HRP−conjugated secondary antibodies at room

temperature for 1h using a secondary antibody (1: 3,000, A0208,

Beyotime). Finally, ECL blotting detection reagents (Clarity; Bio

−Rad Laboratories, Inc.) was utilized to observe protein blots

and the signals were detected by the ChemiDoc™ Imaging

System (Bio−Rad Laboratories, Inc.).
Datasource

Databases we used have: IMMPORT database, TCGA

database, GTEX database, UCSC database, cBioportal database,

TCIA database, GEO database (include GSE20685, GES42568

and GES97681 datasets), GSCA database, TIMER database,

CELLMINER database. The softwares we used have: Hiplot

mapping tool and GraphPad Prism.
Statistical analysis

Our research mainly used “GraphPad Prism 8” and “R

language” for data difference analysis, visualization, etc. From

the “GraphPad Prism 8”, “T test” was used to compare the

differences between two data sets, “one-way ANOVA” was used
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and “XY” was used for correlation analysis. P<0.05 was

considered statistically significant, indicating significant

differences between the data were used. R is the language and

operating environment for statistical analysis and mapping. we

used the “Pheatmap” , “Surviva l” , “GGPUBR” and

“clusterprofiler “ package fort expression analysis, survival

analysis and enrichment analysis for differentially expressed

genes and proteins. All experiment data are presented as the

mean ± standard deviation (SD), further analyzing using

GraphPad Prism 9.0. Differences in the results of two groups

were evaluated using either two-tailed Student’s t test or one-way

ANOVA followed by post-hoc Dunnett’s test. The differences

with P< 0.05 were considered statistically significant.
Results

Fifteen immune escape encoding genes
significantly associated with the survival
and prognosis of BC

Venn plot was used to identify the overlap of 2483 human

immune associated genes from Immport database with 182

immune escape associated genes from Keith A. Lawson’s study

(Figure 1A), yielded 31 crossover genes (Figure 1B). We

compared the expression levels of immune escape encoding

genes between BC patients and healthy individuals, found that

18 genes were significantly up-regulated and 12 genes were

significantly down-regulated in BC patients, and ERAP1 was

not significantly different in BC patients and healthy individuals

(Figure 1C). BC patients were divided into high and low groups

according to “res.cut” expression levels, and Kaplan-Meier

survival analysis was performed for BC immune escape gene

expression levels. Among them, 15 genes showed significant

differences in survival and expression levels in BC patients

(Figure 1D), and the survival curves of the other 16 genes

were also shown (Figure S1A).
Immune escape in BC is mainly
influenced by PI3K-Akt signaling pathway

We identified 181 differentially expressed proteins

regulated by BC immune escape encoding genes through the

cBioPortal database (Table S1). The volcanic plots (Figure 2A)

show proteins with significant changes (P<0.05) and were used

for further analysis. To determine which pathway differential

proteins were mainly enriched, we performed GO and KEGG

enrichment analysis using “clusterprofiler” R package, which

showed that these differentially expressed proteins play

important roles in protein serine/threonine kinase activity,
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ubiquitin-like protein ligase binding, membrane raft, cell

substrate connection, gland development andreproductive

structure development. The PI3K-Akt signaling pathway

is considered to be the most prominent downstream

signaling pathway for immune escape related genes in BC

(Figures 2B, C).
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An 11-gene prognostic risk model was
constructed and validated with external
data sets

Univariate Cox analysis was performed on 181 differentially

expressed protein coding genes associated with immune escape
D

A

B

C

FIGURE 1

Screening for hub genes associated with immune escape from breast cancer. (A) The overlap of 2483 immune-related genes from Immport and
182 immune-escape related genes. (B) Display of 31 intersection genes. (C) The expression levels of breast cancer immune escape genes were
analyzed using RNA sequencing data from 1095 cancer patients and 292 healthy subjects in the TCGA and GTEX databases. (D) Kaplan-Meier
survival curve of immune escape genes in breast cancer based on expression level. Fifteen hub genes which P<0.05 and with significant
differences in expression levels were shown. (★p<0. 05,★★p<0. 01 and★★★p< 0.001).
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A

B

C

FIGURE 2

The major signaling pathway affected by genes associated with immune escape. (A) Volcano mapping to identify differential expressed proteins
affected by immune escape related genes and analyzed by reverse phase protein array (RPPA) in cBioPortal. The Y-axis is the value that
expresses the change in the horizontal fold, based on the logarithmic ratio (average of the changing expression/average of the constant
expression). -log10 (p value)>1.30 is considered a significant difference. (B) The bubble diagram of GO enrichment analysis of immune escape
gene was analyzed through clusterProfiler. Ten proteins have been shown to be important in biological processes, cell components, and
molecular functions. (C) The downstream pathways related to immune escape gene changes were analyzed by KEGG pathway in clusterProfiler.
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in BC, and 31 of them were identified to be associated with

survival (Figure 3A). To evaluate differentially expressed

protein-coding genes meaningfully associated with BC

prognosis and to obtain a better-fitting model, we used

LASSO to downscale the high-dimensional information by

adding a constraint to the absolute value of the coefficients

and further screening by 10-fold cross-validation. The optimal

l value (lmin=0.025) was obtained from the minimum local

likelihood deviation, and 16 genes were found to be significantly

associated with prognosis (Figures 3B, C). The previous one

looks at each feature individually to see if it is related to survival,

while multivariate cox regression is to test whether multiple

features are related to survival at the same time. Multivariate

Cox analysis recognized 11 excellent prognostic gene models,

namely EIF4EBP1, BCL2A1, NDRG1, MRE11A, ERRFI1,

CLDN7, PIK3CA, CASP9, BRD4, PDCD4, and G6PD

(Figure 3D). The risk score of patients was reckoned based on

the scoring formula: Risk score = (EIF4EBP1 expression level *

0.162425485) - (BCL2A1 expression level * 0.234522698) +

(NDRG1 expression level * 0.158199675) + (MRE11A

expression level * 0.3105604) - (ERRFI1 expression level *

0.268609023)+ (CLDN7 expression level * 0.173133629) +

(PIK3CA expression level * 0.442654646) - (CASP9

expression level * 0.337535821) - (BRD4 expression level *

0.497664344) - (PDCD4 expression level * 0.140816004) +

(G6PD expression level * 0.190558316). There were more

deaths in the high-risk group than the low-risk group, while

fewer patients survived longer than 5 years than in the low-risk

group (Figure 4A). The heatmap shows the risk of prognostic

genes with a multivariate outcome P value less than 0.05. As the

risk score increased, the expression levels of MRE11A, PIK3CA,

EIF4EBP1 and NDRG1 increased, while the expression levels of

BCL2A1 and BRD4 decreased (Figure 4C). Kaplan-Meier

survival curve assessed the difference in survival between

high- and low-risk patients in the risk model, which showed

that survival decreased more significantly over time in the high-

risk group than in the low-risk group, and the mean prognosis

was worse in the high-risk group than in the low-risk group

(P<0.0001) (Figure 4E). The prognostic value of Kaplan-Meier

survival curves was determined by the P-ROC curve, and the

area under the curve (AUC) was 0.672, indicating the median

reliability of the kaplan-Meier survival curve (Figure 4G). The

AUC of the survival assessment model was 0.68 for 2 years, 0.71

for 5 years, 0.75 for 8 years, and 0.77 for 10 years (Figure 4I).

The applicability of the prognostic model was externally

validated using the GSE20685 dataset (Figures 4B, D, F, H, J)

and GES42568 dataset (Figure S2), and the results further

confirmed the reliability of the risk model. We imported the

high- and low- risk groups into the TCIA database and found

that the high-risk groups had a lower percentage of immune

cells clustering (Figure S2).
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Nomogram validates the predictive value
of 5 core prognostic factors

Seven of the 11 prognostic indicators were statistically

significant, when Kaplan-Meier survival analysis was

performed on them according to expression level, six of them

were significantly different (Figure 5A). Analysis of their

expression levels in tumor patients and normal subjects

identified five core prognostic markers, which were EIF4EBP1,

BCL2A1, NDRG1, ERRFI1 and BRD4 (Figure 5B). We plotted

the expression levels of five central prognostic factors based on

1069 TCGA-BC patients. By testing these parameters to obtain

the corresponding assigned scores for their expression, the

individual gene scores were summed to find the total score,

which can predict the survival of BC patients for 1, 3, and 5 years

(Figure 5C). A calibration curve was plotted to verify the

accuracy of the prediction of the line graph. In the calibration

diagram, the predicted result (blue line) was very close to the

actual result (black line), with a c-index of 0.695, indicating that

the prediction quality of Nomogram was very high (Figure 5D).

In conclusion, five core prognostic markers can accurately

predict the prognosis of BC patients.
BCL2A1 is significantly associated with
BC immunity

Correlation analysis of 5 core prognostic factors and

immune checkpoints (PD-1, PD-L1 and CTLA4) showed that

BCL2A1 had the highest correlation with immune checkpoints,

while other factors with no significant difference (Figure 5E).

Correlation analysis of the 5 central protein-encoding genes with

26 immune cells showed that BCL2A1 had the highest

correlation with immune cells (Figure 5F). The correlation of

5 central protein-coding genes with tumor purity and 6 kinds of

immune cells (B cells, CD4+ T cells, CD8+ T cells, Neutrphils,

Macrophages and Dendritic cells) was further analyzed. BCL2A1

was negatively correlated with tumor purity and positively

correlated with immune cells (Figure 5G).
Analysis of the expression of five
core prognostic factors in different
BC subtypes

We analyzed the expression levels of five core prognostic

factors in two sets of BC classification data from public databases

TCGA (Figure 6A) and GSE96058 (Figure 6B). The expression

levels of EIF4EBP1, BCL2A1, NDRG1, ERRFI1 and BRD4 in all

BC patients are consistent. The expression levels of EIF4EBP1

and BCL2A1 in BC patients are significantly higher than those in
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D
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FIGURE 3

Prognostic risk model construction. (A) Univariate Cox analysis identified 31 differential expressed proteins coding genes related to survival.
(B, C) Sixteen differential expressed proteins coding genes were further screened out from 31 genes by Lasso regression analysis and tenfold
cross validation. (D) Multivariate Cox analysis was conducted according to Lasso results to obtain a risk model.
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normal breast tissues, and with the increase of tumor

malignancy. Its expression level increased.
Vemurafenib impacts the expression of
BCL2A1 by affecting PI3K-AKT signaling
pathway and inhibit BC cell growth

Analysis of the potential correlation between the

expression of 5 core protein coding genes and drug
Frontiers in Oncology 10
sensitivity in different human cancer cell lines from

CellMiner database, which showed that the expression of

BCL2A1 was positively correlated with the drug sensitivity

of Vemurafenib (Figure 7A). The results of the correlation

between other drugs and gene expression are placed in the

Supplementary Table (Table S2). We used RNA sequencing

data from 78 BC patients in GSE97681, 24 without and 54 with

Vemurafenib, the expression levels of BCL2A1 were analyzed

and were found to be significantly reduced with the drug

(Figure 7B). A review of the literature and the KEGG database
E

D

A B

F

G IH J

C

FIGURE 4

Verification of prognostic risk model based on TCGA database (Data were collected from low risk groups (n = 564) and high risk groups (n =
504)) and GSE20685 (Data were collected from low risk groups (n = 171) and high risk groups (n = 156)). (A, B) The status distribution of
patients’ survival between low and high risk groups. (C, D) Heat map showing expression levels of high and low genetic risk groups. (E, F)
Kaplan–Meier curves of OS between the high risk and low risk groups. (G, H) The P-ROC curve verified the risk model, and the AUC>0.65 was
considered to have good predictive value. (I, J) The time of 2- year, 5- year, 8- year and 10 - year survival forecasts depends on the ROC curve.
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revealed a map of the regulatory pathways of Vemurafenib on

BCL2A1-sensitive targets (19) (Figure 7C).

We first detected the expression levels of PI3K, AKT, p-Akt

and BCL2A1 in MCF7, MDA-MB-231, SKBR3 and MCF10A
Frontiers in Oncology 11
cells by Western Blot analysis. It was confirmed that the

expression of these proteins in BC cells (MCF7, MDA-MB-

231, SKBR3) was higher than that in normal breast cells

(MCF10A)(Figure 7D).
E

D

A

B F

G

C

FIGURE 5

The central differential expressed proteins were further screened for immunocorrelation analysis. (A) Kaplan-Meier survival analysis based on the
result of Multivariate Cox which P<0.05. (B) Box-plot analyze survival analysis for P<0.05 expression level of marker. (C) Prognostic maps of five
central gene expression levels were established to predict overall survival at 1, 3, and 5 years. (D) Calibration chart of Nomogram. The black line
represents the predicted results and the blue line represents the actual results. The high agreement between the two indicates that the prediction
results are reliable. (E) Chord diagram shows the correlation between five central protein-coding genes and immune checkpoints. The longer arc
and larger area with the better correlation. (F) Correlation analysis of the five central protein-coding genes and 26 immune cells: red represents
positive correlation, blue represents negative correlation, the darker color show the stronger the correlation, and the small solid circles in color
indicate FAD<0.05. (G) Correlation analysis (TIMER) between five central protein-coding genes and tumor purity and 6 immune cells.
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To explore the effect of vemurafenib on BC cells, the

concentration of vemurafenib that resulted in 50% control

growth inhibition (IC50) of MCF7, MDA-MB-231 and SKBR3

cells was assessed by MTT (Figure 7E). The IC50 of MCF-7 is 42

mM, MDA-MB-231 is 34 mM and SKBR3 is 51 mM. Next, the

inhibitory activity of different concentrations of vemurafenib (0,

20, 40, 60 mM) onMCF7, SKBR3 andMDA-MB-231 cells at 0, 24,

48, and 72 h were further studied by MTT (Figure 7F). The results

showed that vemurafenib inhibited cell proliferation in a dose-

dependent manner, and the inhibitory effect increased with time.

To further explore the mechanism by which vemurafenib

inhibit the growth of MDA-MB-231, MCF7 and SKBR3 cells,

the expression level of PI3K/AKT signaling pathway and

BCL2A1 in vemurafenib treated cells was evaluated by

western blot (Figures 8A–C). The expression level of PI3K,
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AKT, p-AKT and BCL2A1 were reduced in vemurafenib

treated cells compared to without vemurafenib. This

suggested that the drug inhibits the PI3K/AKT signaling

pathway and BCL2A1. In addition, apoptosis-associated

genes expression was detected. BCL2A1 downregulation

was confirmed using RT-qPCR (Figures 8D–F), and the

results indicated that vemurafenib promoted cell apoptosis

of MDA-MB-231 and MCF-7.
Discussion

BC is a malignant tumor that seriously endangers women’s

health, and is occasionally seen in men. Most of the early

symptoms of BC patients are not obvious and can be easily
A

B

FIGURE 6

Breast Cancer Typing Expression. (A) Breast cancer typing expression in TCGA database. (B) Breast cancer typing expression in the GEO
database (GSE96058).
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ignored, and the failure to seek timely medical attention leads to

poor prognosis of BC. Personalized treatment and other new

therapies can help patients choose the most appropriate

treatment among various therapies. Establishing an accurate

patient prognosis prediction system to provide patients with a

more optimal treatment approach in molecularly targeted
Frontiers in Oncology 13
therapy is essential for personalized treatment (27). Molecular

prognostic markers can change with tumor progression, and

monitoring these markers can dynamically reflect patient

prognosis. In addition, some molecular prognostic markers are

involved in tumor progression and may be potential targets for

tumor therapy and diagnostic indicators for early tumors (28).
E
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FIGURE 7

Drug sensitivity analysis of five central protein-coding genes. (A) Regulatory pathway map of BCL2A1 and the sensitive target of Vemurafenib. (B)
The scatter plot shows the sensitivity analysis of BCL2A1 and the antitumor drug Vemurafenib. (C) Box-plot show the molecular formula of the
Vemurafenib and the expression levels of BCL2A1 were analyzed using RNA sequencing data from 24 no drug and 54 with drug subjects in the
GSE97681. (D) The expression levels of PI3K, AKT, P-Akt and BCL2A1 in MCF7, MDA-MB-231, SKBR3 and MCF10A cells were detected by
Western Blot. (E) Vemurafenib inhibited cell viability in breast cancer cells. The concentration of vemurafenib resulting in 50% inhibition of
control growth (IC50) was calculated. (F) Vemurafenib inhibit cell viability at different times. Vemurafenib (0, 20, 40, 60mM) inhibited MCF-7,
SKBR3 and MDA-MB-231 cell viability at 0, 24, 48, and 72h. *P<0.05, **P<0.01, ***P<0.001.
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Molecular prognostic markers may be heterogeneous across

patients, so that a group of molecular markers is superior to

individual markers in terms of prognosis.

A large number of cancer and normal breast tissues were

analyzed and screened in TCGA, GTEx, and GEO databases for

broad applicability. 182 mouse immune escape related genes
Frontiers in Oncology 14
were obtained from Keith A. Lawson et al. and intersected with

2483 human immune escape related genes downloaded from the

IMMPORT database, and 31 reliable immune escape related

genes were identified. Fifteen of the immune escape related genes

were significantly associated with survival and expression, and

181 differentially expressed proteins of the 15 hub genes were
E

D

A

B

F

C

FIGURE 8

Inhibitory effect of Vemurafenib on different breast cancer cell lines. (A) Vemurafenib suppressed PI3K, AKT, p-AKT and BCL2A1 expression in
MDA-MB-231cells. (B) Vemurafenib suppressed PI3K, AKT, p-AKT and BCL2A1 expression in MCF-7 cells. (C) Vemurafenib suppressed PI3K, AKT,
p-AKT and BCL2A1 expression in SKBR3 cells. (D) Decreased levels of BCL2A1 in MDA-MB-231 cells treated with different concentrations of
vemurafenib (0, 20, 40, 60 mM) were determined by RT-qPCR. (E) Decreased levels of BCL2A1 in MCF-7 cells treated with different
concentrations of vemurafenib (0, 20, 40, 60 mM) were determined by RT-qPCR. (F) Decreased levels of BCL2A1 in SKBR3 cells treated with
different concentrations of vemurafenib (0, 20, 40, 60 mM) were determined by RT-qPCR. (*P<0.05, **P<0.01, ***P<0.001.).
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identified through the cBioportal database. Gene enrichment

analysis showed that differentially expressed proteins are

involved in many important biological processes, such as

protein serine/threonine kinase activity, ubiquitin-like protein

ligase binding, membrane raft, cell substrate connection, gland

development and reproductive structure development. In

addition, they are associated with important tumor-related

pathways such as the PI3K-AKT signaling pathway, Hepatitis

B, and Human papillomavirus infection pathway. The PI3K-

AKT signaling pathway mainly inhibits cell apoptosis and

promotes cell proliferation, indicating that immune escape

genes play an important role in the occurrence and

development of tumors. In recent years, an increasing number

of studies had found that PI3K/Akt signaling pathway is closely

related to the occurrence and development of lung cancer, BC,

colorectal cancer, prostate cancer, ovarian cancer, liver cancer

and lymphoma (29).

To find the most representative survival-related differentially

expressed proteins, univariate Cox analysis, lasso regression

analysis and multivariate Cox analysis were used to analyze

the genes encoding these differentially expressed proteins. The

prognostic model consisted of EIF4EBP1, BCL2A1, NDRG1,

MRE11A, ERRFI1, CLDN7, PIK3CA, CASP9, BRD4, PDCD4

and G6PD. According to these 11 genetic characteristics, BC

patients can be divided into high- and low-risk group, the

survival rate of high-risk group is significantly lower than that

of low-risk group. Differential expression analysis and survival

analysis were performed on the prognostic models, and five core

prognostic models were summarized, including EIF4EBP1,

BCL2A1, NDRG1, ERRFI1 and BRD4. EIF4EBP1, NDRG1

and BRD4 are associated with poor prognosis of BC, while

BCL2A1 and ERRFI1 are associated with good prognosis of BC.

The nomogram found that the five prognostic factors had good

prediction accuracy at 1, 3 and 5 years of BC. Similarly, HPA

database (Human Protein Atlas) was used to test the

performance of the prognostic model based on the

characteristics of these five protein-coding genes, and the

results showed that they performed well in predicting

the prognosis of BC.

EIF4EBP1 (also known as 4EBP1) gene encodes a translation

repressor protein, which competitively binds to eukaryotic

translation initiation factor 4E (EIF4E), and inhibits the

assembly of the EIF4E complex, thereby suppressing cap-

dependent translation (30). In BC and cervical cancer,

EIF4EBP1 is considered to be a major factor in the signaling

pathway related to prognosis and malignancy, which was not

changed by the presence of other upstream carcinogens (31, 32),

it is consistent with our findings. The Bromodomain and extra-

Terminal Domain (BET) protein BRD4 was a transcriptional

and epigenetic regulator that plays a key role in embryonic and

cancer development. Aberrant degradation of the BRD4 protein

in cancer leads to resistance to BET inhibitors, so BRD4 is

emerging as a promising anticancer therapeutic target (33).
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Recent evidence suggests that BRD4 has additional non-

transcriptional functions in cancer, affecting processes such as

DNA damage repair, checkpoint activation, or telomere

homeostasis (34). ERBB receptor feedback inhibitor 1(ERRFI1)

was known as a tumor suppressor, and initiates cell growth by

directly inhibiting the epidermal growth factor receptor and its

downstream pathway. In addition, ERFFI1 inhibits another

receptor family (Erbb), whose activation leads to cell survival,

proliferation, migration, and invasion (35). A dual mechanism

by which ERRFI1 regulates AKT has been identified. ERRF1

inhibits growth and enhances response to chemotherapy in cells

expressing high levels of EGFR. This was partly mediated by

ERRFI1-dependent direct inhibition of the negative regulation of

AKT signaling by EGFR. In cells expressing low levels of EGFR,

ERRFI1 positively regulates AKT by interfering with the

interaction of the inactivated phosphatase PHLPP with AKT,

thereby promoting cel l growth and chemotherapy

desensitization (36). N-myc Downstream regulated gene-1

(NDRG1) was a potent inhibitor of metastasis regulated by

hypoxia, metal ions including iron, free radicals nitric oxide

(NO), and various stress stimuli. This intriguing molecule had

shown multiple functions in cancer, regulating a plethora of

oncogenes through cellular signaling and inhibiting epithelial

mesenchymal transition (EMT), cell migration and

angiogenesis (37).

BCL2A1 is a member of the Bcl-2-associated protein family,

as an anti-apoptotic protein associated with resistance to

chemotherapeutic drugs and targeted drugs (38). The Bcl-2

protein family plays a key role in regulating the internal

pathways apoptosis by inhibiting cytochrome C and releasing

activated proteases (39). We found that BCL2A1 expression was

higher in BC than in normal breast tissue, and the expression of

BCL2A1 was upregulated as the malignancy of the molecular

subtype of BC increased. We also found patients with high

expression BC showed a better survival advantage, which may

result from the high correlation of BCL2A1 with immune cells

and immune checkpoints (CYLA4, PD-1, PD-L1). However, the

tissue clump-based transcriptome sequencing data are

indistinguishable between cancer cells and their surrounding

machinery cells, suggesting that if BCL2A1 expression is

increased in the machinery cells surrounding tumor cells, this

could also lead to an increase in overall BCL2A1 expression

levels. As there is no effective drugs to treat cancers that high

expression BCL2A1 at present (40), the discovery of its target

drug could provided value to guide clinical treatment. We found

a significant correlation between BCL2A1 and vemurafenib by

drug sensitivity analysis. We also analyzed the data of GSE97681

and found that the expression level of BCL2A1was significantly

lower in the group using vemurafenib compared to the non-

drug group.

BCL2A1 is present downstream of PI3K/AKT and is

regulated by it, affecting survival. Vemurafenib (PLX4032) is a

novel small molecule BRAF inhibitor that has been approved by
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the US Food and Drug Administration for the treatment of

patients with melanoma (41). One study found that applying

Vemurafenib to a xenograft model of BC cells (MDA-MB-231)

revealed that Vemurafenib treatment resulted in downregulation

of PI3K-AKT signaling (19), which may be responsible for the

downregulation of BCL2A1 expression after Vemurafenib. We

found that vemurafenib had an inhibitory effect on the cell

growth of MDA-MB-231, SKBR3 and MCF-7 cells by MTT

assay. Further, we detected the level of PI3K/AKT signaling

pathway in vemurafenib-treated cells byWestern Blot and found

that Vemurafenib significantly inhibited PI3K/AKT signaling

pathway and the expression of BCL2A1. RT-qPCR confirmed

the vemurafenib down-regulation of the expression of BCL2A1

too, and the results showed that vemurafenib inhibited the

survival of MDA-MB-231, SKBR3 and MCF-7 cells.

In general, our study established an 11-gene prognostic

model for predicting the efficacy of immunotherapy for BC,

and further identified the 5 most core prognostic factors of the

prognostic model, which plays a certain role in personalized

treatment and accurate prognostic prediction for BC patients. In

addition, this study also provides targeting reference drugs for

the core prognostic genes to provide a reference for clinical

practice, and the accuracy of drug targeting genes was verified by

basic experiments and elucidates in detail that Vemurafenib

suppresses BC by targeting the PI3K/AKT signaling pathway to

inhibit the immune escape biomarker BCL2A1. However,

further experimental studies and larger scale clinical trials are

needed to further determine the applicability and accuracy of the

5 core factors that constitute prognostic markers for BC

development and progression and the potential mechanisms of

related drugs.
Conclusion

In summary, our 11-gene expression prediction model based

on multiple data sets is more economical and clinically feasible

than whole-gene sequencing. We also plotted histograms of five

core prognostic factor prediction models, which can individually

assess the prognosis of different patients by detecting the

expression of genes. We also elucidate in detail that

Vemurafenib suppresses BC by targeting the PI3K/AKT

signaling pathway to inhibit the immune escape biomarker

BCL2A1. Our findings will provide therapeutic targets for

individualized treatment of BC and find its potential drugs,

which will certainly be more beneficial for selecting

effective treatments.
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FIGURE S1

The remaining Kaplan – Meier survival curve in Figure 1D and Figure 5A.
FIGURE S2

(A–E) GSE42568 verify the risk model. (F) Cluster analysis of high and low
risk groups and 28 types of immune cells.
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