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Cholesterol is an essential lipid primarily synthesized in the liver through the mevalonate
pathway. Besides being a precursor of steroid hormones, bile acid, and vitamin D, it is an
essential structural component of cell membranes, is enriched in membrane lipid rafts,
and plays a key role in intracellular signal transduction. The lipid homeostasis is finely
regulated end appears to be impaired in several types of tumors, including breast cancer.
In this review, we will analyse the multifaceted roles of cholesterol and its derivatives in
breast cancer progression. As an example of the bivalent role of cholesterol in the cell
membrane of cancer cells, on the one hand, it reduces membrane fluidity, which has been
associated with a more aggressive tumor phenotype in terms of cell motility and migration,
leading to metastasis formation. On the other hand, it makes the membrane less
permeable to small water-soluble molecules that would otherwise freely cross, resulting
in a loss of chemotherapeutics permeability. Regarding cholesterol derivatives, a lower
vitamin D is associated with an increased risk of breast cancer, while steroid hormones,
coupled with the overexpression of their receptors, play a crucial role in breast cancer
progression. Despite the role of cholesterol and derivatives molecules in breast cancer
development is still controversial, the use of cholesterol targeting drugs like statins and
zoledronic acid appears as a challenging promising tool for breast cancer treatment.

Keywords: breast cancer, cancer metabolism, cholesterol, mevalonate (MVA) pathway, cholesterol metabolism,
statins, breast cancer therapy

INTRODUCTION

Breast cancer (BC) is estimated to account for one-third of all new cancer diagnoses in American
females in 2022. Despite a 1% decrease annually in mortality during the 2013-2019 timeframe, the
estimated death for BC in females is 15% among all types of cancer, thus representing the second
leading cause of cancer death among women (1). Molecularly, it is possible to subdivide BC into
four main subtypes: Luminal BC are positive for the expression of steroid hormone receptors, the
estrogen receptor (EsR) and progesterone receptor (PR), and they can be further characterized in
Luminal A (EsR+, PR+, HER2-) and Luminal B (EsR+, PR+, HER2+). HER2+ BCs overexpress the
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HER2/ERBB2 oncogene and include both the Luminal B and the
HER2+, EsR-, PR- patients. In contrast, Basal-like or Triple-
Negative BC (TNBC) lacks both the hormonal receptors and the
HER2 receptor (2), which represents a major obstacle for
therapeutic intervention in this aggressive BC subtype.

Several epidemiological and genetic studies have tried to
determine whether levels of circulating lipids are associated
with risks of various cancers, including BC. Dietary cholesterol
represents a significant risk factor for BC, as suggested by a
comprehensive meta-analysis study (3) and genetically elevated
plasma high-density lipoprotein (HDL) and low-density
lipoprotein (LDL) levels appear to be associated with increased
BC risk (4). However, additional studies are required to address
the putative causal relationship between BC and cholesterol, with
the goal to develop potential therapeutic strategies aimed at
altering the cholesterol-mediated effect on BC risk.

Metabolic reprogramming has been extensively proved to be a
key cancer hallmark (5); indeed, tumor cells exhibit metabolic
abnormalities required to satisfy their growth and survival needs
(6). Compared to more investigated metabolic phenotypes and
metabolites such as glucose in the Warburg effect (7, 8), the
contribution of cholesterol in cancer is still controversial (9, 10).
To date, it is well known that frequently altered oncogenes and
tumor suppressors in BC, like the PI3K and p53, affect
cholesterol homeostasis in a variety of tumors (11-13).
Interestingly, several BC samples showed increased expression
of proteins involved in endogenous cholesterol synthesis, which
occurs through the mevalonate (MVA) pathway (14). Moreover,
BC cells display aberrant cholesterol uptake at mitochondrial
levels via increased expression of STAR and STARD3 proteins,
essential for regulating cholesterol import to the mitochondria,
that, in turn, impinge on proliferation, metastasis, and survival
(9, 15). Indeed, STARD?3 is overexpressed in BC patients, where
it is frequently co-amplified with HER2; high STARD3 levels
correlate with a poor prognosis and lower response to
Trastuzumab (16), a monoclonal antibody that targets the
HER2 receptor (17). These data suggest a central role of
mitochondria in such metabolic reprogramming.

The up regulation of cholesterol metabolism in BC cells
depicts a scenario in which cholesterol and its derivatives may
play a crucial role in sustaining tumor growth, hence numerous
clinical trials have tried to investigate the effect of drugs able to
reduce circulating cholesterol, like statins, in several cancer types.
Notably, the use of cholesterol-lowering drugs in preventing or
curbing BC progression has revealed controversial results (11,
18) and the ongoing clinical trials will provide a clearer view on
their beneficial role. By using robust and routinely available
techniques both the luminal and basal breast cancer phenotypes
have shown to contain distinct subgroups and therefore to be
heterogeneous (19). The single cell-based approaches to depict
the BC intratumor heterogeneity, will also help in defining the
co-existence of different clones in a given tumor, may help
characterize distinct metabolic phenotypes and drug responses
(20, 21). Nevertheless, statins treatment is a safe approach in
lowering cholesterol levels (22) and the hormone dependency of
BC appears to be the most promising predictive marker of

response to statin treatments, probably due to the precursor
role of cholesterol in steroid hormones production (11). This
review will focus on the cholesterol homeostasis aberrations in
BC and the relevance of MV A pathway inhibitors in BC therapy.

Cholesterol Homeostasis

Cholesterol is a lipid molecule crucial for the viability of
mammalian cells. It is involved in the synthesis of steroid
hormones (23), bile acids (24) and oxysterols (25), and its
localization in cell membranes is critical in dictating
membrane integrity and fluidity (26). Cellular cholesterol
results from de novo cholesterol synthesis and dietary intake
with an estimated ratio of 70:30 (27) (Figure 1). The synthesis,
uptake, efflux, and cholesterol conversion is tightly regulated
intracellularly (28). Cholesterol is primarily synthesized in the
liver and transported to other tissues through the bloodstream as
an LDL-bound form. Exogenous cholesterol is mainly derived
from LDL, and thanks to the LDL receptor (LDLR)-mediated
endocytosis, LDLs are up-taken and stored in the early endosome
(28). In the late endosome, thanks to the lipase activity, LDL
undergo hydrolysis, and the derived cholesterol arrives either
directly to the plasma membrane (PM) or to the endoplasmic
reticulum (ER) (29), where it becomes available for esterification
(30). The exit of cholesterol from late endosomes critically
depends on the two cholesterol-binding proteins, NPC1 and
NPC2 (29, 31, 32).

In addition to dietary intake, in nucleated cells, nearly 30
enzymatic reactions led to the polymerization of acetyl-CoA into
cholesterol through the MVA pathway (18, 27). The intracellular
cholesterol pool generated by the MV A pathway is controlled by
two rate-limiting enzymes: 3-hydroxy-3methylglutaryl-CoA
(HMG-CoA) reductase (HMGCR) and squalene epoxidase
(SQLE) (27). Indeed, the homeostasis of intracellular
cholesterol metabolism is mainly controlled through the
transcriptional regulation of the HMGCR coding gene by the
Sterol Regulatory Element-Binding Proteins (SREBPs)
transcription factors, mainly by the SREBP-2 isoform in the
liver. Whenever cholesterol levels at the ER membrane are high,
cholesterol itself can bind the sterol sensing domain of the SCAP
chaperones, while oxysterols such as 25-hydroxycholesterol can
bind the INSIG chaperones at the ER membrane. INSIG and
SCAP bind each other and retain SREBPs at the ER membrane
(33-35). In case of low cholesterol level, INSIG is degraded, and
the SCAP/SREBP2 complex can be packed into COPII-coated
vesicles and targeted to the Golgi where SREBP can be
proteolytically cleaved by site-1 protease and site-2 protease
(S1P and S2P) (35, 36). The N-terminal domain of SREBP
resulting from cleavage can enter the nucleus, bind to sterol
responsive elements (SREs) and act as transcription factors,
increasing the expression of LDLR, HMGCR, and SQLE, thus
enhancing cholesterol synthesis and uptake (23, 36).

Cholesterol homeostasis does not rely only on its endogenous
synthesis or uptake from the diet; indeed, cholesterol is heavily
transported between subcellular membranes, and such trafficking
may be the result of vesicular transport, membrane contact sites,
or sterol transfer proteins (27). Additionally, cholesterol
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FIGURE 1 | Cholesterol homeostasis main processes. (1) SREBP processing at the ER membrane and Golgi apparatus; in high cholesterol condition, SREBP is
retained at the ER membrane by INSIG and SCAP, which sense oxysterols and sterols, respectively. At low cholesterol condition, SREBP can be transported to the
Golgi apparatus and cleaved by S1P and S2P proteases. Cleaved SREBP can enter the nucleus and trigger the transcription of crucial MVA pathway genes. (2) Main
steps of cholesterol synthesis through the MVA pathway, of which HMGCR represents the rate-limiting enzyme. (3) LDL-cholesterol intake via LDL-receptor mediated
endocytosis. (4) Cholesterol efflux by ABCA1 transporter, which employs ATP molecules to deliver cholesterol and lipids on apoA-I, triggering the assembly of
nascent HDL. (5) ACAT enzyme mediated cholesterol esterification to fatty acids tightly packaged and stored in the core of intracellular lipid droplets, which represent
a ready storage of lipids that can be used without investing energy in biosynthesis. (6) Cholesterol conversion in its main derivatives, some of which may play a role in
BC pathology and progression. The main cholesterol homeostasis inhibitors and their targets are underlined in blue, while drugs and substances used in clinical trials

(see Table 1) are shown in green. Created with BioRender.com.

molecules can be esterified to fatty acid chains within the ER by
the acyl-CoA cholesterol acyltransferase (ACAT) and stored into
lipid droplets (37) (Figure 1).

The Impact of Circulating Cholesterol

in BC

The scientific community has for a long time attempted to elucidate
the relationship between BC development and serum cholesterol in
terms of association and causality. A plethora of investigations
conducted in humans has interrogated the link between BC, LDL
and HDL. Some authors have reported that high LDL levels are
associated with increased BC risk (38) and are predictive of poor
prognosis (39). Nevertheless, additional studies showed no
association between LDL and BC risk (40-42). Concerning the
prognostic value of HDL, some evidence suggests an association
between low HDL and BC risk (43), especially in premenopausal
women (41, 44, 45). Moreover, a retrospective study found that
decreased HDL levels in pre-operative patients had a significant
association with worse overall survival (46). However, others suggest
that low HDL is associated with an increased risk of
postmenopausal breast carcinogenesis (47).

Opverall, different studies have generated contrasting results,
possibly due to the multifactorial etiology of BC, its
heterogeneity, and the differences in the design of the studies
(48, 49). Because of the discrepancies that have emerged from
clinical investigations, it is crucial to understand the potential
mechanisms underlying the role of lipoproteins in BC leveraging
on both animal and in vitro studies.

The MVA Pathway Aberrations in BC

The MVA pathway is crucial in cell viability, not only due to
cholesterol synthesis, but also because the metabolites generated
through such anabolic pathway represent potential building
blocks to meet the high proliferative requirements of cancer
cells (11). The intracellular levels of MVA metabolites, as
previously cited, are tightly controlled mainly by SREBP
proteins and corresponding sterol regulatory elements (SREs).
SREBPs activities can get integrated into cellular signaling
pathways from growth factors and some of them are known to
play a major and driver role in tumorigenesis. Among them, the
PI3K-AKT signaling pathway triggered by the epidermal growth
factor receptor (EGFR), is the most altered one in cancer (50).
PI3K phosphorylates AKT which in turn can induce the
activation of the mechanistic target of rapamycin complex 1
(mTORC1) via inhibition of TSCI1-2 (51). Upregulation of
SREBPs, caused by the PI3K/Akt signaling and mTORCI, have
been associated to cancer (52) and several inhibitors of SREBPs,
that are under clinical studies, proved to reduce the tumour
growth in various tumor types, including BC (53).

Mutations to the catalytic o subunit of PI3K (PIK3CA) are
found in 40% of Luminal A breast tumors (54). In breast
epithelial cells, expression of oncogenic PI3K correlates with
induced de novo lipogenesis via AKT and mTORCI (55).
Moreover, mTORCI1 signaling was shown to increase RNA
and protein levels of SREBP targets in primary human breast
cancer samples (55). Activated AKT promotes SREBPs released
from the ER by decreasing the sterol binding ability of INSIG
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chaperones at the ER membrane in human hepatocellular
carcinoma (HCC) (56) in this model, the downstream effector
of AKT, the phosphoenolpyruvate carboxykinase 1 (PCK1), once
activated, can phosphorylate and promote the proteasomal
degradation of INSIG, thus leading to increased SREBP
maturation (56). Interestingly, PCK1 was shown to be
upregulated in BC samples and to play a key role in tumor
metastasis (57). Regarding mTORCI, it has been shown that its
signaling may enhance SREBP maturation through the
phosphorylation and activation of the downstream effector
ribosomal S6 kinase 1, via an unknown mechanism (58).
Highlighting the relevance of the mTORCI signaling in MVA
pathway aberrations and in BC, one of the downstream effectors
of S6K, the ribosomal S6 is, indeed, highly phosphorylated in BC
samples (55).

Interestingly, mTORCI signaling protects BC cells from
ferroptosis a cell death caused by the iron-dependent
accumulation of lipid reactive oxygen species (59), by increasing
SREBPI. In HER2+ cell lines bearing constant activation of PI3K-
AKT-mTORCI axis, the genetic ablation of a SREBP1 gene
(SREBF1) decreased primarily the lipid synthesis-related gene
SCD1, while pharmacological inhibition of SCD1, sensitized BC
cells to ferroptosis (60). The antioxidant role of SCD1 is not new
(61) and the mechanistic explanation may come from the role of
SCD1 in producing monounsaturated fatty acid (MUFAs) (62).
MUFAs can decrease lipid peroxidation sensitivity and, therefore
ferroptosis, by displacing the more easily oxidized polyunsaturated
fatty acids (PUFAs) from the cell membrane (63). Interestingly,
SCD1 is enriched in almost all tumor tissues with a greater
enrichment of SCD1 in BC compared to other tumours and to
their non-neoplastic counterparts (64).

Additionally, mTORC1 may promote the chromatin
accessibility of SREBPs by inhibiting Lipin 1, a phosphatidic
acid phosphatase (65). Taken together, the constant activation of
the PI3K-AKT-mTORCI1 axis increases SREBPs translocation in
the nucleus and its stabilization onto chromatin to boost the
MVA pathway and increase apoptosis resistance. MYC is
another well-known oncogene that is highly mutated in BC
(66). MYC can interact with SREBPs and promote cell
dedifferentiation (67). Notably, the SREBP2-dependent increase
in cholesterol synthesis is associated with stemness maintenance
and proliferation in intestinal stem cells (ISC); indeed, despite
the mechanism has not been elucidated, abnormalities in
phospholipid bilayer caused by the absence or inhibition of the
phospholipid-remodeling enzyme LPCATS3, increases SREBP-2
nuclear activation and intestinal stem cell growth (68). Such
results highlight a putative link between phospholipid content,
cholesterol synthesis and stemness. As a matter of fact, stemness
is a cell state that appears to be widely spread in TNBCs (69).

In 80% of TNBC cases, the tumor suppressor p53 is mutated
(70). p53 null cells and mice were found capable of increasing the
MVA pathway via inhibition of the retrograde transport of
cholesterol from the PM to the endoplasmic reticulum
controlled by the cholesterol transporter ABCA1 (71, 72).
Mechanistically, decreased cholesterol transport from the PM
to the ER results in increased maturation of SREBPs.

In BC, evidence of molecular mechanisms responsible for
increased cholesterol biosynthesis is fewer than in other tumor
types. The oncogenic players known to boost the MVA pathway
in these tumors are also crucial in BC, where they may play
similar roles. Indeed PI3K, p53 and MYC are known to modulate
the MVA pathway in different tumor models and belong to the
ten most frequently mutated genes in BC (73), strongly
suggesting that BC cells may exploit them to upregulate
cholesterol synthesis and fulfil their proliferative requirements.
Interestingly, many studies identified HMGCR and SREBPs as
prognostic markers in BC; in a cohort of 82 BC patients, high
levels of SREBP-1 are associated with metastatic features and
poor survival (74). Also, SREBP-1 knockdown negatively
influences the migration and invasion of BC cells (74).

On the other hand, clinical data regarding the predictive value
of HMGCR are much more controversial. Since the fact that high
HMGCR expression is associated with better clinical outcomes
(75, 76), is still debatable (77), further studies on larger cohorts
may define a clearer scenario on the prognostic value
of HMGCR.

THE ROLES OF MEMBRANE
CHOLESTEROL

Cholesterol is an essential constituent of membranes, where it
accounts for about 25% of total lipids (78, 79). Cholesterol plays a
pivotal role in modulating PM integrity and intracellular signal
transduction by interacting with specific proteins and several
phospholipids and sphingolipids (80, 81). The cholesterol
molecule contains a small polar hydroxyl group, a rigid steroid
ring, and a flexible hydrocarbon tail. Due to its unique structure
and biophysical properties, cholesterol is well-suited to pack its
bulky sterol ring against the fatty acyl chains of phospholipids,
leading to increased packing density and cohesion of adjacent
lipids, therefore shifting from the lipid membrane liquid-
crystalline state to a more ordered state (82). Alteration in the
motional freedom of lipids and proteins in the PM is a major trait
of cancer cells that may affect various biological processes such as
the response to chemotherapeutic drugs (83-85) the activity of
membrane receptors (86-88), cell motility and metastasis
(89-92).

In addition to providing integrity of cell membranes,
cholesterol is the major lipid component of specific membrane
microdomains, named lipid rafts that range between 10 to 200
nm in size and are known to compartmentalize various cellular
processes. The lipid raft concept was proposed in 1997 by Simons
and Ikonen (93). It defines the lipid rafts as a dynamic clustering
of sphingolipid and cholesterol within the PM that can selectively
recruit and concentrate proteins while excluding others, creating
a specialized membrane environment that functions as a
platform for receptor trafficking and signal transduction (94).
The consensus within the context of cancer cells is that lipid rafts
contribute to the positive modulation of signal transmission
implicated in diverse cancer cell processes, such as cell
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adhesion, migration, invasion, metastasis, and angiogenesis
(95-97).

Increasing cholesterol levels in the PM may affect the
permeability of certain metabolites and drugs, including
anticancer agents (98, 99). Recently, Rivel and coworkers studied
the permeation of the chemotherapeutic drug cisplatin through PM
models. In this context, the increase in relative cholesterol
concentration in the range of 0% to 33% induced the stiffening of
lipid tails, leading to decreased drug permeability by one order of
magnitude (98). Importantly, BC cells that are resistant to
doxorubicin exhibit higher levels of sphingomyelin and
cholesterol in the cell membrane and an increased lipid packing
density than the corresponding doxorubicin-sensitive cells (100).
Another study demonstrated how reducing membrane cholesterol
content in BC cells could increase the efficacy of tamoxifen
treatment by improving its membrane permeability (101).
Therefore, the reduced drug permeability driven by increased
membrane cholesterol levels may represent a strategy for cancer
cells to induce drug resistance. Moreover, it is worthy of note that
PM cholesterol might provoke specific conformational changes in
ATP-binding cassette (ABC) transporters that are involved in
multidrug efflux, potentially modulating their activity, as
discussed below (83).

Researchers have paid interest in the role of cholesterol in the
modulation of cancer cell migration. Overall, the general idea is
that altering cholesterol abundance in cancer cells would likely
affect cellular architecture and signal transduction, thus,
interfering with the migratory ability of cells. It is widely
recognized that lower levels of cholesterol in the plasma
membrane enhance membrane fluidity and therefore favor
cancer cell migration, which might eventually promote
dissemination (91, 102, 103). In support of this idea, a research
work from Zhao and colleagues highlighted how membrane
fluidity is causally correlated with metastatic capacity in vivo
and that many antimetastatic drugs function by inhibiting
fluidity of cancer cells (103). Besides inducing membrane
rigidity, cholesterol has been indirectly implicated in cell
migration by affecting the stability and localization of specific
proteins into lipid rafts (102, 104, 105). For instance, the
presence of the transmembrane glycoprotein cluster of
differentiation 44 (CD44) to lipid rafts impairs the interaction
of CD44 with its migratory binding partner ezrin, leading to
inhibition of BC cell migration (104, 105). In line with the anti-
migration role of membrane cholesterol, another study reported
that repressing cholesterol abundance in the cell membrane
activates TGF-PB receptor signaling, promoting metastasis of
BC (102). In this work, the authors showed that mild depletion
of membrane cholesterol by using low dosages (0.3 mM in
MDA-MB-231 cells) of the cholesterol-depleting agent methyl-
B-cyclodextrin (MBCD) led to increased cell migration and
hypothesized that further cholesterol reduction might
negatively influence cell survival pathways rather than
promoting migratory ability of cancer cells. However, a recent
study highlighted that disrupting lipid rafts in TNBC cells by
using MBCD at a concentration of 0.1 mM for 48 hours is
sufficient to determine up to 20% of cytotoxicity (106, 107).

On the other hand, many studies support the positive role of
cholesterol-rich lipid rafts in cancer progression, since disrupting
lipid rafts by using MBCD can effectively promote cancer cell
death in several types of cancer cells, including BC (97, 101, 108,
109). Among the lipid-raft associated proteins whose signaling
pathways contribute to more aggressive and invasive behavior of
BC cells are the ion channels SK3 and Orail (110), the GPI-
anchored cell membrane receptor uPAR, the matrix
metallopeptidase protein MMP-9 (111), and the glycoprotein
Muc-1 (112). Remarkably, disruption of lipid rafts by treating
cells with MBCD inhibits the formation of Caveolin-1-dependent
invadopodia during BC cell invasion (113, 114). In a recent
study, cholesterol was found to promote the maintenance of
surface levels of HER2. In this context, reducing cholesterol
levels in the PM leads to the endocytic degradation of HER2,
synergizing with the tyrosine kinase inhibitors to curb HER2-
positive BC growth (86).

Plasma-Membrane Cholesterol,
Cholesterol Efflux and ABC Transporters
The increased amount of cholesterol incorporated in plasma-
membrane also determines an increased rigidity of the
membrane detergent-resistant membrane (DRM) domains and
lipid rafts, which are rich in the ABC transporters -as ABCB1
(also known as P-glycoprotein, Pgp), ABCCIl (multidrug
resistance-related protein 1, MRP1) and ABCG2 (BC resistance
protein, BCRP), involved in the efflux of multiple
chemotherapeutic drugs (115) in different tumors, including
BC (116). A rigid membrane forces the transporters to assume
a conformation that grants the highest catalytic capacity (83).
Not only the increased endogenous synthesis (116), but also the
increased uptake of LDL (8) is a typical feature of chemoresistant
cells. This feature has been exploited to find an Achille’s heel to
overcome drug resistance, by producing LDL-masked
doxorubicin that acts as a Trojan horse to deliver the drugs
within the cells (117).

The increased rigidity is not the only mechanism by which
cholesterol causes chemoresistance. Indeed, oxisterols activate
the transcription factors SREBP1 which cooperates with HIF-1o
in up-regulating ABCBI1 (118), and Liver X receptorf} (LXRP),
that increases both ABCB1 and ABCG2 at transcriptional level
in ovarian cancer cells (83). Although part of conserved
mechanisms, the activation of specific transcription factors is
tumor specific: indeed, in TNBC and EsR-negative BC patients,
LXRo, a second isoform that can be activated by oxysterols, is
associated with the high expression of ABCB1 (119). Moreover,
the upstream metabolites farnesyl pyrophosphate (FFP) and
geranylgeranyl pyrophosphate (GGPP), synthesized in the
MVA pathways, activate the signalling pathways Ras/ERK1/2/
HIF-1o. and RhoA/ROCK/HIF-1a, up-regulating ABCB1 and
determining resistance to doxorubicin in BC (116).

Collectively, these observations sustain the direct correlation
between chemoresistance and high endogenous synthesis of
cholesterol, supported by the review of Tissue Cancer Genome
Atlas (TCGA) (9) and on Gene Ontology (120) and Ingenuity
Pathway (121)-based analysis.
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Cholesterol is mainly effluxed by another ABC transporter,
ABCAL1, which delivers cholesterol and lipids on apoA-I and
triggers the assembly of nascent HDL (Figure 1), followed by the
efflux of cholesterol by ABCG1 and its delivery on apoE (122).
Sporadic observations correlated ABCA1 to pro-tumor (103) or
tumor suppressive (123) functions in cancer, and the pathways
involved in ABCAL1 regulation in cancer cells are still poorly
explored. In dendritic cells, the high cholesterol synthesis,
associated with an increased ER stress induced by cholesterol
accumulation, and the inhibition of PI3K/Akt/mTOR axis, which
constitutively blocks LXRa, regulate the expression of ABCA1
(124). Given the presence of aberrant activation of PI3K and Akt,
caused by oncogenic mutations, we cannot exclude that this
mechanism is also important in regulating ABCA1 expression
and cholesterol efflux from BC cells. Together with cholesterol,
ABCAL also effluxes another isoprenoid metabolite of the MVA
pathway, the isopentenyl pyrophosphate (IPP). IPP is a strong
endogenous activator of VyoVd2 T-cells (125), a T-cell subset
that plays a key role in anti-tumor immunity and is considered a
good prognostic factor when present in the bulk of solid tumors
(126). The ABCA1/apoAl system is now regarded as a useful tool
to increase the activation of the host immune system Vy9V2 T-
cells (127-129). Upregulating this system, by oxysterols
activating LXRat, could represent a safe and effective way to
boost the anti-tumor immune-response against BC tumors,
where the presence of a cytotoxic T-cells infiltrate is usually
associated with better prognosis and better response to the
immunogenic cell death elicited by neoadjuvant or adjuvant
chemotherapy (130-132).

CHOLESTEROL ESTERIFICATION AND
FATTY ACIDS STORAGE IN LIPID
DROPLETS

Cholesterol esterification to fatty acids tightly packaged in the
core of intracellular lipid droplets or circulating lipoproteins is a
well-assessed mechanism for storage and transport of cholesterol
molecules, also used to prevent cellular toxicity caused by the
excess of free cholesterol (133).

Lecithin-cholesterol acyltransferase (LCAT) is a glycoprotein
synthesized by the liver and secreted in the plasma. The LCAT
enzyme is responsible for the synthesis of cholesterol esters in
plasma and, together with cholesteryl ester transfer protein
(CETP), plays a critical role in the maturation of high-density
lipoproteins (HDL), helping to determine their composition,
structure, metabolism and plasma concentration (134).

At an intracellular level, cholesterol esterification is
accomplished by two sterol O-acyltransferase enzymes: Acetyl-
CoA Acetyltransferase 1 (ACAT1), which is widely distributed in
all tissues, and ACAT?2, which is preferentially expressed in the
liver and the intestine. Both enzymes play a key role in cellular
cholesterol homeostasis, using long-chain fatty acyl-coenzyme A
as the fatty acyl donor to convert cholesterol to cholesteryl esters
(CE) in the cytoplasm, leading to lipid droplets formation. Their
main function is to avoid cell toxicity due to an excessive

accumulation of free cholesterol in cell membranes (135).
However, ACAT is highly expressed in some tumors, and its
expression is reported to be activated by several factors such as
IFN-v, TNF, and insulin, but not by cholesterol and fatty acids,
which are indeed able to mediate ACAT?2 proteasomal degradation
through reactive oxygen species (ROS) induction (18).

Lipid metabolism gene expression resulted to be also
impaired in BC cells in comparison to the regular surrounding
tissues (136, 137). In fact, a high ACAT expression leads to a
faster recovery of BC cells proliferation upon nutrients
deprivation. TNBC cells have been observed to have an
enhanced CE synthesis and storage. The inhibition of ACAT1
reduces LDL-induced both proliferation and migration in these
cells (138, 139).

Proliferating BC cells, in fact, need a constant lipid supply,
which can derive both from a de novo synthesis or exogenous
cholesterol and fatty acid uptake from plasmatic LDL, leading to
increased storage in cytoplasmic lipid droplets (139). The lipid-
accumulation represents a lower energy-consuming strategy, as
lipid droplets represent a ready storage of lipids which can be
used without investing energy in biosynthesis.

Some in vivo studies showed a correlation between
intratumor CE accumulation and Ki-67, a well-known marker
of tumor cell proliferation, poor patient survival, and higher risk
of relapse. Furthermore, there is some evidence of a causal
relationship between CE and BC. Exogenous and endogenous
CE can increase mammary tumor growth and ACAT1 may be a
potential target for the treatment of BC (140).

CE accumulated in lipid droplets have been correlated also
with resistance to chemotherapy. After an acute exposure to
doxorubicin, chemoresistant clones of TNBC increased both
mitochondria, induced by the peroxisome proliferator activated
receptor 0. (PPARA) and y (PPARG) proteins, and lipid droplets.
Overall, these changes shift the metabolism toward oxidative
phosphorylation (OXPHOS), supported by the accumulation of
fatty acids in the CE of LD (141) and antagonized by perilipin 4
(PLIN4). Interestingly, high intratumor levels of PPARA,
PPARG and PLIN4, and consequently of CE and lipid
droplets, are new biomarkers predicting resistance to
neoadjuvant chemotherapy in TNBC (141).

CHOLESTEROL DERIVATIVES AND THEIR
ROLES IN BC: (HYDR)OXY STEROLS,
STEROID HORMONES AND VITAMIN D

Not only cholesterol, but also its derivatives, may play a role in
BC pathology and progression. Here, among all, we report
the following:

(Hydr)oxy Sterols

Oxysterols are cholesterol metabolites that can be synthesized
through oxidation by both enzymatic reactions and radical
processes. They are involved in several cellular functions and
physiological processes, such as the modulation of membrane
fluidity and cholesterol metabolism and transport, but also in BC
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pathology and progression (142). Moreover, oxysterols have
been described to be LXR-specific ligands. Some oxysterols are
implicated in tumor formation (143), as recent data put in
correlation their plasma levels in BC patients with clinical data
(144), while others are considered anti-tumor agents (49).

For instance, 25-hydroxycholesterol (25-HC) and 27-
hydroxycholesterol (27-HC) have been shown to enhance EsR
expression in estrogen-deprived BC cell lines, suggesting that
oxysterol are able to substitute estrogen in receptors activation
and can play a potential role in resistance to the therapy (142,
145). In fact, 25-HC and 27-HC have been associated with
resistance to aromatase inhibitors, which block estrogen
synthesis but do not affect EsR expression. Indeed, BC patients
treated with aromatase inhibitors had significantly increased
plasma levels of 27-HC and (even if more moderately) 25-HC
after treatment (146), supporting the potential role of 25-HC and
27-HC level and therapy outcome of patients (142). Accordingly,
25-HC, has been found elevated in the circulation of BC patients
who have relapsed compared to those with primary
disease (146).

In particular, 27-HC is produced by the cytochrome P450
27A1 (CYP27A1) enzyme, of particular interest in BC. It is, in
fact, highly expressed among patients with high tumor grade, i.e.,
with less differentiated tumor cells (142, 147), and some in vivo
experiments indicate that it could be a potential target for BC
treatment (148). Accordingly, it has been reported that high
levels of CYP7B1, a cytochrome p450 enzyme responsible for the
catabolism of 27-HC, are associated with better survival
outcomes in mice (49, 147).

Moreover, upon 27-HC exposition, BC cells showed increased
proliferation and growth (18, 142). Additionally, 27-HC
promotes BC cells migration and metastasis by affecting tumor
microenvironment (18) through the recruitment of immune
suppressive neutrophils in the metastatic niche (149).
Consistently with these data, Moresco and colleagues
demonstrated that oxysterols depletion reprograms the tumor
microenvironment favoring the control of breast tumors and
metastasis formation (150).

Overall, these data suggest that oxysterols could be potential
targets for BC therapy.

Steroid Hormones

Cholesterol is also an important precursor of steroid hormones,
many of which have clinical relevance (151). Steroid hormones
are the products of steroidogenesis, a process that takes place in
the mitochondria and smooth ER starting from cholesterol,
which is mainly taken from LDL (152). Cholesterol is
metabolized down a number of enzymatic pathways and
converted to the 21-, 19-, and 18-carbon steroid hormones.
Steroidogenesis starts with the transport of cholesterol into the
mitochondria. This passage is controlled by the steroidogenic
acute regulatory protein (StAR) (153). Subsequently, cholesterol
is converted by the mitochondrial side-chain cleavage enzyme
complex into pregnenolone. Pregnenolone, from which the
other entire steroid hormones derive, is metabolized by several
enzymes, leading to progesterone or androstenedione formation

by 17-hydroxylase/17, 20-lyase enzyme. Androstenedione is
further transformed into other androgens or estrogens (152).

Steroid hormones can be grouped into five categories:
glucocorticoids, mineralocorticoids, androgens, estrogens and
progestogens. Due to their lipophilic nature, steroid hormones
cannot be stored in intracellular vesicles. As a consequence of
their easy diffusion, they are synthesized as precursors and
rapidly converted into active hormones when needed upon
stimulation of the parent cell (151).

Of particular interest in the BC context are the ovarian
hormones progesterone and estrogen, which are involved in
tumor aetiology, progression and treatment. It is well assessed
that a large percentage of BC are hormone-dependent, where
cancer cells take advantage of local or systemic estrogens for
sustaining their growth (154). In recent studies, androgens (in
particular 11-oxygenated androgens) and glucocorticoids have
been identified as biomarkers of BC risk, especially in women
with a family history of BC, despite being much less
studied (155).

The signalling events downstream hormone receptors include
the direct or indirect modulation of gene expression, post-
transcriptional regulation by miRNAs and signal transduction
factors. Moreover, it has been described that these players act on
BC stem cells (154, 156).

Furthermore, it is reported that prolonged exposure to
ovarian hormones and progestin correlates with a BC risk,
while progesterone and EsR are targets for advanced tumor
therapy (154, 157). In fact, hormonal therapy is mandatory for
all patients with hormone receptor-positive BC (158). This
therapy aims to prevent estrogens stimulation of signalling
pathways in cancer cells and can be performed through
different strategies, including estrogens biosynthesis blockage
or estrogens action through the use of agonist, antagonist or
both (158).

Moreover, a close relationship between estrogen/testosterone
metabolism and the MVA pathway in BC has been
demonstrated. In particular, recent studies have shown that
17B estradiol and testosterone play key roles in rising MVA
pathway enzymes, impacting on RAS proteins prenylation and
farnesylation in several tumors, including breast and prostate
cancer (159).

Taken together, this common evidence indicates that steroid
hormones play an essential role in the development and
classification of BC since they are commonly associated with
risk and aetiology. In addition, they are potential targets for
diagnostic tools (160) and BC treatment (152).

Vitamin D

Another interesting cholesterol derivative with hormonal
activity, is vitamin D. Vitamin D3 is a fat-soluble vitamin
whose biosynthesis takes place in skin cells and involves the
irradiation of 7-dehydrocholesterol (a cholesterol precursor in
the MVA) by ultraviolet (UV) radiation. It is influenced by
several factors such as the availability of 7-dehydrocholesterol
and atmosphere condition, skin pigmentation and age (161).The
newly synthesized vitamin D3 is further hydroxylated in the
liver, by the enzyme 25-hydroxylase, to 25-hydroxyvitamin D or
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calcitriol, the active hormonal form of vitamin D. Once released in
the extracellular space, Vitamin D3 binds to the vitamin-D binding
protein, which shuttles Vitamin D through the bloodstream, and
finally interacts with its receptor (VDR), which is ubiquitously
expressed (162). Vitamin D can also derive from the diet, and itis an
essential player in many physiological processes, including bone
metabolism, cell growth and calcium and phosphorus absorption.
On the other hand, pleiotropic effects of vitamin D such as anti-
inflammatory and anti-neoplastic properties, are still under study
(163). In particular, preclinical studies underlined that the vitamin
D system has onco-protective functions, hindering several cellular
processes such as differentiation, regulation of inflammation,
apoptosis, proliferation, invasion and angiogenesis and metastasis
formation (164).

As a matter of fact, vitamin D deficiency is one of the most
common health problems worldwide (165, 166) and is a risk
factor for several diseases, including metabolic syndrome (167),
cardiovascular disease and cancer (162, 168). Interestingly, the
first link between vitamin D and cholesterol has been described
by Li et al., who demonstrated that vitamin D deficiency could
enhance the amount of serum cholesterol by lowering the
vitamin D receptor activity, leading to an increased cholesterol
biosynthesis in the liver (168). These data appear to be consistent
with another study performed by Jiang and colleagues that
reported a link between vitamin D deficiency and dyslipidaemia.
In particular, they described an inverse correlation between
vitamin D and LDL cholesterol/triglycerides levels, while they
demonstrated a positive association with the HDL cholesterol
level (169).

The relationship between vitamin D and BC has been
extensively studied and its role in tumor progression is well
assessed (170, 171). In particular, it has been described an
association between the impaired vitamin D and VDR
molecular pathway and tumorigenesis in breast tissues (172),
while VDR levels inversely correlates with a most aggressive
tumor phenotype. Hence, VDR is considered a favourable
prognostic factor and associated with a lower risk of BC death,
supporting the protective anticancer role of vitamin D (164, 173,
174). Consequently, preclinical, clinical and epidemiological
studies have established that vitamin D deficiency is a risk
factor for BC development (175, 176).

Interestingly, calcitriol exhibited antiproliferative effects in
BC cell cultures and delayed tumor growth in animal models of
BC through different mechanisms (177). In particular, due to its
anti-inflammatory activity and ability to suppress estrogen
biosynthesis by down-regulating ERol expression, its potential
therapeutic utility has been suggested in combination with other
drugs in EsR+ BC patients (177).

Furthermore, recent studies speculate about vitamin D
inducing molecular mechanisms able to reverse drug resistance
in several tumors, including BC. Thus, many authors suggest
using calcitriol in combination with anti-cancer drugs to
potentiate BC therapy (178, 179).

Numerous randomised clinical trials attempted to define the
efficacy of vitamin D supplementation in BC outcomes (Tab. 1).
However, despite the promising results from observational

studies, none of these trials could confirm reduced cancer-
related mortality among cancer patients (180).

CLASSIC MVA PATHWAY INHIBITORS
AND BC THERAPY

Statins

Dysregulation of the MVA pathway is a relevant lipid
reprogramming often observed in BC. Several trials and
epidemiologic studies support an inverse correlation between
the use of MVA inhibitors, such as statins, and mortality rate in
BC (181). Statin class of drugs has been largely used to lower
blood cholesterol levels, by inhibiting the core HMGCR enzyme
of the MVA pathway, in particular for cardiovascular diseases
treatments. During the last years, several epidemiologic and
clinical research studies underlined their beneficial role in
concomitant diseases such as BC, even though an exact
mechanism in this context is not yet fully understood (182, 183).

Despite some studies suggesting no close association between
statin use and BC risk (184, 185), recent evidence showed a link
between statin use and reduced recurrence and disease-specific
mortality in BC patients, with an improved BC prognosis and
survival (186-188).

Interestingly, Beckwitt and colleagues in their work
demonstrated that statins are able to interfere with metastatic
cascade and suppress metastatic BC outgrowth, suggesting that
this class of drugs could be a potential long term adjuvant in
order to prevent dormant BC micro-metastasis, which are
responsible for the majority of BC deaths (189).

Moreover, a positive correlation between statins treatment
and some clinical benefits in TNBC was observed in women
starting statins therapy within one year after the diagnosis (190).

In particular, recent preclinical data describe an impact for
Atorvastatin in favouring chemotherapy effects in TNBC,
suggesting its possible use in conjunction with metastatic
chemotherapy to reduce TNBC cancer progression (191).

Taken together, these data indicate a general protective role for
statins in the treatment of BC in combination with standard
therapy, although completed clinical trials have provided
controversial results (Table 1). Ongoing and future interventional
studies will give a better understanding concerning the safety and
the efficacy of these compounds.

Zoledronate

Another MVA pathway inhibitor is zoledronate (or zoledronic
acid - ZA). It is a potent and long-acting bisphosphonate drug in
clinical use. It acts by blocking the farnesyl pyrophosphate
synthase (FPPS) in the MVA pathway, thereby inhibiting the
synthesis of cholesterol and isoprenoid lipids required for
prenylation of signalling proteins (192). Clinical practice
guidelines recommend the use of ZA for the treatment of early
BC in post-menopausal women (193, 194), since it improves
osteoclast bone resorption for the treatment of hypercalcemia of
malignancies and management of bone metastasis (195)
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(Table 1). Interestingly, its potential effects in reducing cancer,
cardiovascular diseases and mortality could be more important
than its skeletal actions (196, 197).

However, recent evidence has shown that ZA is able to
modulate signaling pathways involved in apoptosis and that
could be beneficial to be used together with letrozole to treat
EsR-positive BC patients (198).

Interestingly, ZA involvement in immunomodulation of
tumor microenvironment has also been described. In fact,
Ubellacker et al. demonstrated that a single relevant dose of
ZA is able to generate BC suppressive bone marrow cells, which
could concur in a reduction of breast tumor development and
progression (199). Moreover, ZA seems to explicate an anti-
tumor activity enhancing the proliferation, migration, and
immunosuppressive function of T-regulatory cells (Tregs) by
affecting Tregs interaction with BC cells and synergistically
acting with cytokine or IDO inhibitors leading to enhanced
anti-tumor immunity (200).

Another benefit of ZA treatment is overcoming BC cells
chemo-resistance due to the induction and activation of
apoptosis pathway. In fact, BC stem cells, considered mainly
responsible for tumor recurrence and drug resistance, decrease
their viability in a dose- time-dependent manner upon ZA
exposition (201). In correlation with these data, Jia and

colleagues described ZA inhibition on ERK/HIF pathway
leading to a higher drug sensitization in EsR-positive BC (202).

However, some data demonstrated that ZA does not increase
disease-free survival, despite improving the pathologic complete
response, thus might not being sufficient to ameliorate post-
menopausal patient outcomes in HER2-negative BC (203).

Nevertheless, ZA is the object of clinical studies with other
types of bisphosphonates (204).

Taken together, the available data indicate a general
protective effect of MVA pathway inhibition with drugs in BC
(Table 1). Despite any case and effect needing to be individually
evaluated, it could be an interesting adjuvant tool in BC therapy.

CONCLUSION AND OUTLOOK

From the above data, a complex picture on the role of cholesterol
and its derivatives in BC is emerging. The enzymes that control
the various steps leading to cholesterol or derivatives synthesis
and the protein involved in trafficking towards the membrane or
in the uptake from the circulation are all involved in cholesterol
homeostasis and can be affected by cell transformation. At the
same time, they look promising as targets for antitumor drugs.

As stated in Table 1, current clinical trials indicate that the
MVA pathway inhibition with specific drugs like statins and ZA,

TABLE 1 | A list of completed interventional studies with published results that assess the beneficial role of cholesterol-lowering drugs and vitamin D in BC patients.

Target Drug Objectives Results Phase NCT Number and
References
HMGCR Simvastatin Identification of biomarkers modulated by Reduction of circulating estrone sulfate Il NCT00334542
simvastatin in women at increased risk of a new No changes in mammographic density (MD) (205);
BC
Investigating concurrent anastrozole and Simvastatin does not compromise the activity of Il NCT00354640
simvastatin treatment in post-menopausal anastrozole (206);
women
Lovastatin  Lovastatin effect on women with a high inherited No significant biomarkers modulation Il NCT00285857
BC risk (207);
Fluvastatin  Evaluating biomarkers changes Decreased proliferation and increased apoptosis Il NCT00416403
markers (208);
Farnesyl Zoledronic  Investigating the effects on bone marrow Reduced abundance of disseminated tumor cells Il NCT00295867
Diphosphate Acid micrometastases (209);
Synthase Effect of ZA in combination with Letrozole in Improved disease-free survival 1l NCT00171340
post-menopausal BC patients Preserved bone mineral density (210);
Investigating the effect of ZA in combination Adjuvant ZA reduced the risk of fractures Il NCT00072020
with chemotherapy and/or hormone therapy (211);
Improved disease-free survival in pre-menopausal 1l NCT00295646
patients with early-stage BC taking anastrozole or (212);
tamoxifen
Assess the efficacy and safety Therapeutic effect maintained at reduced dosing 1l NCT00375427
frequency (213);
No significant differences in disease-free survival or 1 NCT00213980
overall survivor (214);
Improved the bone mineral density
Assess the efficacy and safety in combination Combination well tolerated 1 NCT00566618
with Dasatinib Indication of clinical benefit for HR-positive patients (214);
Vitamin D Vitamin D Evaluate changes in BC biomarkers No significant changes in MD 1l NCT01224678
Receptor (215);
il NCT00976339;
NCT00859651
(216);
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is protective in BC. In addition to statins and ZA, some new
cholesterol metabolic molecules have recently emerged as
promising drug targets for cancer treatment (18). An example
comes from targeting the cholesterol esters through inhibition of
ACAT]1 with the potent inhibitor avasimibe. In melanoma, in the
immune response to cancer, avasimibe promotes TCR
aggregation and immune synapse formation in CD8+ T cells
by elevating the cholesterol content of the PM, thus enhancing
the killing effect of CD8+ T cells (18). Avasimibe has been proven
to have a good human safety profile in previous clinical trials in
the treatment of atherosclerosis (127). Therefore, targeting
ACAT1 by avasimibe may be a safe and effective method to
disrupt cholesterol metabolic homeostasis in cancer treatment, as
it has begun to be explored in recent preclinical BC studies (217)
and it would be interesting to evaluate its effects in BC
clinical practice.

It is also very important to underline those synergistic effects
of low doses of cholesterol inhibitors, statins or ZA, together with
low doses of chemotherapy drugs, might reach the target of
increased efficacy and decreased adverse effects and resistance.
Therefore, at least preclinical experiments are required to set the
optimal range of treatments in BC mouse syngeneic models, in
which both the tumor and the tumor microenvironment with the
complex immune repertoire can be explored.

BC heterogeneity and the complex cellular architecture plays a
key role in drug responsiveness and resistance to therapy that are the
major challenges in BC treatment of aggressive tumors, like the
TNBC, and are responsible for tumor relapse. However,
deciphering the neoplastic subtypes and their spatial organization
is still challenging. Nowadays in addition to panels of protein
biomarkers useful for classifying clinical phenotypes of breast
cancer (19), the progress in single-nucleus RNA sequencing will
allow the identification of cell populations and of their spatial
distribution in breast cancer tissues with costs that will become
more and more accessible. This could be performed in parallel with
metabolomics analysis of cell populations. Data coming from these
experiments will allow tracing the clonal evolution of cells that are
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