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San Francisco, CA, United States
Meningiomas are the most common primary intracranial neoplasm. While

traditionally viewed as benign, meningiomas are associated with significant

patient morbidity, and certain meningioma subgroups display more aggressive

and malignant behavior with higher rates of recurrence. Historically, the risk

stratification of meningioma recurrence has been primarily associated with the

World Health Organization histopathological grade and surgical extent of

resection. However, a growing body of literature has highlighted the value of

utilizing molecular characteristics to assess meningioma aggressiveness and

recurrence risk. In this review, we discuss preclinical and clinical evidence

surrounding the use of molecular classification schemes for meningioma

prognostication. We also highlight how molecular data may inform

meningioma treatment strategies and future directions.
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Introduction

Meningiomas account for up to 40% of all primary central nervous system (CNS) tumors,

making them themost common primary intracranial tumor (1). While they are thought to be

derived from arachnoid cap cells due to cytological similarities (2, 3), the actual cell of origin

for meningiomas remains unknown. It is possible they are derived from arachnoid barrier

cells, a meningeal cell layer between pia and dura mater separating cerebrospinal fluid from

underlying blood vessels, since meningiomas and arachnoid barrier cells have shared

expression of prostaglandin D synthase (PGDS) (4, 5). Understanding the origin and

natural history of meningiomas is important, since the incidence of meningiomas has been

steadily rising, secondary to improvements in imaging resolution and more frequent use of

various imaging modalities by providers (6, 7).
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The 2021 World Health Organization (WHO) classification

system describes 15 meningioma variants categorized into 3

grades based off of histopathological features and molecular

biomarkers, with atypical and anaplastic criteria now applied to

each of the subtypes (8). Eighty percent of meningiomas fall

under the grade 1 category and can be treated with maximally

safe resection with the goal of gross total resection (9). However,

there remains a 5% 5-year recurrence rate for grade 1

meningiomas that increases to 40% for grade 2 meningiomas

(3), and there is no established standard of care (SOC) for grade

2 and 3 meningiomas (10). While meningiomas have been

traditionally risk stratified using the World Health

Organization (WHO) histopathological grade and extent of

surgical resection (8, 11), advances in molecular profiling have

highlighted the benefits of utilizing genetic and epigenetic

changes to further characterize meningioma aggressiveness

and recurrence risk. The inter-observer variability inherent to

histopathological diagnoses (12), coupled with advances in

genetic and epigenetic technologies that have changed our

understanding of meningioma tumor biology, lend support to

the need for new molecular classifications for diagnosis and

treatment. This review summarizes the use of genetic biomarkers

and other forms of molecular data to inform meningioma

prognostication and treatment strategies.
Key genetic changes in
meningiomas

Germline mutations

Neurofibromatosis 2
Sporadic mutations in the NF2 gene on chromosome 22 are

implicated in 40 to 60% of meningioma patients (3), while 50 to

75% of patients with germlinemutations developmeningiomas (13)

(Table 1). NF2 encodes for the tumor suppressor protein merlin

(14), the loss of which is a well-studied driver mutation commonly

implicated in high-grade meningiomas (15). NF2 loss-of-function

mutations occur through a double-hit mechanism in meningiomas,

either through a germline mutation and a second hit with a somatic

mutation in syndromic cases, or with a somatic single nucleotide

variation or insertion/deletion mutation and an overlapping

chromosome 22 deletion event as commonly seen in sporadic

cases (15). While 95% of NF2-associated meningiomas remain

grade 1 (13), the presence of an NF2 mutation has been associated

with increased tumor size and cell proliferation, and it has been

suggested that NF2 loss may be the primary and sole initiator of

meningioma tumorigenesis in both cranial and spinal meningiomas

(16, 17). Two phase II clinical trials (Table 2) are currently
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underway to test FAK inhibitor GSK2256098 and AZD2014 in

patients with NF2-mutated meningiomas and NF2 patients with

symptomatic meningiomas respectively (19, 20).

Switch/sucrose non-fermentable
Germline mutations in two SWI/SNF chromatin remodeling

complex subunits have also been implicated in meningioma

tumorigenesis: SMARCB1 and SMARCE1 (21). Mutations in

SMARCB1 have been linked to the development of multiple

meningiomas, while SMARCE1 loss of function mutations have

been implicated in patients with familial multiple spinal

meningiomas with clear cell histology (22, 23).

Suppressor of fused homolog
Germline mutations in known tumor suppressor SUFU on

chromosome 10 have long been associated with childhood

medulloblastoma, with loss of SUFU leading to disruptions in

the sonic hedgehog signaling pathway (24, 25). Germline

disruptions in SUFU are also thought to predispose to

development of additional cancers such as basal cell

carcinoma, gonadal tumors, and meningiomas (26). Mutations

in SUFU have been linked to development of isolated familial

meningiomas and development of multiple meningiomas (27).

In a case series of four related family members with three that

had a history of meningiomas, a frameshift mutation in SUFU

leading to a premature stop codon was isolated and is posited to

be related to development of meningiomas (28).
Somatic mutations

Krueppel like factor 4
KLF4 is a transcriptional regulator known tomaintain stemness

and found to perform both oncogenic and tumor suppressor

functions in a variety of cancers, including but not limited to

bladder, esophageal, and gastric cancers (29–32). KLF loss of

function has been implicated in colon cancer, while its

overexpression has been shown to lead to decreased

tumorigenicity of colon cancer cells in vivo (33, 34). In

meningiomas, it is one of two genes found to be mutated in

whole-exome sequencing of sixteen secretory meningiomas (35).

KLF4 overexpression in anaplastic meningiomas has been

associated with increased expression of tumor suppressor proteins

such as p21, p53, and BAX, demonstrating a potential anti-tumor

role in higher grade meningiomas (36). Recent in vitro data has also

suggested that skull-based meningiomas with KLF K409Q

mutations have a unique tumor phenotype that may respond to

mammalian target of rapamycin (mTOR) inhibition with

temsirolimus (37).
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Tumor necrosis factor receptor-associated
factor 7

TRAF7 encodes for a ubiquitin E3 ligase and is the second

most commonly mutated gene in meningiomas (38). It catalyzes

a variety of ubiquitination reactions, including that of tumor

suppressor p53, which has been shown to promote tumor

progression in hepatocellular cancer while stabilizing p53’s

anti-tumoral effects in breast cancer (39, 40). TRAF7 and

KLF4 mutations often co-occur in secretory meningiomas

(35), with 40% of TRAF7-mutated meningiomas harboring a

KLF4 mutation as well (41). TRAF7 is also one of four genes

including KLF4, AKT1, and SMO, likely to be mutated in non-

NF2 mutated meningiomas found at the skull base (38). TRAF7
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mutations are also closely associated with hyperostosis and often

found in spheno-orbital meningiomas (42).

Telomerase reverse transcriptase
TERT encodes for telomerase reverse transcriptase, a catalytic

subunit of telomerase that promotes cell immortalization via

telomere elongation (43). Mutations in the chr5:1,295,228

(C228T) and chr5:1,295,250 (C250T) regions of the TERT

promoter have been associated with uncontrolled proliferation in

several cancers (44–46) and recently in meningiomas that

demonstrate histological malignant transformation (47). TERT

promoter mutations are more commonly seen in higher grade

meningiomas, withmutations found in 1.7%, 5.7% and 20% of 2007
TABLE 1 Commonly identified germline and somatic mutations in meningiomas.

Gene Form of Mutation Clinical Associations

NF2 Loss of function
Sporadic mutations found in 40-60% of meningioma patients
50-75% of patients with germline mutations develop meningiomas
Associated with increased tumor size and cell proliferation

SWI/SNF Frameshift deletion ARID1A mutation are independently prognostic of significantly increased hazard of death

KLF4 KLF4 K409 Q missense
The mutation results in upregulation of HIF-1a pathway
Meningiomas with this mutation may respond to mTOR inhibition

TRAF7 WD40 domain mutation
TRAF7 mutations are found in nearly one-fourth of all meningiomas
Meningiomas harboring TRAF7 mutations tend to be benign, chromosome-stable, and
originating from medial skull base

TERT
TERT promoter chr5:1,295,228 (C228T) and
chr5:1,295,250 (C250T) regional mutations

TERT promoter mutations are more commonly seen in higher grade meningiomas,
particularly WHO grade 3
TERT promoter mutations are associated with significantly shorter time to progression,
shorter overall survival, and higher chances of recurrence

AKT1 Gain of function
AKT1 mutations occur with higher frequency among skull base meningiomas and are
associated with shorter time to recurrence

SMO/SUFU Gain of function
Associated with higher recurrence rates among olfactory groove meningiomas
Associated with larger tumor volume among anterior skull base meningiomas

PIK3CA Gain of function
Mutations in PIK3CA are estimated to occur in 7% of non-NF2 mutated meningiomas
PIK3CA mutations tend to be mutually exclusive with mutations in AKT1 and SMO

CDKN2A/B Loss of function mutation
Mutations in CDKN2A/B are associated with shorter time recurrence
CDKN2A/B alterations are now included as part of the classification criteria for WHO grade
3 meningiomas

POLR2A Gain of function mutation
POLR2A-mutant tumors harbor distinct characteristics, including meningothelial histology,
and a tendency to originate from tuberculum sellae region
POLR2A mutations are found almost exclusively in WHO grade 1 meningiomas
TABLE 2 Phase 2 clinical trials targeting genetic mutations in meningiomas.

Clinical Trial Duration Phase Target Treatment
Outcome
Measures

Reference

NCT02523014 2015-2024 2 SMO, FAK, AKT, CDK
Vismodegib, GSK2256098, Capivasertib, Abemaciclib
(n=124)

PFS, CR or PR Brastianos et al. (16)

NCT02831257 2016-2020 2 mTOR
Vistusertib
(n=18)

Radiographic response Plotkin et al. (17)

NCT03071874 2017-2021 2 mTOR
Vistusertib
(n=28)

PFS Plotkin et al. (18)
PFS, Progression-free survival.
CR, Complete response
PR, Partial response.
frontiersin.org

https://doi.org/10.3389/fonc.2022.910199
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.910199
WHO classification grade 1, 2, and 3 meningiomas respectively

(18). Clinically, mutations in the TERT promoter region have been

associated with significantly shorter time to progression, shorter

overall survival, and higher chances of recurrence (18, 48, 49).

TERT promoter mutations are now included in the 2021 WHO

classification of grade 3 meningiomas (8).

AKT1
AKT1 encodes for AKT1 kinase, which regulates cell growth

and survival through a variety of pathways (50). AKT1

mutations have been shown to lead to PI3K/AKT pathway

activation (51). In a study that applied exome sequencing to

300 meningiomas, mutations in AKT1 were found in 13% of

tumors (38). Among skull base meningiomas, AKT1 mutations

were found at a higher frequency of 30% and was shown to be

associated with shorter time to recurrence (52). In the same

study, mutations in AKT1 were found to activate mTOR and

ERK1/2 signaling pathways (52). AKT inhibitors have been

shown to downregulate the expression of osteoglycin (OGN),

an oncogene implicated in meningioma growth, in vitro and to

stabilize meningotheliomatous meningioma growth in the lung

of a patient with multiple intra- and extra-cranial tumors

(53, 54).

Smoothened
SMO is a G-protein coupled receptor involved in the

Hedgehog (Hh) signaling pathway (55). Mutations in SMO

have been detected in 3 to 6% of all meningiomas, 28% of

olfactory groove meningiomas, and 11% of anterior skull base

meningiomas (56–59). Compared to meningiomas with AKT1

mutations, SMO-mutated olfactory groove meningiomas had

higher recurrence rates, and when compared to AKT1-mutated

or wild type meningiomas, SMO-mutated anterior skull base

meningiomas had significantly larger tumor volume (58, 59).

Given the targetable nature of SMO mutations, a clinical trial is

currently underway to test the SMO inhibitor vismodegib in

SMO-mutant meningiomas (19).

PIK3CA
PIK3CA encodes for a catalytic subunit of phosphatidylinositol

3-kinase (PI3K) that has been implicated in several human cancers

(60). Mutations in PIK3CA are estimated to occur in 7% of non-

NF2 mutated meningiomas and tend to be mutually exclusive with

aforementioned mutations in AKT1 and SMO (57). In a study

assessing 55 meningioma patient samples, PIK3CAmutations were

found in two patients who had atypical and anaplastic

meningiomas respectively (61). PI3K alterations have also been

seen to co-occur with TRAF7 mutations, with these tumors

demonstrating lower levels of chromosomal instability and

clinical tendencies to arise in the skull base (57). Targeting

PIK3CA has long been an area of therapeutic interest given the

role that increased protein expression in the PI3K/AKT pathway
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plays in more aggressive malignant meningiomas (62). Two phase

II clinical trials are currently underway targeting the PI3K/AKT

pathway with vistusertib and capivasertib respectively (19, 63).
CDKN2A/B
The cyclin-dependent kinase inhibitor A and B (CDKN2A/

B) gene encodes for three tumor suppressor proteins, the loss of

which has been demonstrated to contribute to spontaneous

development of melanomas in CDKN2A/B knockout mice

(64). In addition to NF2 inactivation, loss of CDKN2A/B

contributes to meningioma progression and has been

associated with shorter time to recurrence in mice (65).

Among a series of 17 recurrent and 13 non-recurrent

meningiomas, CDKN2A/B alterations were found only in

recurrent meningiomas, and a novel SNV (p.Ala148Thr) was

identified in 5 recurrent meningiomas, further supporting the

association between CDKN2A/B alterations and meningioma

recurrence (66). Along with TERT promoter mutations,

CDKN2AB alterations are now included in categorizing grade

III meningiomas (8).
SUFU
Changes in SUFU lead to dysregulation of the hedgehog

(Hh) signaling pathway, the activation of which has been shown

to play a critical role in meningioma growth and development,

with 72% of Hh signaling pathway genes being differentially

expressed in meningiomas compared to normal tissue (67).

Across 850 meningiomas that underwent genomic analyses,

SUFU mutations were identified in 23 patients and seen to co-

occur with PTEN and ARID1A mutations (68).
POL2RA
POLR2A, the catalytic subunit of RNA polymerase II, has

been shown to harbor mutations that characterize a distinct

subset of meningiomas that lack the aforementioned mutations

commonly seen in other meningiomas (69). Meningiomas with

mutations in POLR2A were exclusively benign with distinct

meningothelial histology and were more likely to arise from the

tuberculum sellae (69).
Cytogenetic alterations

There are several copy number variations (CNVs) associated

with meningioma pathology (Table 3). The initial loss of

chromosome 22q in meningioma tumorigenesis has long been

established as an early chromosomal event linked to both NF2

mutated and non-NF2 mutated tumors (3, 70). It is estimated to

be found in 60 to 70% of all meningiomas, with significantly

increased odds among older patients (71, 72). While the loss of

22q occurs in many patients with established neurofibromatosis
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type 2 syndrome, somatic mutations have also been discovered

in around 47% of sporadic meningiomas (73, 74).

In the 40% of meningiomas that do not have NF2

inactivation, alternative explanations are sought to explain

meningioma tumorigenesis (75). Losses in chromosomal

locations 1p and 14q have been identified in higher grade

meningiomas (71). Specifically, loss of 1p is the second most

common chromosomal event after loss of 22q, and it has been

linked to higher rates of tumor recurrence and progression (76).

The frequency of mutations in 1p increases roughly from 30% in

grade 1 (2000 WHO classification) tumors to 80% and 100% of

grade 2 and 3 tumors respectively (76). Losses in 14q are the

third most common cytogenetic change detected among

meningiomas, with similar frequencies among WHO grade 1

through 3 tumors as 1p losses (76). Similar to 1p losses, a loss at

chromosomal arm 14q has also been correlated to increased risk

of tumor recurrence (77).

The concurrent loss of 1p and 3p has also been detected in a

small subset of meningiomas without detectable losses in

chromosome 22. These losses are hypothesized to contribute

to meningioma growth, as changes in chromosome 3 have been

linked to other cancers such as breast and small cell lung cancer

(78, 79). Other chromosomes such as 6 have been found to

harbor genes such as HIST1H1C and CTGF, changes in which

are associated with meningioma recurrence (80). Loss of

heterozygosity at certain sites of chromosome 10 have also

been predictive of recurrence and worse prognosis in

meningioma patients (81).

Greater number of chromosomal anomalies within a tumor

has also been associated with higher tumor grade. For instance,

in Pfisterer et al., the distribution of chromosomal 1, 14, and 22

anomalies was examined among 77 meningioma cases (82). The

loss of 1p, 14q, or 22q alone was only found in grade I

meningiomas, while 23% of meningiomas with both 1p and

14q deletions were grade II meningiomas, and 80% of

meningiomas with losses in all three chromosomes were grade

III (82). In the literature, losses of 1p were found in 75% of high-

grade versus 23% of low-grade tumors, 14q losses in 67% of

high-grade versus 31% of benign tumors, and chromosomal 22

deletions in 47% of grade II versus 19% of grade I tumors (77,

83). Bi et al. examined the genomes of 39 high-grade
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meningiomas and found that high-grade tumors were more

likely to have loss of chromosome 22 and 1p than low-grade

meningiomas, with high-grade meningiomas also commonly

exhibiting losses of 1p, 6q, 10q, 18q and gains of 17q and

20q (84).
Radiation-induced meningiomas

Meningiomas are one of the most common tumors to arise

after radiotherapy, particularly in the pediatric population (85,

86). Radiation-induced meningiomas have a tendency to behave

more aggressively than sporadic meningiomas and often arise

two decades after radiation treatment (87, 88). Unlike sporadic

meningiomas that commonly harbor NF2 mutations, the same

mutations are not seen in radiation-induced meningiomas (87).

Instead, loss of chromosomal segment 1p was found to play a

larger role in development of radiation-induced meningiomas,

followed by changes in chromosomal locations 9p, 19q, and 22q

(87). Among 16 patients with radiation-induced meningiomas,

cytogenetic analyses revealed changes in chromosome 1p in 89%

of cases and changes in chromosome 6 in 67% of cases (89).

Further work exploring the genetics underlying the aggressive

behavior of radiation-induced meningiomas may shed

light on how to best distinguish benign from malignant

sporadic meningiomas.
Methylation profiling

Epigenetic changes have been found to be useful biomarkers

of cancer diagnosis and predictors of recurrence and treatment

response. For instance, alterations in hypermethylation of O6-

methylguanine DNA methyltransferase (MGMT) in

glioblastoma can be useful indicators of chemotherapy

response (90). In meningiomas, the absence of trimethylation

of H3K27 (H3K27me3) has been shown to be associated with

more aggressive growth of tumor, as well as NF2 and SUFU

mutations, allowing us to further stratify grade 1 and 2 tumors

according to the 2016 WHO classification system (91).
TABLE 3 Commonly identified cytogenetic alterations in meningiomas.

Chromosome Type of alteration Implication for prognostication

22q Deletion
Estimated to be found in 60-70% of all meningiomas

Both biallelic loss and macro-mutations in 22q are more commonly detected in fibroelastic than in
meningothelial histological subtypes

1p Deletion
Second most common chromosomal event after loss of 22q

Loss of 1p has been linked to higher rates of tumor recurrence and progression

14q Deletion
Third most common cytogenetic change detected among meningiomas

Loss at chromosomal arm 14q has also been correlated with increased risk of tumor recurrence

6q, 10q, 17q, 18q, 20q Deletion More commonly found in high-grade meningiomas when compared to low-grade meningiomas
frontiersin.org

https://doi.org/10.3389/fonc.2022.910199
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.910199
In another study examining 1268 meningiomas, the loss of

H3K27me3 was found to be a significant predictor of negative

prognosis and recurrence, further underlying the importance of

methylation profiling in categorizing meningiomas (92).

Methylation profiling has taken on a similar role in

identifying and distinguishing meningiomas. When compared

to bulk RNA-sequencing, DNA methylation profiling was found

to more accurately identify meningioma metastases to the liver

in one case report (93). While both bulk RNA-sequencing and

DNA methylation profiling could separate the liver metastasis

from the primary intracranial meningioma, DNA methylation

could better establish the diagnosis of the liver metastasis as a

meningioma while hepatocyte-specific gene expression

confounded similar findings using bulk RNA-sequencing (93).

However, it is important to note that these findings were in the

context of one case report, and the improved accuracy of DNA

methylation profiling in this instance cannot be generalized. In

another study, application of DNA methylation profiling to

more than 3000 meningiomas identified an epigenetically

distinct cluster of 31 tumors, the majority of which were

histopathologically diagnosed as clear cell meningiomas (94).

Several studies that have integrated methylation studies with

other techniques to classify meningiomas will be discussed in the

upcoming section.
Molecular profiling for meningioma
stratification

Advances in computational molecular profiling techniques

have allowed for new classifications of meningiomas that

account for findings at the DNA level rather than

histopathological analysis (95). A variety of techniques

including sequencing, methylation profiles, and copy number

variation analysis have also been used to generate scores that

may better predict prognosis in meningioma patients when

compared to standard WHO grading systems.

Genomic sequencing analyses have also been utilized to

further classify meningiomas. Patel et al. applied bulk RNA-

sequencing and whole-exome sequencing to 160 tumors from

140 meningioma patients to identify 3 classes of meningiomas

that were found to predict recurrence more accurately than the

standard 2016 WHO grading system (96). Among the three

groups (designated type A, B, and C), type C had the highest

MIB1 proliferative index, the highest proportion of men, and the

shortest recurrence-free survival despite containing primarily

WHO grade 1 tumors (96). Type C tumors were also found to

have increased expression of FOXM1, leading to loss of the

repressive DREAM complex (96). Work by Vasudevan et al.

similarly revealed two distinct groups of 280 meningiomas, with

aggressive tumors marked by increased expression of FOXM1

(97). FOXM1 has also been implicated as one of three genes
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upregulated in primary atypical meningiomas, which have also

been found to demonstrate NF2 loss, genomic instability,

muta t ions in SMARCB1 , and a hypermethy la t ed

phenotype (98).

Genomic analyses applied to aggressive meningiomas have

also identified 3 distinct groups of meningiomas organized by

NF2 status: NF2-mutant, NF2-agnostic, and NF2-wild type (68).

NF2-mutant meningiomas were more often associated with men

and mutations in CDKN2A/B while NF2-agnostic meningiomas

were often associated with TERT and TP53 mutations (68). The

third group of NF2-wild type tumors predominantly lacked NF2

mutations and were split further into 3 subgroups: those

containing chromatin regulator mutations in BAP1 or PBRM1,

skull-based meningiomas with AKT1, PIK3CA, and SMO

mutations, and meningiomas with a mix of mutations that

shared no discernable pattern (68). Genomic analysis of 300

meningiomas by Clark et al. also revealed benign tumors at the

skull base express mutations in TRAF7, KLF4, AKT1, and SMO

while higher grade tumors often contained NF2 mutations and

were found at the cerebral and cerebellar hemispheres (38).

Genome-wide DNA methylation profi les on 497

meningiomas revealed 6 distinct methylation classes that were

found to predict meningioma progression more accurately when

compared to 2016 WHO grade 1 tumors and meningioma

recurrence more accurately when compared to 2016 WHO

grade 2 tumors (99). Similarly, Nassiri et al. applied copy

number variation analysis, somatic point mutations,

methylation profiles, and messenger RNA abundance to 121

meningioma patient samples to create four molecular groups of

meningiomas: immunogenic, benign NF2 wild-type,

hypermetabolic, and proliferative (100). The four groups were

able to predict patient outcomes more accurately when

compared to the existing 2016 WHO classification system and

to classification systems based off DNA methylation (100).

Methylation analysis by Olar et al. revealed two distinct

groups with favorable and unfavorable prognoses respectively

(101). Tumors in the unfavorable prognosis group were found to

have a higher proportion of copy number aberrations than those

in the favorable prognosis group, including losses of 1p and

14q (101).

The integration of histologic findings with genetic profiling

including methylation profiling and copy number analysis has

further helped improve the precision of meningioma

stratification. Using data across 3031 meningiomas, Maas et al.

developed an integrated score that predicted risk of meningioma

progression more accurately than existing 2016 WHO grading

by classifying tumors into low, intermediate, and high-risk

groups based off of histology, methylation classes, and CNV

analysis (102). While CNV- and methylation-based subtypes

independently demonstrated increased prediction accuracy

compared to the existing 2016 WHO grading system, the

integrated score resulted in further improved accuracy,
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emphasizing the value of both histology and molecular risk

stratification in meningiomas (102).

Integrated use of DNA methylation, RNA sequencing, and

cytogenetic profiling by Patel et al. on 110 grade 1 and II

meningiomas according to the 2016 WHO classification

system revealed two benign and one malignant tumor group

closely resembling the previously established type A, B, and C

classifications (103). Methylation analysis further distinguished

these groups as tumors with balanced methylation (Meth 1),

hypomethylation (Meth 2), and hypermethylation (Meth 3)

(103). When comparing these groups to those established by

Olar et al., Meth 2 and 3 tumors were conferred a favorable and

unfavorable prognosis respectively, corresponding with clinical

outcomes (101, 103). Further analysis revealed 75% of tumors

classified via methylation analysis corresponded to a tumor

group established by either transcriptional classification (type

A, B, C) or cytogenetic classification (no loss, 22q loss, 1p/22q

loss) (103).

In a similar vein, Driver et al. created an integrated scoring

system by combining chromosomal losses, CDKN2A losses, and

mitotic count to separate meningiomas into three separate

groups (104). The subsequent grading system reclassified 32%

of meningiomas to a higher or low grade when compared to

their original WHO grade and was able to more reliably predict

risk of recurrence compared to the existing 2007 and 2016WHO

grading system (104). Key molecular alterations associated with

high grade included higher mitotic count, 1p del, 3p del, 4p/q

del, 6 p/q del, 10 p/q del, 14q del, 18 p/q del, 19 p/q del, and del

CDKN2A/B (104). While both Driver and Maas et al.

emphasized 22q, 1p, 6q, and 14q loss as the most frequent

deletions encountered, Driver et al. also included 3p, 4p/q, 10p/

q, 18p/q, 19p/q alterations and mitotic count instead of

methylation families in their scoring system (102, 104).

Most recently, DNA methylation profiling on 565

meningiomas was performed and integrated with single cell,

proteomic, and other genetic, transcriptomic, biochemical

approaches to categorize meningiomas into three distinct

clinical groups: merlin-intact meningiomas, immune-enriched

meningiomas, and hypermitotic meningiomas (105). Merlin-

intact meningiomas were characterized by gain of function in

chromosome 5, loss of function in chromosome 6p, and intact

NF2 expression, with the best overall survival among the three

groups (105). Immune-enriched meningiomas exhibited gain of

function in 6p and loss of function in 22q, and notably,

lymphocytes in these tumor microenvironments were prone to

exhibiting exhaustion markers, potentially explaining why

immune checkpoint blockade has not had the same effect on

survival in meningiomas as it has in other cancers (106).

Hypermitotic meningiomas had the worst overall survival of

all three groups and were distinguished by upregulation of

FOXM1 expression, which was found to regulate DNA

damage response, potentially increasing hypermitotic

meningioma resistance to cytotoxic therapy (105).
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Future directions

While the information afforded by integrated scoring systems is

an essential first step to guiding meningioma management, many

questions remain to be answered particularly regarding adjuvant

therapies and post-operative imaging follow-up. For instance, while

most studies do not include Simpson grade or gross versus subtotal

resection as part of their grading criteria, these are essential factors

that guide decisions regarding post-operative management and

consideration of radiotherapy. It is important to determine

whether there are specific genetic changes that make a tumor

amenable to systemic therapies such as upfront radiation versus

observation. Since new classification schemes including the recent

changes to the WHO grading system may alter how aggressively a

tumor is treated, it is also important to determine whether

new classification systems are changing outcomes such as

recurrence rates.

In addition, with several novel integrated systems of

meningioma classification, it will be crucial to compare the

accuracy of different systems through further investigation,

including cross study group comparisons. Another potential

factor limiting the widespread use of novel integrated

classification systems is the high cost and limited availability of

some of the technologies utilized, including DNA methylation and

next generation sequencing. When applying these technologies to

categorize meningiomas, it is also important to take note of

intratumoral heterogeneity among meningiomas, with spatially

distinct areas of the same tumor exhibiting distinct gene

expression patterns (107). Moving forward, it is important to

determine how the new groupings afforded by integrated scoring

systems may change future management of meningiomas.
Conclusions

Meningiomas are the most common primary intracranial

neoplasm and among the most genetically well-studied

intracranial tumors. While pre-existing classification schemes

by the WHO have traditionally been used to predict

meningioma prognosis and risk of recurrence, advances in

molecular profiling have allowed for development of several

new classification schemes utilizing DNA-level rather than

histopathological findings. It is critical to continue applying

new sequencing and computational technologies to better

predict meningioma behavior in the clinical setting.
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