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Background: Sarcoidosis is an inflammatory disease characterized by non-caseating
granuloma formation in various organs, with several recognized genetic and
environmental risk factors. Despite substantial progress, the genetic determinants
associated with its prognosis remain largely unknown.

Objectives: This study aimed to identify the genetic changes involved in sarcoidosis and
evaluate their clinical relevance.

Methods: We performed whole-exome sequencing (WES) in 116 sporadic sarcoidosis
patients (acute sarcoidosis patients, n=58; chronic sarcoidosis patients, n=58). In
addition, 208 healthy controls were selected from 1000 G East Asian population data.
To identify genes enriched in sarcoidosis, Fisher exact tests were performed. The
identified genes were included for further pathway analysis using Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Additionally, we used the
STRING database to construct a protein network of rare variants and Cytoscape to
identify hub genes of signaling pathways.

Results: WES and Fisher’s exact test identified 1,311 variants in 439 protein-coding
genes. A total of 135 single nucleotide polymorphisms (SNPs) on 30 protein-coding genes
involved in the immunological process based on the GO and KEGG enrichment analysis.
Pathway enrichment analysis showed osteoclast differentiation and cytokine–cytokine
receptor interactions. Three missense mutations (rs76740888, rs149664918, and
rs78251590) in two genes (PRSS3 and CNN2) of immune-related genes showed
significantly different mutation frequencies between the disease group and healthy
controls. The correlation of genetic abnormalities with clinical outcomes using
multivariate analysis of the clinical features and mutation loci showed that the missense
variant (rs76740888, Chr9:33796673 G>A) of PRSS3 [p=0.04, odds ratio (OR) = 2.49]
was significantly associated with chronic disease prognosis. Additionally, the top two
hub genes were CCL4 and CXCR4 based on protein–protein interaction (PPI)
network analysis.
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Conclusion: Our study provides new insights into the molecular pathogenesis of
sarcoidosis and identifies novel genetic alterations in this disease, especially PRSS3,
which may be promising targets for future therapeutic strategies for chronic sarcoidosis.
Keywords: whole-exome sequencing, sarcoidosis, non-synonymous mutations, adaptive immune response,
chronic sarcoidosis prognosis
INTRODUCTION

Sarcoidosis (MIM 609464) is an immune-mediated disease
affecting multiple organs and is characterized by non-caseating
necrotizing granulomatous lesions with an elusive etiology (1).
The disease is characterized variably across races, and the
prognosis and course of the disease depend on the phenotypic
characteristics. Compared to white Americans (10.9/100,000),
African Americans (35.5/100,000) are affected more frequently,
and African Americans tend to develop chronic, severe disease
prognoses (2, 3). Some patients may experience spontaneous
remission, but others may suffer from a chronic course,
ultimately leading to death in severe cases (4). Epidemiological
studies suggest that the disease has a racial predisposition and
family clustering characteristics (5). Most researchers agree that
the etiology of sarcoidosis is due to environmental exposure,
genetic factors, and immune system dysregulation. Sarcoidosis is
a multiple-gene-affected disease; many published studies have
reported the candidate genes of sarcoidosis. Genetic
predisposition plays a vital role in the etiology of sarcoidosis
and contributes to the heterogeneity of clinical manifestations
and prognosis (6).

The classification of sarcoidosis prognosis is based on the
duration of the disease course: acute sarcoidosis (≤2 years) and
chronic sarcoidosis (>2 years) (7). Up to 40% of patients develop
chronic disease with persistent lung inflammation and tissue
fibrosis, which contribute to the majority of sarcoidosis mortality
(8). Several genetic mutations have been associated with the
clinical course of sarcoidosis, and various distinct ethnic groups
argue for genetic influence (3). Previous studies suggested that
class II HLA-DRB1*03:01 is associated with resolving disease
more than the persistent group in Finnish, Croatia, and Czech
sarcoidos is pat ients (9–11) . Other non-HLA gene
polymorphisms associated with clinical course, including TLR3
(L412F, rs3775291), promoted a persistent clinical phenotype in
Irish and American Caucasian patients (12); also, tumor necrosis
factor-b (TNF-b) alleles TNF-b1 and TNF-b3 were found to be
associated with prolonged clinical course in Japan and Dutch
sarcoidosis patients, respectively (12, 13).

In addition to classical candidate-gene filtering methods,
genome-wide association analysis (GWAS) also contributes to
identifying suspected genes associated with disease etiology.
Hofmann et al. reported using GWAS to identify the ANXA11
gene as a new susceptibility locus for sarcoidosis from over
440,000 single nucleotide polymorphisms (SNPs) among 500
patients and controls (14). Additionally, Franke et al. found that
the C10ORF67 gene was significantly associated with sarcoidosis
2

and Crohn’s disease among over 83,000 SNPs using the GWAS
method (15). Using the whole-exome sequencing method, Elisa
Lahtela et al. reported that variations in AADACL3 and
C1orf158, located on chromosome 1p36.21, were associated
with resolved disease prognosis among 72 Finnish patients (16).

However, limited studies have reported the association
between genetic markers and chronic sarcoidosis prognosis in
the Chinese population, which requires in-depth research to
diagnose and treat sarcoidosis. We present a strategy using
whole-exome sequencing data of sarcoidosis patients to
evaluate which genetic variants distinguish chronic sarcoidosis
prognosis. We identified sequence variations in a sample of 116
Chinese sarcoidosis cases, acute and chronic prognosis, to
pinpoint the genetic variety of sarcoidosis prognosis.
MATERIALS AND METHODS

Study Population
One hundred sixteen sarcoidosis patients who were consecutive
cases from January 2016 to December 2017 in Peking Union
Medical College Hospital and 208 healthy controls were selected
for the whole-exome sequencing (WES) study. The patients who
underwent WES were diagnosed based on the American
Thoracic Society (ATS)/European Respiratory Society (ERS)/
World Association of Sarcoidosis and Other Granulomatous
Disorders (WASOG) criteria (17). The inclusion criteria
included clinical manifestation, radiological characteristics, and
pathological evidence. The stages of sarcoidosis were determined
following the “Scadding” classification for sarcoidosis.
Radiological evaluation of sarcoidosis in the outpatient clinic at
Peking Union Medical College Hospital was performed by two
physicians with expertise in the respiratory department. All
patients who had a clinical follow-up of at least 4 years
participated. The diagnosis of the patients with sarcoidosis was
confirmed by transbronchial lung biopsy (TBLB). The clinical
outcomes of sarcoidosis patients were classified into the acute
group (resolve within 2 years, n=58 patients, 50%) and the
chronic group (persisting over 2 years, n=58 patients, 50%)
(17). All resources were investigated in the Electronic Health
Record database of the Peking Union Medical College Hospital.
This study was conducted in accordance with the Declaration of
Helsinki, and the protocol used to collect human blood samples
and clinical resources was approved by the Ethics Committee of
Peking Union Medical College Hospital. Written informed
consent was obtained from all subjects.
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Whole-Exome Sequencing
DNA was extracted from the blood samples using the
QIAampTM DNA and Blood Mini Kit (Qiagen, Valencia, CA)
according to the manufacturer’s instructions. WES was
performed by ANNOROAD Co. (Beijing, China) using the
SureSelectXTTarget Enrichment System (G7530-90000)
method for exon capture, and a library was constructed. Then,
the paired-end sequencing program was run on the Illumina
NovaSeq S2 sequencing platform, and 150-bp reads were
obtained. CASAVA 1.8 was used to complete imaging analysis
and base detection of the high-throughput sequencing image files
with data filtering. Burrows–Wheeler Aligner (BWA) v0.7.17
software was used to compare the sequencing results and the
human genome reference sequence (UCSC GRCh37/hg19).
Then, The Genome Analysis Toolkit (GATK) v3.8 was used to
perform variant calling and to identify SNPs and insertions and
deletions (InDels).

Initial Variants and Sample Quality Control
We performed the initial variant and sample quality control
(shown in Figure 1). All QC steps were analyzed using the
software package PLINK v1.09. After variant quality control of
the raw data, 5,771,425 SNPs passed SNP quality control with the
recommendation from GATK. Among them, 3,981,961 (69%)
variants passed Hardy–Weinberg equilibrium (HWE) quality
control (p < 1e−6). Finally, 508,403 SNPs passed the SNP sample
Frontiers in Oncology | www.frontiersin.org 3
missing rate (<5%) quality control. In addition, 1,223,109 InDels
passed quality control with the recommendation from GATK. Of
the InDels, 1,000,293 (82%) passed HWE quality control.
Additionally, 39,161 InDels passed the sample missingness rate
(<5%) quality control. Then, we manipulated the sample quality
control and found that all 116 samples and 208 healthy controls
passed heterozygosity (mean ± 4 SD), sample missing rate (<5%),
and familiar relationships (pi-hat<0.2), meaning that all samples
and controls could be used for further evaluation (shown in
Supplementary Figure S1).

Mutation Site Filtering and Annotation
The SNPs and InDels identified in 116 sarcoidosis patients were
tested with Fisher’s exact test. In this disease research, sample
collection was challenging, and therefore, we had a smaller
sample size. However, the samples were randomly collected,
and to control for false positives, we used different methods to
obtain true positive sites and genes. For the Fisher’s exact test, to
control population stratification, the genomic inflation factor
was used to adjust the chi-2 value and recomputed p-value; to
control false positives in multiple comparisons, the p-values were
subjected to Bonferroni multiple corrections (Q-value ≤ 0.05).
With Fisher’s exact test results, the Multimarker Analysis on
GenoMic Annotation (MAGMA) v1.6 software package (18) was
used to perform SNP-wide mean model for gene-based
association analysis with the default setting. SNPs were
FIGURE 1 | Analytical strategy workflow for variant filtration and candidate gene selection. A schematic overview of the steps involved in whole-exome sequencing
analysis with pathogenesis candidate gene detection is shown. SNPs, single nucleotide polymorphisms; InDels, insertions and deletions; WES, whole-exome
sequencing; MAF, minor allele frequency; MAGMA, Multimarker Analysis on GenoMic Annotation.
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assigned to the genes obtained from Ensembl build 85 (only
protein-coding genes). Genome-wide significance was set at
0.05/(the number of tested genes). Genes whose p-value
reached genome-wide significance can be labeled in the
Manhattan plot. Using the result of gene analysis (gene-level p-
value), gene-set analysis was also performed with default
parameters of MAGMA v1.6. The gene sets were obtained
from sigdb v7.0 for “Curated gene sets” and “GO terms.” The
R package “clusterProfiler” was used to perform Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis (19). The expression characteristics of the immune-
related candidate genes were determined based on the data
obtained from Genotype-Tissue Expression (GTEx;
gtexportal.org). The characteristics of mutations in immune-
related candidate genes were identified using Maftools in the R
package (20). The STRING online database (STRING, https://
www.string-db.org/) and PPI pairs with a combined score of ≥0.4
were used to construct a PPI network. Cytoscape software v3.7.2
was used to predict the regulatory relationship between genes
and analyze the topological parameters of the network. The
Genome Reference Consortium Human Build 37 (GRCh37) of
Homo sapiens in the NCBI database was utilized for
SNP description.

Statistical Analysis
Statistical analyses were performed using SPSS version 26 and
GraphPad ® Prism Version 8.0.0 for Mac OS X (San Diego, CA,
USA). The normality of the variables was estimated using the
Shapiro–Wilk normality test. Non-normally distributed
continuous variables were expressed as medians and
interquartile ranges [M, (Q1, Q3)], and normally distributed
continuous variables were described as the means and standard
deviations. Categorical variables are shown as counts and
percentages. The independent samples t-test was used for
comparing variables with normal distribution. The non-
parametric test (Mann–Whitney U test) was used to compare
non-normally distributed continuous variables. Pearson’s two
test or Fisher’s exact test was used to analyze the categorical
variables. Binary logistic regression (backwards method) was
used to explore independent factors (age, sex, Lofgren syndrome,
radiology stage, rs76740888, and rs78251590) that were
statistically significant predictors of the binary dependent
variable (disease prognosis). The variables with the highest p-
values were removed from the model until all p-values for the
remaining variables were ≤0.05. The logistic models calculated
odds ratios (ORs) and their respective 95% confidence
intervals (CIs)
RESULTS

Functional Analyses of the Sarcoidosis-
Related 439 Candidate Genes
WES, mutation site filtering, and annotation analyses of 116
sarcoidosis patients and 208 healthy controls revealed that 1,311
variants were significant and were allotted to 439 candidate genes
Frontiers in Oncology | www.frontiersin.org 4
(shown in Figure 1). We further performed GO analyses for
these candidate genes filtered from the case–control Fisher’s
exact test on Metascape.org (21). The most enriched GO terms
were the epoxygenase P450 pathway [count = 5 (1.34%), log10(p)
= −5.26], keratinization [count = 13 (3.48%), log10(p) = (−4.93)],
and defective GALNT3 causing familial hyperphosphatemic
tumoral calcinosis (HFTC) [count = 4 (1.07%), log10(p) =
−4.19] (shown in Supplementary Figure S2A). The top-level
Gene Ontology biological processes comprised metabolic
process, developmental process, response to stimulus, and cell
proliferation (shown in Supplementary Figure S2B). To capture
the relationships among the terms, we analyzed the network of
enriched terms where terms with a similarity >0.3 were
connected by edges and selected the terms with the best p-
value from every 20 clusters using Cytoscape on Metascape.org
(shown in Supplementary Figures S2C, D).

Further KEGG pathway enrichment of 439 genes in the
“cluster profi ler” revealed four significant pathway
aggregations, including “caffeine metabolism” (gene ratio: 3/90,
adjusted p-value = 0.0073227), “drug metabolism—other
enzymes’ (gene ratio: 6/90, adjusted p-value = 0.0073227),
“retinol metabolism” (gene ratio: 6/90, adjusted p-value =
0.01552589), and “drug metabolism—cytochrome P450” (gene
ratio: 6/90, adjusted p-value = 0.02368937; shown in
Supplementary Figures S3A, B). In addition, a molecular
complex detection (MCODE) analysis was performed to
identify the modules within the protein–protein interaction
(PPI) network (parameter degree cut-off ≥2 and the MCODE
score ≥1.0) using Cytoscape software (22, 23). We found that 439
candidate genes were significantly clustered into three groups
presented in green, red, and blue nodes. MCODE 1 (red nodes,
MCODE score = 3.4) has 10 genes, i.e., CUL5, RBX1, EFTUD2,
HSPA8, CAND1, RPA1, STAU1, ATAD3A, PABPC1, and
SLC25A5. MCODE 2 (blue nodes, MCODE score = 1)
contains RB1, ZNF99, and ZNF208. MCODE 3 (green nodes,
MCODE score = 1) has three genes, including CYP2A7, CYP2F1,
and CYP4F2 (shown in Supplementary Figures S3C, D).

In addition, the genes filtered by Fisher’s exact test with the
genomic inflation factor are presented in Supplementary Table S2.
The Manhattan plot (shown in Supplementary Figure S4A)
showed visual identification of statistically significant data points
with p<0.05. We tested for GO term (biological processes)
enrichment to assess the gene-set covered biological functions and
pathways. Four significantly enriched GO terms were detected,
including loneliness (MATG) (p adjusted=0.000134505), loneliness
(p adjusted=0.000742134), extremely high intelligence (p
adjusted=0.032706257), and Plasminogen activator inhibitor type
1 levels (PAI-1) (p adjusted=0.038615263), see Supplementary
Figure S4B.

Selection and Functional Analysis of
Immune-Related Genes
Previous studies suggested that sarcoidosis is an immune-related
granulomatous disease associated with genetic susceptibility (24,
25). To distinguish the immune-related pathogenic genes in 439
candidate genes identified in our study, we searched the
July 2022 | Volume 12 | Article 910227
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“Immune” term among “GO biological process” and found 36
immune-related GO terms (see Table 1) covering 135 variants of
30 immune-related genes. The SNP details of the 30 immune-
related candidate genes are listed in Supplementary Table S1.

Two significant KEGG pathways enrichments, “hsa04380:
osteoclast differentiation” (p-adjust = 0.0000587, gene count =
6) and “hsa04060: cytokine–cytokine receptor interaction” (p-
adjust = 0.019641002, gene count = 5), were revealed by analysis
of the 30 immune-related genes. Six genes in “osteoclast
differentiation” enrichment include CSF1R, LILRA3, LILRA6,
LILRB2, LILRB3, and LILRB5. The genes involved in “cytokine–
cytokine receptor interaction” included CCL4, CSF1R, CXCR4,
FLT1, and IL7 (shown in Figures 2A, B). Immune-related
Frontiers in Oncology | www.frontiersin.org 5
candidate gene expression characteristics were also analyzed
using genotype-tissue expression (GTEx) data to investigate
the potential role of these genes in multiple organs and tissues.
Figure 2C shows that CXCR4 and MSTN had the highest
expression in the lung among the 30 immune-related
candidate genes.

We further analyzed the PPI of 30 immune-related genes
using the STRING database. When a “medium confidence =
0.400” was defined as the cutoff criterion of the minimum
required interaction score, three clusters were identified from
the PPI network (shown in Figure 2D). The largest cluster
comprised 27 nodes and 24 edges, with an average node degree
of 1.78 (PPI enrichment p-value = 2.27e−05). The hub genes
TABLE 1 | Gene Ontology terms associated with “immune” in Cluster Profiler analyses.

GO ID GO term Count Genes

GO:0002376 Immune system process 30 APOL1|AZGP1P1|BSG|CCL4|CNN2|COCH|CSF1R|CXCR4|EDN1|EZR|FLT1|GZMB|IL7|
KCTD7|KIFAP3|KRT16P3|KRT6A|LILRA3|LILRA6|LILRB2|LILRB3|LILRB5|MARCH1|
MSTN|NR1D1|PRSS3|RB1|RPA1|SAA1|SWAP70

GO:0006955 Immune response 17 APOL1|AZGP1P1|CCL4|COCH|CSF1R|EDN1|EZR|GZMB|IL7|KCTD7|KRT16P3|LILRB2|
MARCH1|NR1D1|PRSS3|SAA1|SWAP70

GO:0002682 Regulation of immune system process 15 CCL4|COCH|CSF1R|EDN1|EZR|IL7|KCTD7|KRT6A|LILRA6|LILRB2|LILRB3|MSTN|
NR1D1|RB1|SWAP70

GO:0045087 Innate immune response 10 APOL1|CCL4|COCH|CSF1R|EDN1|GZMB|KRT16P3|NR1D1|PRSS3|SAA1
GO:0002520 Immune system development 9 CNN2|CSF1R|IL7|LILRA6|LILRB2|LILRB3|RB1|RPA1|SWAP70
GO:0002684 Positive regulation of immune system process 9 CCL4|COCH|EDN1|EZR|IL7|KCTD7|LILRB2|NR1D1|SWAP70
GO:0002252 Immune effector process 5 GZMB|KCTD7|KRT6A|MSTN|SWAP70
GO:0050776 Regulation of immune response 5 COCH|EZR|KCTD7|LILRB2|NR1D1
GO:0002683 Negative regulation of immune system process 4 EZR|KCTD7|LILRB2|NR1D1
GO:0002764 Immune response-regulating signaling pathway 4 EZR|KCTD7|LILRB2|NR1D1
GO:0050778 Positive regulation of immune response 4 COCH|EZR|KCTD7|NR1D1
GO:0002697 Regulation of immune effector process 3 KCTD7|KRT6A|MSTN
GO:0002768 Immune-response-regulating cell surface receptor

signaling pathway
3 EZR|KCTD7|LILRB2

GO:0002757 Immune-response-activating signal transduction 3 EZR|KCTD7|NR1D1
GO:0002253 Activation of immune response 3 EZR|KCTD7|NR1D1
GO:0002366 Leukocyte activation involved in immune response 2 KCTD7|SWAP70
GO:0002263 Cell activation involved in immune response 2 KCTD7|SWAP70
GO:0045089 Positive regulation of innate immune response 2 COCH|NR1D1
GO:0045088 Regulation of innate immune response 2 COCH|NR1D1
GO:0002429 Immune-response-activating cell surface receptor

signaling pathway
2 EZR|KCTD7

GO:0002767 Immune-response-inhibiting cell surface receptor
signaling pathway

1 LILRB2

GO:0002765 Immune-response-inhibiting signal transduction 1 LILRB2
GO:0002279 Mast cell activation involved in immune response 1 KCTD7
GO:0002312 B-cell activation involved in immune response 1 SWAP70
GO:0002562 Somatic diversification of immune receptors via

germline recombination within a single locus
1 SWAP70

GO:0002200 Somatic diversification of immune receptors 1 SWAP70
GO:0050777 Negative regulation of immune response 1 LILRB2
GO:0002698 Negative regulation of immune effector process 1 KCTD7
GO:0002285 Lymphocyte activation involved in immune response 1 SWAP70
GO:0002699 Positive regulation of immune effector process 1 KCTD7
GO:0002758 Innate immune response-activating signal

transduction
1 NR1D1

GO:0002218 Activation of innate immune response 1 NR1D1
GO:0016064 Immunoglobulin mediated immune response 1 SWAP70
GO:0002460 Adaptive immune response based on somatic

recombination of immune receptors built from
immunoglobulin superfamily domains

1 SWAP70

GO:0006959 Humoral immune response 1 IL7
GO:0002250 Adaptive immune response 1 SWAP70
July 2022 | Volume 12 | Article 910227
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A

C

B

D E

FIGURE 2 | KEGG pathway analysis and expression characteristics of 30 immune-related candidate genes. (A) Bar plot of the KEGG pathway enrichment (B) Dot plot of the
KEGG pathway enrichment (C) Organ and tissue expression characteristics analyzed by GTEx. A heatmap of the tissue-specific gene expression for 30 immune-related
candidate genes in different organs and whole blood from the genotype-tissue expression project (GTEx) v8 54 tissue types of dataset. (D) PPI network of the 30 immune-
related candidate genes and three modules were clustered by the STRING database. (E) PPI network of the top 10 hub genes of the 30 immune-related candidate genes.
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were determined by overlapping the genes according to the top
10 nodes selected by the degree in cytoHubba (26). The
identification of hub genes and module interactions is helpful
in selecting the key genes that reveal the underlying molecular
mechanisms of sarcoidosis pathogenesis-associated immune-
related candidate genes (27). The top 10 hub genes were
selected, and they were arranged by rank degree and presented
in different colors (higher rank degree labeled red, lower rank
degree marked yellow). The genes with the most significant rank
were CCL4 and CXCR4, which had the most interrelation with
other associated immune-associated genes (shown in Figure 2E).

Three Missense Mutations Suggested
Immune-Related Pathogenesis
of Sarcoidosis
We next investigated non-synonymous SNPs, which have been
thought to play a more critical role in pathogenesis, as they have
different alleles encoding different amino acids. A total of nine
non-synonymous SNPs were found in four immune-related
genes (shown in Table 2). Among them, seven non-
synonymous variants in three genes showed a significant
difference in the frequency between 116 sarcoidosis and 208
healthy control groups, with much higher frequencies in the
sarcoidosis group than in the control group (p < 0.001, odds ratio
≥1; see Table 2), including PRSS3, LILRA6 (LILRB3),
and CNN2.

Furthermore, the mutation characteristics of 135 SNPs from
the 30 immune-related candidate genes were analyzed using
Maftools in R software. Among the three immune-related genes
with significant mutation frequencies, the PRSS3 and CNN2
genes were detected, which contained the highest missense
mutation ratios, at 100% and 97%, respectively, among the 116
sarcoidosis patients. Furthermore, non-synonymous SNPs in
Frontiers in Oncology | www.frontiersin.org 7
LILRB2, GZMB, APOL1, CNN2, SWAP70, and CSF1R were
shown in over 50% of sarcoidosis patients. The SAA1 gene
showed multiple hit and splice site mutations among 116
sporadic sarcoidosis patients (shown in Figure 3A). Two non-
synonymous variants (NC_000009.11:g.33796673G>A and
NC_000009.11:g.33797969T>A) in the PRSS3 gene were
located on exon 3 of Trypsin-3 isoform 3 and exon 2 of
Trypsin-3 isoforms 1, 2, and 4. A non-synonymous SNP in
CNN2 (NC_000019.9: g.1037871C>A) was found in exon 7 of
calponin-2 isoforms a, c, and d and exon 6 of calponin-2 isoform
b (shown in Figures 3B-F).

Univariate Analysis and Multivariate
Logistic Regression Analysis Detected the
Risk Factors for Disease Prognosis
This WES study included 58 (50%) acute sarcoidosis patients and
58 (50%) chronic prognosis sarcoidosis patients (shown in
Table 3). Univariate analysis of the acute and chronic
prognosis groups showed that the acute prognosis group was
younger than the chronic prognosis group (p=0.016).
Additionally, rs76740888 (G to A) and rs78251590 (C to A)
mutations were associated with disease prognosis (p=0.034 and
p<0.001, respectively).

The related risk factors with p<0.1, including age, sex, Lofgren
syndrome, radiology stage, rs76740888, and rs78251590, were set
as the independent variables and included in multivariate logistic
analyses. The disease prognosis was determined as the dependent
variable. After adjustments for the founding variables, the binary
logistic regression analysis showed that only age (p=0.037),
radiology stage II (p=0.03), and rs76740888 (p=0.038) were
retained as significant predictors of sarcoidosis prognosis.
Table 4 lists the variables and parameters that were finally
screened into the model. Only age older than 50 (OR, 0.41),
TABLE 2 | Immune-associated non-synonymous variation details in the Fisher’s exact test.

Chr Position Chromosomal
location

Ref Alt Variation ID Frequency of
case group

Frequency of
control group

p-
value

OR Functional
annotation

Gene
detail

Exonic
function

9 33796673 9p13.3 G A rs76740888 0.3147 0.01683 1.83E
−28

26.83 Exonic PRSS3 Non-
synonymous

9 33797969 9p13.3 T A rs149664918 0.2241 0.05769 1.16E
−09

4.719 Exonic PRSS3 Non-
synonymous

17 38253621 17q21.1 A G rs201066687 0 0.2428 4.58E
−22

0 Exonic NR1D1 Non-
synonymous

19 54744710 19q13.42 C T rs1132600 0.1724 0.009615 4.27E
−15

21.46 Exonic LILRA6,
LILRB3

Non-
synonymous

19 54744711 19q13.42 C G rs1132599 0.1724 0.009615 4.27E
−15

21.46 Exonic LILRA6,
LILRB3

Non-
synonymous

19 54744722 19q13.42 T C rs1132597 0.181 0.009615 5.16E
−16

22.77 Exonic LILRA6,
LILRB3

Non-
synonymous

19 54745989 19q13.42 G C rs1052963 0.6336 0.3077 9.31E
−16

3.891 Exonic LILRA6,
LILRB3

Non-
synonymous

19 1037871 19p13.3 C A rs78251590 0.3621 0.06731 1.24E
−20

7.865 Exonic CNN2 Non-
synonymous

19 1037640 19p13.3 C T rs200303627 0 0.1875 9.56E
−17

0 Exonic CNN2 Non-
synonymous
July 2022 | Vo
lume 12 | A
Chr, chromosome; Ref, reference genome base type; Alt, alteration of sample base type; p-value, p-value of Fisher’s exact test between sarcoidosis case group and healthy control group;
function annotation, region of mutation site annotation by refGene database; gene detail, annotation of transcripts related to mutation sites based on refGene database; exonic function,
annotation of exome region from refGene database; AA change, annotation of amino acid changes of mutation sites based on refGene database.
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radiology stage II classification (OR, 0.25), and rs76740888 G to
A mutation (OR, 2.49) were identified as independent factors
correlated with an increase risk of chronic disease prognosis.
DISCUSSION

Sarcoidosis is an inflammatory disease characterized by
granulomatosis present in multiple organs and triggered by
environmental factors that interact with environmental triggers
to result in the innate immune activation of macrophages and
dendritic cells, which further upregulates the expression of the
major histocompatibility complex (MHC) and cytokines that
induce the activation of the adaptive immune response (3).
Previous GWAS on the sporadic and familial aggregation of
sarcoidosis patients showed that the candidate genes are strongly
associated with disease severity, including HLA and non-HLA
genes (9, 12). Most of the genes were related to T-cell regulation
and T-cell activation during antigen presentation by APCs
(antigen-presenting cells) (5). Other genes associated with
immune regulation of sarcoidosis, including NOTCH4, TNFa,
NOD2, and ANXA11, were also detected by GWAS analysis in
different races (28–31). Multiple factors, including genetic
composition and the context of antigen presentation, could
impact the inflammatory immune response, resulting in a self-
limiting or a chronic relapse type of sarcoidosis prognosis. The
Frontiers in Oncology | www.frontiersin.org 8
current study points out that the abundance of SNPs is associated
with disease susceptibility and prognosis in sarcoidosis patients.
A few papers have reported that human leukocyte antigen (HLA)
DRB1*15 positivity is associated with an increased risk for a
chronic course of sarcoidosis (32, 33). However, the
susceptibility variants and the signaling pathways are different
among different races of sarcoidosis patients (34–36). To our
knowledge, this result is the first report on the genetics of
Chinese sporadic sarcoidosis patients, which has significance
for understanding immunogenetic pathogenesis and the
development of chronic disease prognosis.

The present study revealed that 1,311 variants in 439 genes
were present in 116 sporadic Chinese sarcoidosis patients
compared to 208 healthy controls. Enrichment analysis with
GO biological process terms revealed that 135 variants in 30
genes were related to the “Immune” associated GO term. The
PRSS3 and CNN2 genes were detected with the highest missense
mutation ratios (100% and 97%, respectively).

The PRSS3 (serine protease 3) gene product, trypsin-3, is a
trypsinogen of the trypsin family of serine proteases and is
expressed in multiple organs, such as the lung. The PRSS3
gene is located on the locus of T-cell receptor beta variable
orphan on chromosome 9 ‘[cytogenetic location: 9p13.3;
genomic coordinates (GRCh37/hg19) 33750677-33799229] and
is associated with thyroiditis and Rickettsialpox (37, 38). This
gene is localized to the locus of T-cell receptor beta variable
A

B

C

D

E

F

FIGURE 3 | (A) Characteristics of SNPs of 30 immune-related candidate pathogenesis genes. The details of missense mutations, splice site mutations, and multihit
mutations in 116 sporadic sarcoidosis patients are presented as percentages. (B) Two missense mutations in PRSS3 of transcript isoforms. (C) and (D) Mutation
details of rs76740888 and rs149664918 on nucleotide sequence and amino acid sequence. (E) Missense mutation of rs78251590 in the CNN2 gene. (F) Mutation
details of rs78251590 on nucleotide and amino acid sequences.
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orphans. It has been suggested to be involved in the proteolytic
processing of proteins, digestion, blood coagulation, immune
response, and development (39). Mesotrypsin/PRSS3 is an
atypical isoform of trypsin that is expressed in the brain and
other organs and is involved in the process of antimicrobial
humoral response, cobalamin metabolic process, digestion,
Frontiers in Oncology | www.frontiersin.org 9
endothelial cell migration, neutrophil degranulation,
proteolysis, and zymogen activation via calcium ion binding,
protein binding, and serine-type endopeptidase activity signaling
pathway (40). Pathways related to the PRSS3 gene on KEGG are
“Influenza A,” “neuroactive ligand–receptor interaction,”
“pancreatic secretion,” and “protein digestion and absorption”
TABLE 3 | Univariate analysis of three missense mutations and clinical characteristics of 116 sarcoidosis patients.

Characteristic Acute disease (<2 years) Chronic disease (≥2 years) P

No. of patients (%) 58 (%) 58 (%)
Age 0.016a

<50 years 37 64% 24 41%
≥50 years 21 36% 34 59%

Gender 0.077a

Female 34 59% 43 74%
Male 24 41% 15 26%

Syndrome
Lofgren syndrome 6 13 0.079a

Extrapulmonary involvement 8 8 1a

Laboratory tests
ACE 0.343a

<68 (U/L) 49 84% 45 78%
≥68 (U/L) 9 16% 13 22%

ESR 0.709a

<15 (mm/h) 33 57% 31 53%
≥15 (mm/h) 25 43% 27 47%

hsCRP 0.576a

<3 (mg/L) 30 52% 33 57%
≥3 (mg/L) 28 48% 25 43%

Ca (mmol/L) 0.611a

<2.70 (mmol/L) 57 98% 55 95%
≥2.70 (mmol/L) 1 2% 3 5%

ALT (U/L) 0.488a

<40 (U/L) 55 95% 52 90%
≥40 (U/L) 3 5% 6 10%

NLR (X ± SD) 2.68 (1.92, 4.00) 2.57 (2.02, 3.35) 0.359b

BALF
CD4/CD8 ratio 0.793a

<2.0 9 16% 8 14%
≥2.0 49 84% 50 86%

PFT
FEV1/FVC (%)[M, (Q1, Q3)] 79.43 (75.59, 82.02) 78.95 (73.87, 84.29) 0.964b

DLCO (% pred)(X ± SD) 83.45 ± 13.22 84.34 ± 14.17 0.922c

CPI [M, (Q1, Q3)] 12.29 (2.21, 19.95) 14.8 (5.45, 23.41) 0.316b

Radiology stagec 0.09a

Stage I 19 33% 10 17%
Stage II 30 52% 32 55%
Stage III 9 16% 16 28%

SNPs
rs76740888 0.034a

GG 16 27
GA 42 31

rs149664918 0.709a

TT 33 31
TA 25 27

rs78251590 <0.001a

CC 44 14
CA 14 44
July 2022 | Vo
lume 12 | Article
aX2 test.
bMann–Whitney U test.
cIndependent samples t-test.
X ± SD, mean ± standard deviation; M, (Q1, Q3), median, first quartile, and the third quartile.
Radiology stage was according to the Scadding classification.
ACE, angiotensin converting enzyme; ESR, erythrocyte sedimentation rate; hsCRP, hypersensitive C-reactive protein; Ca, calcium in serum; ALT, alanine aminotransferase; NLR,
neutrophil–lymphocyte ratio; BALF, bronchoalveolar lavage fluid; PFT, pulmonary function test; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; DLCO, diffusing capacity
of the lung for carbon monoxide for single-breath method; CPI, complex physiological index.
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(41). Diseases associated with PRSS3 include thyroiditis and
Hashimoto thyroiditis. The elevated expression of PRSS3 is
associated with a poor prognosis for multiple cancers,
including lung adenocarcinoma, gastric cancer, ductal
carcinoma of the breast, and pancreatic cancer (37, 42–44).
Two protein-coding SNPs on the PRSS3 gene identified in our
research have not yet been published. The G to A missense
mutation (rs76740888) in the exon of PRSS3 on chromosome
9p13.3 could cause an mRNA allele change and an amino acid
change in four trypsin-3 isoforms, causing 10 coding sequence
variants at each codon and amino acid. Protease imbalances have
been found in another interstitial lung disease. Shanna Ashley
et al. suggested that trypsin-3 was a potential biomarker for
idiopathic pulmonary pneumonia (IPF) by proteomic analysis of
plasma from IPF patients (45). How trypsin-3 influences
sarcoidosis is still unknown.

CNN2 is located on chromosome 19p13.3 and functions as an
actin cytoskeleton-associated protein and modifies the innate
immune system pathways, including the inhibitory regulation of
macrophage migration and phagocytosis (46). CNN2 is
expressed in many organ tissues and cells, including epidermal
keratinocytes, lung alveolar cells, and fibroblasts. In our study,
we identified a C>A missense mutation (rs78251590) on CNN2
that may participate in the regulation of immune regulation
of sarcoidosis.

We also attempted to identify biological pathways by
inputting 30 candidate genes from the immune-related GO
category. Two pathways were extracted from the KEGG
analysis, including “hsa04380: osteoclast differentiation” (p-
adjust = 0.0000587, gene count = 6) and “hsa04060: cytokine–
cytokine receptor interaction” (p-adjust = 0.019641002, gene
count = 5). A recent investigation of sarcoidosis illustrated that
the differentially expressed genes (DEGs) identified by
comparing the microarray datasets between sarcoidosis
patients and healthy controls were significantly enriched in the
positive regulation of protein kinase activity, osteoblast
differentiation, and inflammatory response (47). The osteoclast
differentiation and cytokine–cytokine receptor interaction
pathways identified in our study may provide new ideas for
understanding the role of immune-related gene pathways in
Chinese sarcoidosis patients. Meanwhile, the “hsa04060:
cytokine–cytokine receptor interaction’ pathway, including the
CCL4, CSF1R, CXCR4, FLT1, and IL7 genes, could be highly
Frontiers in Oncology | www.frontiersin.org 10
associated with immune regulation and is strongly suspected to
be involved in the pathogenesis of sarcoidosis (5, 48, 49).
Interleukin (IL)-7 is essential for T-cell generation and plays a
pivotal role in the proliferation and survival of memory and
naive T cells and T helper type 17 (Th17) cells. Elliott Crouser
et al. reported that IL-7 gene transcripts and transcript networks
were highly engaged in pulmonary sarcoidosis biological
processes and observed overexpression of the IL-7 protein in
sarcoidosis patients. Similarly, Patterson et al. observed that the
circulating cytokine IL-7 was increased in sarcoidosis patients
compared to the control group (50). Keiichiro Yoshioka et al.
used Gene Ontology enrichment analysis with RNA sequencing
datasets. They revealed several biological processes related to the
pathogenesis of sarcoidosis, such as cellular response to IL-1 and
interferon gamma (IFN-g), regulation of IL-6 production, and
response to lipopolysaccharide. Meanwhile, they confirmed that
the tumor necrosis factor (TNF), toll-like receptor signaling, and
IL-17 signaling pathways were involved in the sarcoidosis
pathobiology from KEGG pathway enrichment analysis (51).

The leading hub genes with variants are also essential
regulators due to their changes in the activities of proteins and
regulation mechanisms (47). Based on the analysis of the top 10
hub genes among 30 immune-related candidate genes, we found
that CCL4 and CXCR4 were the most significant interrelated
genes. C–C motif chemokine ligand 4 (CCL4) encodes a
mitogen-inducible monokine involved in PEDF-induced
signaling and the Akt signaling pathway, which could be
secreted and involved in inflammatory functions. Barczyk et al.
reported that the release of CCL4 chemokine was found to play a
significant role in the recruitment of CD8+ T cells and CD4+ T
cells to the inflammation sites in sarcoidosis patients (52).
Another hub gene that we investigated was CXCR4, which
encodes the C–X–C chemokine receptor type 4 protein and is
characterized as the receptor for the C–X–C chemokine
CXCL12/SDF-1 that transduces a signal by increasing
intracellular calcium ion levels and contributes to enhancing
MAPK1/MAPK3 activation. Katerina Antoniou et al. suggested
that a significant increase in CXCR4 mRNA levels has been
detected in sarcoidosis patients compared with healthy controls
(53). CXCR4 has a functional relationship with sarcoidosis. The
binding of bacterial lipopolysaccharide (LPS) mediates the LPS-
induced inflammatory response and affects TNF secretion by
monocytes, which are involved in excessive cytokine responses
TABLE 4 | Results of logistic regression analysis of risk factors for disease prognosis.

Variables B SE Wald p-value OR value 95% CI for Exp(B)

Age (≥50) −0.89 0.43 4.34 0.04 0.41 0.18−0.95
Sex (female) −0.75 0.46 2.74 0.1 0.47 0.19–1.15
With Lofgren syndrome −1.03 0.58 3.14 0.08 0.36 0.12–1.12
Radiology stage
Stage I – – – – Ref
Stage II −1.4 0.63 4.93 0.03 0.25 0.07–0.85
Stage III −0.27 0.53 0.25 0.62 0.77 0.27–2.17
SNPs
rs76740888
GG – – – – Ref
GA 0.91 0.44 4.33 0.04 2.49 1.05–5.89
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and induce the development of pulmonary sarcoidosis (54). LPS
is mainly detected as a potential non-tuberculosis-associated
pathogen-associated molecular pattern (PAMP) in sarcoidosis
patients, which is an essential factor for the pathogenesis of
sarcoidosis (55).

Interestingly, according to GO analysis of genes filtered from
Fisher’s exact test with genomic inflation factor adjustment, we
identified that the GO term “plasminogen activator inhibitor
type 1 levels (PAI-1)” showed the highest proportion of
overlapping genes in gene sets. PAI-1, also called “serpin
family E member 1 (SERPINE1),” a member of the serine
proteinase inhibitor (serpin) superfamily, has been shown to
promote fibrosis in multiple organ systems and function as a
component of innate antiviral immunity. Florence Jeny et al.
identified that hypoxia increased the profibrotic response with
PAI-1 secretion associated with human lung fibroblast migration
inhibition in monocyte-derived (MD) macrophages among
highly active sarcoidosis patients (56).

Finally, the correlation of genetic profiles with clinical
outcomes through multivariate analysis showed that the
missense variant (rs76740888, Chr9:33796673 G>A) of PRSS3
[p=0.04, odds ratio (OR)=2.49] was significantly associated with
chronic prognosis. However, this candidate gene should be
further analyzed to explore its potential and contribution to
sarcoidosis prognosis. Furthermore, in keeping with prior
reports, individuals with Stage II radiological classification had
a more severe prognosis than those seen for the other stages.
Manuel Rubio-Rivas and colleagues conducted a retrospective
cohort study of 691 sarcoidosis patients. They suggested that
stage II radiological classification at diagnosis was one of the risk
factors related to the chronic trend of sarcoidosis (57).

Therefore, according to this study, the identified GO and
KEGG pathways and immune candidate genes may act as
pathogenesis and prognosis impactors for sarcoidosis. We
acknowledge some limitations in our study. First, we need to
validate the mechanisms that underlie the association between all
genetic variants and sarcoidosis outcomes and the mediating
pathway. Second, the findings need to be evaluated in larger
cohorts before generalization due to the result being based on
patients from a single center who developed sarcoidosis.
CONCLUSION

Our WES study identified 135 SNPs in 30 candidate genes
enriched in immune-related GO and KEGG pathways. Of
these genes, we found that patients who carried missense
mutations of rs76740888 (Chr9:33796673 G to A) on the
PRSS3 gene had a higher probability of a chronic sarcoidosis
Frontiers in Oncology | www.frontiersin.org 11
prognosis. In addition, through a rigorous interrogation of
candidate mutations in genes using available informatic data
resources, we envisaged that the highly ranked hub genes among
30 immune-related candidate genes could also contribute to the
pathogenesis of sarcoidosis, including CCL4 and CXCR4. Taken
together, our data support the further understanding of the role
of genetic mutations in immune regulation leading to the
pathogenesis of sarcoidosis.
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