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Impact of Using Unedited CT-Based
DIR-Propagated Autocontours on
Online ART for Pancreatic SBRT
Alba Magallon-Baro*, Maaike T. W. Milder , Patrick V. Granton, Wilhelm den Toom,
Joost J. Nuyttens and Mischa S. Hoogeman

Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands

Purpose: To determine the dosimetric impact of using unedited autocontours in daily plan
adaptation of patients with locally advanced pancreatic cancer (LAPC) treated with
stereotactic body radiotherapy using tumor tracking.

Materials and Methods: The study included 98 daily CT scans of 35 LAPC patients. All
scans were manually contoured (MAN), and included the PTV and main organs-at-risk
(OAR): stomach, duodenum and bowel. Precision and MIM deformable image registration
(DIR) methods followed by contour propagation were used to generate autocontour sets
on the daily CT scans. Autocontours remained unedited, and were compared to MAN on
the whole organs and at 3, 1 and 0.5 cm from the PTV. Manual and autocontoured OAR
were used to generate daily plans using the VOLO™ optimizer, and were compared to
non-adapted plans. Resulting planned doses were compared based on PTV coverage
and OAR dose-constraints.

Results: Overall, both algorithms reported a high agreement between unclipped MAN
and autocontours, but showed worse results when being evaluated on the clipped
structures at 1 cm and 0.5 cm from the PTV. Replanning with unedited autocontours
resulted in better OAR sparing than non-adapted plans for 95% and 84% plans optimized
using Precision and MIM autocontours, respectively, and obeyed OAR constraints in 64%
and 56% of replans.

Conclusion: For the majority of fractions, manual correction of autocontours could be
avoided or be limited to the region closest to the PTV. This practice could further reduce
the overall timings of adaptive radiotherapy workflows for patients with LAPC.

Keywords: pancreas, SBRT, adaptive, replanning, autocontouring
INTRODUCTION

Adaptive radiotherapy (ART) is a desired paradigm in radiation therapy. Its goal is to adjust the
treatment plan to the patient anatomy of the day to compensate for anatomical changes (1, 2). An
online ART workflow has to be time efficient as the patient awaits treatment (1, 3). In recent years,
efforts have been focused on speeding up the ART process through fast treatment plan
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reoptimization techniques and through automatically
segmenting anatomical structures in medical images (3–10).
The latter aims to reduce delineation times, which in ART
remains a crucial point since contouring has been traditionally
performed manually by dedicated and trained staff (11).

Carcinomas located close to radiosensitive and mobile
organs-at-risk (OAR), such as unresectable locally advanced
pancreatic cancer (LAPC), are excellent candidates for ART (4,
8, 9, 12). LAPC is a dose-limited tumor type, whose dosage is
often compromised to protect surrounding organs. To manage
this limitation, stereotactic body radiotherapy (SBRT) has
become a standard of care for LAPC, owing to its capability to
deliver highly conformal doses with steep dose gradients (13–17).
Nonetheless, due to day-to-day OAR mobility, unintended doses
are received by OAR close to the tumor (3, 18). For that reason,
ART is recently being explored for LAPC patients using systems
such as the MRIdian (ViewRay, Oakwook Village, OH) (8, 9, 12,
19, 20), the Elekta Unity (Elekta AB, Stockholm, Sweden) (7, 9,
21), or the Ethos (Varian Medical Systems Inc, Palo Alto, CA)
(22, 23).

In our clinic, LAPC patients are treated on the CyberKnife
(CK) (Accuray Inc, Sunnyvale, USA) using real-time tracking
(24, 25). The CK does not have an integrated 3D imaging system,
but our institute has a unique CT-on-rails in the treatment room
that allows daily imaging (26). Our previous work investigated
the potential trade-offs of applying different fast and quasi-
automated plan adaptation methods on the CK (6).
Nonetheless, a major challenge remains in laborious daily
organ delineation, i.e. contouring.

Automatic contouring methods may offer a solution and are
often based on the propagation of contours from the planning
(pCT) to the fraction CT (FxCT) through deformable image
registration (DIR) (2–4, 7). The use of automatic algorithms not
only speeds up this task, but could also offer consistency to limit
intra- and inter-observed variations. However, due to poor soft
tissue contrast in the abdominal area, autosegmented organ
contours (i.e. autocontours) generally require further manually
editing before being used for daily replanning purposes (3, 27).
Within an ART framework, manual delineation is one of the
most time-consuming steps, but is thought to be essential to
guarantee the quality of the adapted treatment plan. The time
required for delineation delays the start of radiation delivery,
and allows for additional intra-fraction OAR motion to
occur, which can devaluate further the adapted plan. For this
reason, in this study we have explored if manual editing of
daily contours can be avoided while replanning. We have
investigated the impact of using unedited autocontours
generated with two commercially DIR algorithms available in
PrecisionTP (Accuray Inc, Sunnyvale, USA) and in MIM (MIM
Software Inc, Cleveland, USA). The value of replanning directly
on unedited autocontours has been established by: (a)
comparing resulting plans to replans obtained using manual
contours in the optimization, and (b) comparing them to
conventional non-adapted SBRT plans. In addition, we also
quantified the geometric accuracy of both DIR algorithms,
especially close to the target volume.
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MATERIALS AND METHODS

Patient Data
A total of 35 patients with pancreatic cancer were included in this
study. All patients were diagnosed with inoperable nonmetastatic
LAPC, and presented a stable disease after receiving 8 cycles of
chemotherapy (FOLFIRINOX). They received subsequent
hypofractionated SBRT treatment of 40 Gy in 5 fractions,
prescribed to the 80% isodose line. Patients gave informed
consent to be included in the LAPC-1 Phase II study, which
was approved by the Institutional Review Board (ID:
NL49643.078.14) in accordance with the recommendations of
the Declaration of Helsinki.

The study protocol indicated that each patient received a
planning CT (pCT) and 3 contrast-enhanced in-room daily
scans under instructed end-expiration breath-hold prior to
treatment delivery (FxCT). All scans were acquired after
manually injecting intravenous contrast agent, and by
immobilizing patients using a vacuum bag on the treatment
couch. Patients were recommended to avoid food and drink
intake 2 h before the treatment fraction. In total, 98 FxCT were
collected in this cohort, since only 2 daily CTs were available for
7 out of 35 patients.

The pCTs were delineated by a radiation oncologist (with 10+
years of experience) following the RTOG guidelines on the
abdominal region (28). The gross tumor volume (GTV) was
expanded by 5 mm to generate the clinical target volume (CTV),
which was subsequently expanded by 2 mm to create the
planning target volume (PTV). Additionally, the main organs-
at-risk (stomach, duodenum, bowel, kidneys and liver) were also
manually contoured.

Patients were treated using the CyberKnife M6 system with
synchrony respiratory motion tracking on pre-implanted gold
fiducial markers (24, 25, 29). Each patient had a median of 3
fiducials in or around the pancreatic tumor. The clinical protocol
stated that 95% of the PTV should receive 95% of the prescribed
dose (i.e., 40 Gy/5 fx), although PTV underdosage was allowed to
fulfill OAR constraints. The stomach, duodenum and bowel had
a near-maximum dose constraint of V35 Gy < 0.5 cc. For the
liver, dose-constraint was V20 Gy < 700 cc, for the kidneys, mean
dose < 15 Gy and V15 Gy < 30%, and for the spinal cord, allowed
max dose was < 27.5 Gy.

Delineations on the Daily Scans
Baseline of Manual Contour Set
FxCTs were delineated by the same radiation oncologist that
delineated the pCT scans. The GTV and PTV were rigidly
transferred to FxCTs after applying a fiducial pre-match.
Additional details regarding OAR delineations can be seen in (30).

Autocontour Sets
Contours from the pCT were propagated to FxCTs using the
deformable image registration (DIR) algorithm available in both
PrecisionTP (version 2.0.1.1) and MIM (version 6.9.3). A
summary of each DIR method is available in Supplementary
Materials (A), as well as the procedure followed for parameter
June 2022 | Volume 12 | Article 910792
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selection in MIM DIR. Whereas MIM DIR settings could be
tuned to optimize the resulting contours for our dataset,
Precision DIR settings are fixed and cannot be modified. The
autocontours (AUTO) obtained using Precision DIR (asPREC)
and MIM DIR (asMIM) remained unedited.

Contour Sets Geometrical Comparison
Both autocontours sets (asPREC and asMIM) were geometrically
compared to MAN through the Dice coefficient (DC) (which
describes the overlapping ratio between two volumes), mean
surface distance (MSD), Hausdorff distance (HD) (which
describes the maximum distance between two contour
surfaces) and volumetric difference (VOL_DIFF) between the
automatic vs. manual contours. These 4 accuracy metrics
complement each other by giving an indication of the
volumetric error and the distance between the structures
boundaries, as recommended in Sharp et al. (2) and AAPM
TG-132 (31). All metrics were collected using an in-house
algorithm. Most of these metrics present a skewed distribution,
and hence, median and interquartile range (IQR) parameters
describing the data spread between quartile 1 (Q1) and 3 (Q3)
(i.e. the 25% and 75% percentiles in which the distribution lies),
were collected for the subsequent comparison analysis.

MAN, asPREC and asMIM stomach, duodenum and bowel
structures (the closest OAR to the target and mostly located
within the high dose region), were clipped at 3, 1 and 0.5 cm
from the PTV for geometrical comparison (4–6). The resulting
asPREC and asMIM clipped organs were compared to MAN
clipped structures by means of DC, MSD, HD and
VOL_DIFF metrics.

Since the three gastrointestinal (GIO) organs (i.e. stomach,
duodenum and bowel) have the same dose-constraints in the
clinical protocol, a structure combining the three was created at
each different scenario (whole and clipped GIO at 3, 1 and 0.5
cm). GIO structures were also compared using DC, MSD, HD
Frontiers in Oncology | www.frontiersin.org 3
and VOL_DIFF. No recommendations on a combined GIO
structure are included in the clinical protocol. The GIO
structure was only created to evaluate the geometrical
similarity of the combined organs, while minimizing the effect
of registration errors in the transition between organs (e.g.
stomach to duodenum).

The minimum distance (MIN_DIST) from GTV and PTV to
OARs and the overlapping volume (OVLP) of the expanded PTV
(with 0.5 and 1 cm) with the OAR was also retrieved for MAN,
asPREC and asMIM.

Replanning on MAN, asPREC and
asMIM Contours
Treatment plans were optimized using the VOLO™ optimizer in
PrecisionTP (v2.0.1.1). As detailed in (6), a fast patient-specific
template, including all clinically optimal cost functions used in
the pCT, was generated. These fast templates reproduced the
delivered clinical plans, while using a reduced number of nodes
and OAR clipped at 3 cm from the PTV. These parameter
combinations significantly reduced plan optimization times (6).

The patient-specific templates were used to perform an
automated full inverse planning on the pCT. These planning
doses were rigidly transferred to FxCTs to evaluate non-adapted
(NoAd) doses. We transferred the dose to the FxCT rather than
recalculating it, as in our previous work (6) we saw clinically
irrelevant dose differences in the OAR and in the target volumes
when comparing transferred and recalculated plans. Next, the
template was used to perform a new automated full inverse
planning on the FxCT to generate adapted plans using the
clipped MAN, asPREC and asMIM at 3 cm. The resulting
adapted plans are referenced hereafter as MAN_Rp,
asPREC_Rp and asMIM_Rp, respectively. Figure 1 shows an
example patient with the 4 planned doses that were created and
evaluated on the FxCT scan, as well as the contours used to
optimize each different plan.
B C DA

FIGURE 1 | Example patient FxCT scan with the different structure set and dose distribution used for the dosimetric evaluation. (A) Replanned dose optimized using
manual contours (ground truth). (B) Non-adapted dose with planning anatomy rigidly transferred from the pCT (solid lines). (C) Replanned dose optimized using
contours obtained with Precision DIR (solid lines). (D) Replanned dose using contours from MIM DIR (solid lines). For (B–D) manual contours are also overlaid
(dashed white lines).
June 2022 | Volume 12 | Article 910792
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Dosimetric Plan Comparison
The four resulting doses in the FxCT scans (NoAd, MAN_Rp,
asPREC_Rp and asMIM_Rp) were compared based on coverage,
mean and minimum doses of the GTV and PTV, and near-
maximum dose constraints (V35 < 0.5 cc) and mean doses of the
OAR. All four doses were evaluated on the daily MAN contours
during the subsequent dosimetric analysis, although plan
optimization had been done using the planning contours (as in
NoAd) or autocontours (as in asPREC_Rp and asMIM_Rp).
Median and interquartile range (IQR) of these parameters were
abstracted, and were compared using a two-sided Wilcoxon
signed rank test, with a statistically significance defined by a p-
value of < 0.05.

The following plan comparisons were performed. Firstly,
replanned doses (MAN_Rp, asPREC_Rp and asMIM_Rp) were
compared to non-adapted doses (NoAd) to determine the value
of daily plan adaptation with respect to conventional planning.
Secondly, replanned doses optimized using unedited
autosegmented contours (asPREC_Rp and asMIM_Rp) were
compared to replanned doses optimized using MAN, to
determine the impact of inaccuracies in organ delineation on
the replans.

To determine if autocontouring inaccuracies could be
correlated with OAR constraints violations after replanning,
the volumetric differences of auto vs. manual contours (i.e.
VOL_DIFF) were compared between the fractions exceeding
and the fractions not exceeding dose-constraints after
replanning. VOL_DIFF was compared within different
isotropic rings sets at different distances from the PTV: 0-1 vs
1-3 cm, 0-1.5 vs 1.5-3 cm, and 0-2 vs 2-3 cm. A Mann-Whitney
test was performed to assess the differences between rings results.
Statistical significance was set by a p-value < 0.05.
RESULTS

Contour Sets Geometrical Comparison
MAN, asPREC and asMIM contours were compared by means of
DC, MSD, HD and VOL_DIFF on the whole (Table B1) and
clipped OAR (Figure 2 andTable B2), and bymeans ofMIN_DIST
and OVLP between target and OAR volumes (Table 1).

When evaluating the structures as a whole (Table B1), both
algorithms reported high agreements between AUTO and MAN
structures. A median (IQR: Q1, Q3) DC of 0.9 (0.9, 0.9), MSD of 2
(2, 3) mm, HD of 18 (15, 23) mm and VOL_DIFF of -1 (-16, 12) cc
was observed for the combined GIO for asPREC, and a median DC
of 0.9 (0.8, 0.9), MSD of 2 (2, 3) mm, HD of 19 (16, 23) mm and
VOL_DIFF of 13 (-6, 27) cc for asMIM. The liver and kidneys were
the organs reporting best results in both methods, and the bowel the
worst, followed by the stomach and the duodenum.

When evaluating the clipped OAR at different distances from
the PTV (Figure 2 and Table B2), only the stomach, duodenum,
bowel, and the combined GIO structure were considered. AUTO
bowel contours were the structures showing less agreement with
MAN bowels, followed by the duodenum and finally the
stomach. Bowel contours reported the lowest DC, and larger
Frontiers in Oncology | www.frontiersin.org 4
MSD, HD and VOL_DIFF. The GIO structure generally
outperformed individual organ measurements.

The DC in the 4 structures (i.e. stomach, duodenum, bowel and
GIO) decreased closer to the PTV. Depending on the structure
andmethod, DC ranged from 0.7 to 0.9 at 3 cm, and reduced to 0.5
to 0.8 at 0.5 cm distance from the PTV. The MSD showed little
change at the 3 distances from the PTV, oscillating between 1 to 2
mm depending on the structure. The HD decreased for all
structures when evaluated at 3 and 1 cm away of the PTV,
reducing from a median of 18 to 13 mm in the GIO, but
remained similar between 1 and 0.5 cm. Finally, the VOL_DIFF
of AUTO vs. MAN reported similar volumes between MAN and
asPREC. Conversely, asMIM showed positive differences
compared to MAN ranging from 17 to 2 cc between 3 to 0.5 cm.

Generally, asPREC reported higher agreement with MAN
than asMIM. As observed in Figure 2 and Table B2, stomachs
and bowels segmented with MIM were overestimated (i.e.,
positive VOL_DIFF), whereas with Precision both organs were
slightly underestimated (i.e., negative VOL_DIFF). Both
algorithms slightly underestimated the duodenum. Similar
tendencies are observed in Table 1, in which asMIM reported
smaller MIN_DIST to both GTV and PTV compared to MAN
and asPREC, and also reported higher OVLP with the expanded
PTV structure with autosegmented OAR.

Dosimetric Comparison After Replanning
Table 2 summarizes the dosimetric measurements performed in
the non-adapted and adapted plans according to the
different daily contours. After evaluating planned doses
(NoAd) on MAN, 71% (70/98) of the plans resulted in OAR
dose-constraint violations.

Replanning based on MAN, asPREC and asMIM using a
patient template resulted in plans satisfying OAR constraints
(evaluated using MAN) for 93% (91/98), 64% (63/98) and 56%
(55/98) of the fractions. Nonetheless, the V35Gy in unedited
AUTO OARs was significantly lower in all organs compared to
non-adapted plans for both asPREC and asMIM. Compared to
NoAd plans, replanned doses on daily adapted contours (MAN,
asPREC or asMIM) improved V35Gy in all OAR for 100% (98/
98), 95% (93/98) and 84% (82/98) of the fractions. Using
asPREC, the 5 fractions performing worse than NoAd occurred
in 4 patients. Similarly, using asMIM, the 16 fractions
performing worse than NoAD occurred in 14 patients. Median
PTV coverage reduced by 2%, 2.7% and 5.1% compared to
NoAD plans after replanning with MAN, asPREC and
asMIM, respectively.

Table 3 summarizes the differences between replanning using
MAN vs. replanning using AUTO. V35Gy is significantly higher
for the stomach and duodenum in plans based on autocontours
compared to those based on MAN contours. This effect does not
occur in the case of the bowel. Table 3 also shows that the PTV
coverage decreased when using AUTO. This result was not
significant when replanning using asPREC, but was significant
when using asMIM.

Figure 3 shows the dosimetric parameters of adapted plans
based on MAN, asPREC or asMIM vs. non-adapted plans. Dots
located under the unity line (in diagonal) represent the dose
June 2022 | Volume 12 | Article 910792
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distributions that improved compared to non-adapted plans.
Similarly, dots located under the horizontal dashed red line at 0.5
cc on the y-axis represent the amount of adapted dose distributions
that fulfilled the dose-constraints after adapting the plans using the
three different contours sets. Figure 3 visually presents the results
from Tables 2, 3: most plans fulfill the dose-constraints for the
three organs after replanning at the cost of PTV coverage.

The correlation between autocontontour geometrical errors
(assessed using VOL_DIFF of AUTO vs. MAN contours) and
OAR violations (i.e., V35 Gy > 0.5 cc) were reported to be
significant on all OAR within the ring of 0 to 1.5 cm from the
PTV and not significant within the ring from 1.5 to 3 cm
(Table 4). Other ring combinations results can be found in
Supl.Mat (Table B3), but reported similar tendencies to Table 4.
In short, large OAR autosegmentation inaccuracies (i.e., showing
negative VOL_DIFF) occurring close to the PTV, appeared to be
Frontiers in Oncology | www.frontiersin.org 5
correlated with OAR violations after replanning. This correlation
disappeared for large geometrical differences occurring at larger
distances (i.e., within 1.5–3 cm ring from the PTV). Tables 4 and
B3 suggest that recontouring efforts should primarily be
addressed to OAR volumes close to the PTV, as this effort
already solves most dose-constraint violations when replanning
while minimizing the editing time involved.
DISCUSSION

Treatments using ART, especially online adaptive replanning,
heavily rely on autosegmentation for a speedy and efficient
workflow. However, current autosegmentation methods
generally lack accuracy in the abdominal region and need to be
followed by time and labor-intensive manual contour correction.
FIGURE 2 | Boxplots showing the differences between Dice coefficient (DC) [top left], mean surface distance (MSD) [top right], volumetric difference between auto
vs. manual contours (VOL_DIFF) [bottom left] and Hausdorff distance (HD) [bottom right] for structures autosegmented with Precision (asPREC in blue) and MIM
(asMIM in orange). Each column of each subfigure distinguishes the boxplots on each structure (stomach, duodenum, bowel and GIO) and for each organ,
distributions are separated for the clipped structures at 3, 1 and 0.5 cm from the PTV.
June 2022 | Volume 12 | Article 910792
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TABLE 3 | Median and interquartile range (Q1, Q3) plan parameters of the replanned doses based on autosegmented contours using precision (asPREC) and MIM
(asMIM) vs. replanned doses based on manual contours (MAN).

Structure Parameters Replanning

MAN_Rp asPREC_Rp – MAN_Rp r asMIM_Rp – MAN_Rp r

PTV Coverage (%) 82.5 (75.1, 88.7) -0.5 (-3.5, 1.6) NS -2.7 (-7.4, 0.2) <.001
Dmean (Gy) 42.5 (41.5, 43.7) 0.0 (-0.3, 0.6) NS -0.2 (-1.0, 0.4) 0.04
Dmin (Gy) 26.4 (24.6, 28.0) 0.0 (-0.8, 0.8) NS 0.0 (-1.1, 1.0) NS

GTV Coverage (%) 95.6 (90.7, 98.9) -0.1 (-1.9, 1.1) NS -1.6 (-4.0, 0.0) <.001
Dmean (Gy) 45.3 (44.2, 46.1) 0.3 (-0.2, 0.9) .001 0.0 (-0.8, 0.6) NS

Stomach V35 Gy (cc) 0.0 (0.0, 0.0) 0.0 (0.0, 0.1) <.001 0.0 (0.0, 0.3) <.001
Dmean (Gy) 5.2 (3.2, 7.5) 0.0 (-0.3, 0.4) NS 0.0 (-0.4, 0.5) NS

Duodenum V35 Gy (cc) 0.0 (0.0, 0.0) 0.1 (0.0, 0.4) <.001 0.0 (0.0, 0.4) <.001
Dmean (Gy) 9.5 (4.9, 12.1) -0.2 (-0.6, 0.2) .02 -0.1 (-0.4, 0.3) NS

Bowel V35 Gy (cc) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) NS 0.0 (0.0, 0.0) NS
Dmean (Gy) 1.8 (1.0, 2.6) 0.0 (-0.1, 0.1) NS 0.0 (-0.2, 0.1) .01
Frontiers in Oncology
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Statistically not significant (NS) for p > 0.05.
TABLE 1 | Median and interquartile range (Q1, Q3) of the minimum distance (MIN_DIST) from GTV and PTV to OARs (stomach, duodenum and bowel), and the
overlapping volume (OVLP) of the expanded PTV (at 0.5 and 1 cm) and OAR.

Metric Method Stomach Duodenum Bowel

MAN 2.1 (-0.3, 6.9) -0.3 (-0.8, 4.3) 9.4 (3.4, 15.0)
MIN_DIST asPREC 2.3 (-0.6, 7.1) 0.0 (-1.7, 5.4) 9.7 (3.1, 20.8)
GTV – OAR [mm] asMIM 1.2 (-1.5, 6.4) -0.2 (-2.2, 4.6) 8.5 (0.5, 16.9)

(asPREC – MAN) -0.3 (-1.3, 1.3) -0.5 (-1.4, 1.2) 0.4 (-1.5, 4.0)
(asMIM – MAN) -0.9 (-2.9, 0.4) -0.9 (-2.1, 0.4) -0.8 (-3.2, 2.0)
MAN -4.2 (-6.5, 0.4) -6.4 (-7.4, -1.5) 3.1 (-2.6, 8.8)

MIN_DIST asPREC -4.0 (-6.9, 1.1) -6.0 (-8.1, -1.0) 3.3 (-2.4, 14.2)
PTV – OAR [mm] asMIM -5.1 (-7.9, -0.1) -6.5 (-8.6, -1.8) 2.3 (-5.5, 10.8)

(asPREC – MAN) -0.1 (-1.2, 1.3) -0.4 (-1.2, 1.2) 0.6 (-1.3, 3.6)
(asMIM – MAN) -0.8 (-3.1, 0.6) -0.8 (-2.2, 0.4) -0.6 (-3.3, 1.9)
MAN 3.4 (0.6, 8.2) 5.8 (1.5, 14.6) 0.0 (0.0, 1.6)

OVLP asPREC 3.0 (0.5, 9.1) 5.6 (1.2, 16.5) 0.0 (0.0, 1.9)
PTV_0.5cm - OAR [cc] asMIM 4.3 (0.8, 12.1) 6.6 (1.8, 17.3) 0.3 (0.0, 3.4)

(asPREC – MAN) 0.0 (-0.4, 0.8) 0.0 (-1.2, 0.9) 0.0 (-0.4, 0.2)
(asMIM – MAN) 0.2 (-0.3, 2.7) 0.0 (-0.9, 1.5) 0.0 (0.0, 1.4)
MAN 9.5 (4.2, 18.7) 13.3 (4.4, 27.7) 1.7 (0.0, 6.7)

OVLP asPREC 9.2 (2.9, 19.2) 12.2 (4.7, 29.6) 2.4 (0.0, 8.1)
PTV_1cm - OAR [cc] asMIM 10.1 (4.4, 23.9) 13.4 (5.4, 29.7) 2.8 (0.0, 11.9)

(asPREC – MAN) 0.0 (-1.0, 1.5) -0.4 (-2.1, 1.5) 0.0 (-1.2, 1.7)
(asMIM – MAN) 0.3 (-0.5, 3.8) 0.0 (-1.8, 1.9) 0.2 (-0.1, 4.4)
Results are presented for both manual (MAN), and autosegmented contours using Precision (asPREC) and MIM (asMIM), as well as the difference between auto and manual contours.
TABLE 2 | Median and interquartile range (Q1, Q3) plan parameters of the replanned doses based on manual (MAN), and autosegmented contours using precision
(asPREC) and MIM (asMIM) vs. non-adapted planned doses (NoAd).

Structure Parameters No adaptation (NoAd) Replanning

MAN_Rp – NoAd r asPREC_Rp – NoAd r asMIM_Rp – NoAd r

PTV Coverage (%) 83.8 (78.0, 90.7) -2.0 (-4.6, 0.1) <.001 -2.7 (-4.5, -0.6) <.001 -5.1 (-8.4, -2.6) <.001
Dmean (Gy) 43.1 (42.2, 44.1) -0.5 (-1.0, 0.0) <.001 -0.3 (-0.7, 0.0) <.001 -0.7 (-1.2, -0.1) <.001
Dmin (Gy) 26.7 (25.5, 28.2) -0.5 (-1.6, 0.3) <.001 -0.7 (-1.4, 0.1) <.001 -0.5 (-1.5, 0.2) <.001

GTV Coverage (%) 95.7 (91.1, 99.0) -0.1 (-2.1, 0.6) 0.02 -0.4 (-1.9, 0.1) <.001 -1.6 (-5.2, 0.0) <.001
Dmean (Gy) 45.8 (45.0, 46.5) -0.5 (-1.0, 0.0) <.001 -0.1 (-0.7, 0.2) <.001 -0.5 (-1.2, 0.1) <.001

Stomach V35 Gy (cc) 0.2 (0.0, 0.8) -0.2 (-0.8, 0.0) <.001 -0.1 (-0.7, 0.0) <.001 -0.1 (-0.4, 0.0) <.001
Dmean (Gy) 5.4 (3.3, 7.4) -0.1 (-0.5, 0.5) NS -0.0 (-0.5, 0.5) NS -0.1 (-0.5, 0.4) NS

Duodenum V35 Gy (cc) 0.5 (0.1, 1.2) -0.4 (-1.0, 0.0) <.001 -0.2 (-0.7, 0.0) <.001 -0.2 (-0.5, 0.0) <.001
Dmean (Gy) 9.7 (5.7, 12.7) -0.3 (-1.1, 0.3) <.001 -0.4 (-1.0, -0.1) <.001 -0.4 (-0.9, 0.1) <.001

Bowel V35 Gy (cc) 0.0 (0.0, 0.3) 0.0 (-0.3, 0.0) <.001 0.0 (-0.1, 0.0) <.001 0.0 (-0.1, 0.0) <.001
Dmean (Gy) 1.9 (1.3, 2.6) -0.1 (-0.3, 0.1) <.001 -0.2 (-0.3, 0.0) <.001 -0.2 (-0.3, 0.0) <.001
Statistically not significant (NS) for p > 0.05.
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FIGURE 3 | Pair-point comparison of OAR V35Gy parameter on non-adapted vs. adapted plans using manual and autosegmented contours with Precision
(asPREC) and MIM (asMIM) on the stomach (A), duodenum (B), bowel (C). Dashed lines depict OAR dose-constraints (V35Gy < 0.5 cc). In (D), PTV coverage
boxplot comparison of non-adapted (NoAd – red) vs. replanned doses: MAN_Rp (green), asPREC_Rp (blue) and asMIM_Rp (orange).

Magallon-Baro et al. Autocontouring in ART for Pancreatic SBRT
In this study, we have quantified autocontouring quality of two
commercially available software tools in the upper abdomen, and
assessed the use of the resulting contours without further editing
in daily replanning. Replanning with unedited contours resulted
in better OAR sparing than non-adapted plans in 95% and 84%
of plans optimized using Precision and MIM autocontours,
Frontiers in Oncology | www.frontiersin.org 7
respectively. For a large proportion of these fractions, resulting
replanned doses stayed within OAR constraints (64% of plans
when using Precision DIR, and 56% when using MIM DIR).
Although autosegmentation inaccuracies can be located all over
the OARs, the errors located closer to the PTV structure have the
largest impact on OAR doses when replanning. These results
June 2022 | Volume 12 | Article 910792
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TABLE 4 | Median and interquartile range (Q1, Q3) of the volumetric difference of auto and manual contours in fractions violating and non-violating dose-constraints
(V35Gy > 0.5cc) in the stomach, duodenum and bowel after replanning using precision (asPREC) and MIM (asMIM) autocontours.

Structure Method Distance to PTV VOL_DIFF (AUTO – MAN) [cc]

Do not violate(V35 < 0.5 cc) Violate(V35 > 0.5 cc) r

Stomach asPREC Ring 0 – 1.5 cm 0.3 (-1.6, 2.0) -10.9 (-13.6, -3.1) .002
Ring 1.5 – 3 cm -1.9 (-7.2, 2.3) -17.9 (-25.6, 3.4) NS

asMIM Ring 0 – 1.5 cm 1.7 (-0.0, 6.2) -6.2 (-10.2, 1.1) <.001
Ring 1.5 – 3 cm 1.0 (-4.2, 4.6) -1.0 (-11.7, 8.1) NS

Duodenum asPREC Ring 0 – 1.5 cm 0.2 (-2.3, 2.8) -2.9 (-6.1, -1.1) .001
Ring 1.5 – 3 cm -0.1 (-5.6, 1.7) 0.2 (-2.2, 4.8) NS

asMIM Ring 0 – 1.5 cm 0.5 (-2.2, 2.7) -3.0 (-7.4, 0.5) .007
Ring 1.5 – 3 cm -0.4 (-7.1, 2.1) 0.3 (-6.7, 2.3) NS

Bowel asPREC Ring 0 – 1.5 cm 0.5 (-1.5, 6.4) -7.8 (-11.9, -4.9) <.001
Ring 1.5 – 3 cm 0.5 (-10.7, 8.2) -6.0 (-10.1, -2.8) NS

asMIM Ring 0 – 1.5 cm 1.0 (-0.8, 12.0) -6.2 (-6.6, -3.4) .017
Ring 1.5 – 3 cm 6.6 (-3.7, 27.9) 2.5 (1.3, 4.5) NS

Results are presented for the contour evaluated in the ring from 0 to 1.5 cm from the PTV vs. the ring from 1.5 to 3 cm from the PTV. Statistically not significant (NS) for p > 0.05.

Magallon-Baro et al. Autocontouring in ART for Pancreatic SBRT
suggest that manual editing of autosegmented OAR can be
avoided in many fractions, but if applied, it can be limited to
the region closest to the PTV to reduce the overall time of the
ART workflow when treating patients with LAPC. Our research
suggests that a cut-off limit of 1.5 cm could be sufficient, but an
exact cut-off point requires further research and will be treatment
protocol dependent.

A similar study was recently published using unedited
contours for daily online ART in prostate patients using the
Ethos system (32). In this study, the authors evaluated the gain of
adapted plans with unedited contours vs. non-adapted plans.
They report that 96% of their fractions would have required
manual editing of the generated contours, but that 100% of the
fractions achieved higher CTV coverage based on autocontours
than using non-adapted plans. Similar to our work, the authors
show that autocontouring methods are still inaccurate and
require manual editing, but they also show that replanning on
unedited contours is already beneficial compared to treating
patient with non-adapted plans.

The added value of our work is that we also evaluated the
dosimetric differences between adapted plans using manually
corrected contours vs. using autocontours, hence, we also
measured the potential gain in plan quality if autocontours are
edited before replanning.

Regarding the geometrical analysis performed in our data, as
expected, there were differences between manual and
autocontours in the low and high dose region (within 3 cm
from the PTV). Dice coefficient degraded when getting closer to
the PTV. This is in part a natural expectation from this metric, as
reports the overlapping ratio between 2 structures. The smaller
the evaluated volumes, the more impact segmentation
inaccuracies have. The Hausdorff distance measurement,
reporting the maximum distance between 2 volumes, remains
constant at different distances from the PTV, what reassures that
there are relevant inaccuracies occurring close to the tumor.

Generally, contours propagated by Precision DIR showed a
slightly higher agreement with manual contours than with MIM
DIR, which tended to overestimate OARs (Figure 2, Table B2),
and get closer to the tumor (Table 1). Consequently, asMIM_Rp
Frontiers in Oncology | www.frontiersin.org 8
dose distributions more often exceeded dose-constraints and lost
more PTV coverage than asPREC_Rp. This difference between
autocontour quality might be because Precision DIR optimizes
the deformation vector field using localized patches within the
image instead of the global image as done by MIM DIR (33–35)
(see Supl.Mat-A).

Daily recontouring has traditionally relied on intra-patient
contour propagation (as in this study) or atlas-based methods
also using DIR (2, 3). Alternative autosegmentation methods are
described in the literature, including artificial intelligence (AI).
AI-based methods have shown improved accuracy and efficiency
compared to traditional methods while being computationally
very fast (36, 37). Several studies have shown improvements in
different treatment sites (e.g. head-and-neck (38–40), prostate
(39, 41), rectum (42), whole body (43)). However, abdominal
organs present additional challenges including strong
interpatient variability, bowel loop displacements and hollow
organs, which causes AI studies still report similar results to
those achieved in our current study (10, 44–46). Additionally, all
studies focus on reporting autosegmentation accuracy on whole
organ structures, whereas our results suggest mainly the accuracy
close to the target influences plan quality.

Regarding replanning, manually corrected contours achieved
the best results in OAR sparing compared to non-adapted plans
(100% FxCT). However, replanning directly on unedited
structures also improved OAR sparing for the large majority of
fractions: 95% (93/98 FxCT) for Precision, and 84% (82/98
FxCT) for MIM. The corresponding 5 and 16 fractions in
which plans based on autocontours increased OAR dose
compared to non-adapted plans belonged to 4 and 14 patients,
respectively. When looking further into the cases in which this
phenomenon occurred (see two example cases in Figure C1 in
Supl. Mat.), we noticed that manual contours were closer to the
PTV than autosegmented contours, resulting in large
inaccuracies close to the PTV for AUTO. Replanning on the
autosegmented contours results in large dose violations, as the
manual contours lie in the high dose area. Nonetheless, this poses
a relatively small dosimetric risk for the patient especially taking
into account that we analyzed single fractions rather than the
June 2022 | Volume 12 | Article 910792
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total treatment dose, in which the effect of dose violations
occurring in one single fraction, as in the case for the majority
of our reported violations, is likely to be reduced.

Although OAR dose decreased when using unedited
contours, the number of fractions obeying OAR constraints
reduced compared to plans based on corrected contours. Also,
PTV coverage generally decreased in fractions needing
replanning. This similarly occurred when using MAN or
asPREC, and slightly more often when using asMIM. Mostly,
this was explained due to daily OAR moving closer to the high
dose region or an increased OAR overlap with the PTV.

Our proposed implementation of ART is based on CT images
and uses commercially available software. Although we are still in
process of clinically implementing online adaptive replanning, we
have performed end-to-end tests to mimic a clinical workflow. A
complete adaptive procedure can be completed within 45 min,
excluding treatment delivery, with room for improvement in
delineation time. Similar to other publications, depending on the
treatment site, editing of the contours on the FxCT – even when
limited to a distance of 3 cm from the PTV - can take up a
considerable amount of time in the entire procedure (around 10
min (4, 22, 27, 47)). The time of our total procedure is however in
line with procedures performed on the MR-Linac (9, 12, 27), but is
considerably longer than an online workflow on the Ethos system
(22, 23). An inherent advantage of CyberKnife treatments is the
excellent intra-fraction, both respiratory and non-respiratory,
motion tracking. Currently this is lacking in the MR-Unity and
Ethos systems leading to a possible increase in target size. The
MRIdian is compensating for intra-fraction respiratory motion by
means of gating.

Another limitation of our work is that we have a relatively
small cohort group for this study. A validation involving an
independent dataset potentially from other institutes should be
performed to verify the relevance of our findings in pancreatic
cancer. Although MR-Linacs and the Ethos systems rely on
different imaging modalities, we believe our results could be
transferred to other systems. For instance, similar trends were
already observed in the work of Moazzezi et al. about online ART
using unedited contours in prostate patients using the Ethos
system (32). However, the complexity of the procedure might
increase as the amount of elements involved also increases, e.g.
generating correct Hounsfield Units.

Finally, intrafraction OARmotion has not been accounted for
in this study. In our clinic, we use Synchrony respiratory motion
tracking to mitigate the effect of intrafraction motion of the
target, of which the accuracy has been reported elsewhere (25).
Generally, intrafraction OAR variations while tracking are
expected to be smaller than interfraction variations. Replans
based on unedited contours already correct for interfraction
OAR variations and generally outperform non-adapted plans
in this study. We believe intrafraction OAR variations will have a
smaller impact on the replans.

In conclusion, autosegmentation methods applying contour
propagation after DIR in the abdominal region result in contours
requiring manual correction. However, replanning on the
unedited daily contours generally resulted in higher organ
Frontiers in Oncology | www.frontiersin.org 9
sparing than treating with a conventional SBRT scheme. In the
majority of fractions, it even resulted in plans obeying the tight
OAR dose constraints of our clinical protocol. In a large number
of fractions, manual editing of automatic contours could,
therefore, be avoided or at least restricted to contour sections
in close proximity to the PTV, reducing the time required for
online adaptive treatments for pancreatic cancer patients.
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