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and Software Engineering College, Chongqing University, Chongqing, China

Objective: To develop and validate a noninvasive radiomic-based machine learning (ML)
model to identify P504s/P63 status and further achieve the diagnosis of prostate cancer (PCa).

Methods: A retrospective dataset of patients with preoperative prostate MRI examination
and P504s/P63 pathological immunohistochemical results between June 2016 and
February 2021 was conducted. As indicated by P504s/P63 expression, the patients
were divided into label 0 (atypical prostatic hyperplasia), label 1 (benign prostatic
hyperplasia, BPH) and label 2 (PCa) groups. This study employed T2WI, DWI and ADC
sequences to assess prostate diseases and manually segmented regions of interest
(ROIs) with Artificial Intelligence Kit software for radiomics feature acquisition. Feature
dimensionality reduction and selection were performed by using a mutual information
algorithm. Based on screened features, P504s/P63 prediction models were established
by random forest (RF), gradient boosting decision tree (GBDT), logistic regression (LR),
adaptive boosting (AdaBoost) and k-nearest neighbor (KNN) algorithms. The performance
was evaluated by the area under the ROC curve (AUC) and accuracy.

Results: A total of 315 patients were enrolled. Among the 851 radiomic features, the 32
top features were derived from T2WI, in which the gray-level run length matrix (GLRLM)
and gray-level cooccurrence matrix (GLCM) features accounted for the largest proportion.
Among the five models, the RF algorithm performed best in general evaluations
(microaverage AUC=0.920, macroaverage AUC=0.870) and provided the most
accurate result in further sublabel prediction (the accuracies of label 0, 1, and 2 were
0.831, 0.831, and 0.932, respectively). In comparative sequence analyses, T2WI was the
best single-sequence candidate (microaverage AUC=0.94 and macroaverage
AUC=0.78). The merged datasets of T2WI, DWI, and ADC yielded optimal AUCs
(microaverage AUC=0.930 and macroaverage AUC=0.900).
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Conclusions: The radiomic-based RF classifier has the potential to be used to evaluate
the presurgical P504s/P63 status and further diagnose PCa noninvasively and accurately.
Keywords: P504s/P63, machine learning, MRI, immunohistochemistry, prostate cancer
1 INTRODUCTION

Prostate cancer (prostate carcinoma, PCa) is the most prevalent
non-cutaneous malignancy among males worldwide, with
approximately 1.4 million new diagnosed cases according to
GLOBALCAN 2020 (7.3% of all new cancer cases) (1). In 2021,
an estimated 248,530 new cases of PCa and 34,130 deaths
occurred in the USA alone (2). Moreover, one study reported
an excess of 8.4 billion euros (7% of overall cancer costs) related
to the disease (3), imposing immense health and economic
burdens worldwide.

Protein-specific antigen (PSA) screening has traditionally
been the main PCa screening approach and has facilitated the
early detection of PCa in recent decades. Nevertheless, benign
prostatic hyperplasia (BPH), prostatitis and other noncancerous
diseases may also cause an elevate in PSA serum levels. A large
percentage of false-positive results of PSA, leading to
unnecessary biopsies and healthcare costs, have plagued both
clinicians and suspected PCa patients (4).

Till such time, the golden standard of PCa diagnosis remains
a pathological one. However, it’s tough for pathologists to make a
definitive diagnosis just based on nucleus and cytoplasm
morphological discrepancies, especially in some ambiguous
cases. In surgical pathology practices, immunohistochemistry
(IHC) staining has long been acknowledged as an essential tool
for assisting in the correct diagnosis and subclassification of
malignant neoplasms, which provided much information about
diseases such as immune microenvironment and dysregulated
gene products at the sub-cellular level. In recent years, IHC
biomarkers, especially P63 and alpha-methyl acyl-CoA racemase
(AMACR, P504s), have attracted growing attention and been
used widely in clinical practice. PCa shows the absence of the
basal cell layer compared to benign prostate tissues. While P63,
expressed by the basal cells, could be regarded as a kind of
negative marker of PCa. On the other hand, P504s, an enzyme
involved in fatty acid metabolism, have been proved expression
upregulated in 97–100% of PCa (5, 6). Therefore, P504s can
function as a positive biomarker for diagnosis of prostate
cancer. The combined application of P504s and P63 have
efficiently promoted advances in prostatic disease diagnosis.
The International Society of Urologic Pathology (ISUP)
recommended utilizing a double cocktail combining P504s and
P63 for the workup of “suspicious prostatic adenocarcinoma
foci” as well (7). Patients would be classified into 4 different
diagnosis categories according to the staining results: 1) benign
lesion (P504s negative/P63 positive); 2) prostate cancer (P504s
positive/P63 negative); 3) high-grade prostatic intraepithelial
(HGPIN) or atypical adenomatous hyperplasia (AAH,
P504s positive/P63 positive); and 4) atypical small acinar
2

proliferation, suspected to be malignant (ASAP, P504s
negative/P63 negative) (8).

However, it is invasive to obtain histopathological specimens
for detection of P504s/P63 through biopsy or transurethral
resection of the prostate (TURP). And patients would
experience different degrees of anxiety and complications such
as bleeding, infection and erectile dysfunction (9, 10). Although
there were some efforts to eliminate these influence, for example,
G.M. Busetto et al. demonstrated a dual 5a-reductase inhibitor
could help decrease TURP bleeding loss in large prostate (>50ml)
(11), the underlying concerns had not been fully resolved.
Development of a new and precise but noninvasive method for
predicting immunohistochemical results is necessary.

Magnetic resonance imaging (MRI) has become an integral
part of PCa diagnostic procedures due to its satisfactory soft
tissue contrast and multidimensional information. The most
recent PCa guidelines (12) recommended utilizing routine
prebiopsy multiparametric MRI (mpMRI) to localize
suspicious targeted areas. However, subjective elements
exist in MRI experts’ visual assessments despite the newly
published Prostate Imaging Reporting and Data System version
2.1 (PI-RADS V2.1) (13) promoting a more standardized
reporting quality. Moreover, the diagnostic performance of
MRI does not remain at the pathological diagnosis level.
Delightfully, advances in radiomics and machine learning
(ML) technologies offer potentially promising solutions (14),
which are expected to objectively and noninvasively predict
immunohistochemical results of pathology from image-
extracted features. In fact, some reports of radiomics have
indeed predicted molecular profiles, which are clinically
important. For instance, Chad Tang et al. (15) first predicted
non-small-cell lung cancer prognoses via a radiological model of
immunopathological information based on the relationship
between the tumor immune microenvironment and survival. Li
Jing et al. (16) also reported that high-order radiological features
based on T2 fluid-attenuated inversion/recovery (FLAIR) MRI
used to predict IHC glioma features could provide personalized
treatment guidance for patients. In recent years, some studies
have demonstrated that MRI parameters such as the apparent
diffusion coefficient (ADC) have strong correlations with the
expression of P504s, Ki-67 and HIF-1a in PCa patients. In
addition, Shukla-Dave et al. found that MRI combined with
molecular profiles such as Ki-67 provided incremental value to
clinical variables regarding PCa recurrence prediction (17–19).
Nonetheless, no ML-related studies have yet been reported that
predict prostate IHC markers such as P504s and P63 expression.

We hypothesized that the signal intensity differences in MRI
might reflect the subtle changes in microstructures in
histopathology. Exploring the potential predictive value of MRI
June 2022 | Volume 12 | Article 911426
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radiomics in pathological indices could contribute to the
interpretability of ML models, improve MRI analyses, and
reveal the connections between tumor microenvironment
changes and MRI imaging. Thus, based on MR radiomic
features, we constructed ternary classification models with five
different ML techniques to identify the P504s/P63 status to
further achieve the goal of noninvasive and accurate
PCa diagnosis.
2 MATERIALS AND METHODS

2.1 Population
The institutional review board of our hospital approved this
retrospective study and waived the requirement for informed
consent (decision number (2019) 289). Patients who underwent
prostate MRI scanning between June 2016 and February 2021
were screened for inclusion. The specific inclusion and exclusion
criteria are described in Figure 1. Of the 347 eligible patients, 32
were excluded based on the exclusion criteria, leaving 315
patients involved in this study.

2.2 MRI Protocol
MR images were acquired by using a 3.0-T MRI scanner
(MAGNETON Prisma; SIEMENS A Tim Dot System) and an
8-channel phased-array software coil. The scan covered the
prostate gland, seminal vesicle glands and as many adjoining
Frontiers in Oncology | www.frontiersin.org 3
structures as possible. The pertinent sequences for the study were
the axial fat suppression (FS) T2-weighted imaging (T2WI)
sequences with the following imaging parameters: repetition
time (TR): 3090 ms; echo time (TE): 77 ms; slice thickness:
3 mm; number of excitations (NEX): 2; field of view (FOV):
20×20 cm; and acquisition matrix: 320 ×240. Diffusion-weighted
imaging (DWI) sequences were obtained in the axial plane,
where the orientation and location were identical to those
prescribed for axial FS T2-weighted MRI, and the data were
obtained by using axial echoplanar imaging (EPI) sequences as
follows: TR: 3800 ms; TE: 84 ms; slice thickness: 3 mm; NEX: 2;
FOV: 20×20 cm; acquisition matrix: 118 ×118; and b values: 1400
s/mm2. ADC maps were generated by using a designated
workstation (Advanced Workstation 4.6; GE Medical
Systems; FUNCTOOL).

2.3 IHC Status
All patients underwent a transrectal ultrasound (TRUS)-guided 12-
core systematic biopsy performed by experienced urologists within
3 months after the MRI examinations. Biopsy tissue cores were
individually labeled according to their locations and analyzed by an
experienced uropathologist. IHC staining was performed with the
following antibodies: anti-P63 (rat monoclonal [MAB-0694],
MX013, Maixin) and anti-P504s (rabbit monoclonal [RMA-0546],
13H4, Maixin). The same genitourinary pathologist assessed P63-
positive expression based on the linear and continuous nuclear
staining of basal cells and P504s-positive expression based on the
FIGURE 1 | Flow chart of the patient selection process.
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uninterrupted, dark, cytoplasmic or apical granular staining of
prostate epithelial cells (20). Patients were classified into 3 groups
according to their P504s/P63 staining results as described below:
label 0: both high-grade PIN or AAH (P504s positive/P63 positive)
and ASAP (P504s negative/P63 negative); label 1: benign lesion
(P504s negative/P63 positive); and label 2: prostate cancer (P504s
positive/P63 negative).

2.4 Radiomic Feature Extraction
Two radiologists who have worked in abdominal imaging for more
than 10 years reviewed the MRI results, including the T2WI, DWI
and ADC images. Hyperintense signal regions on DWI (b value =
1400) and hypointense signal regions on T2WI and ADC were
regarded as tumor areas. In cases of multifocal prostate cancer, only
the largest lesion was analyzed. All disagreements were discussed
until a consensus was reached. Subsequently, the radiologists
finished the three-dimensional segmentation. Feature extraction
processes for the benign prostatic hyperplasia (BPH) transitional
zone and suspicious PCa areas were performed with AK software
(Artificial Intelligence Kit, GE Healthcare). A total of 107 features
were obtained from a single sequence of each patient: 18 based
on first-order statistics, 14 based on 3D shapes, and 75 based
on textures. The texture features were further subdivided into
5 categories: 24 belonged to the gray-level cooccurrence matrix
(GLCM), 16 belonged to the gray-level run length matrix (GLRLM),
16 belonged to the gray-level size zone matrix (GLSZM), 14
belonged to the neighboring gray tone difference matrix
Frontiers in Oncology | www.frontiersin.org 4
(NGTDM), and 5 belonged to the gray-level dependence matrix
(GLDM). Moreover, considering that a wavelet provides spatial and
frequency representations of the corresponding signal, features
preprocessed with the wavelet filter were also extracted from the
images. Hence, a total of 851 features were extracted from the
T2WI, DWI and ADC images of each patient.The patients were
split into a training set (n = 252 patients) and a testing set (n= 59
patients). Feature selection and dimensionality reduction were
performed exclusively on the training set. The entire technical
flow chart of this study is depicted in Figure 2.

2.5 Construction of Immune Radiomic-
Based Diagnostic ML Models
In this study, we integrated the radiomic features retained from
the T2WI, DWI, and ADC images into composite diagnostic
models for P504s/P63 prediction via immune signatures by
applying ML algorithms in the derivation cohort. Five ML
algorithms, namely, 1) random forest (RF), 2) logistic
regression (LR), 3) gradient boosting decision tree (GBDT), 4)
k-nearest neighbor (KNN), and 5) adaptive boosting (AdaBoost)
algorithms, were independently applied to select and combine
multiple covariates from the candidate features. An algorithm
called k-means clustering with the synthetic minority
oversampling technique (k-Means-SMOTE), was used to
reduce noise and further boost the performance of the
classifiers. The final optimal models were then trained on the
selected covariates and the optimized algorithm parameters.
FIGURE 2 | The flow chart of this study.
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2.6 Statistical Analysis
Statistical analysis software (SPSS, version 25; IBM Corporation,
Armonk, NY, USA) was used for patient characteristics data
analysis with p-value < 0.05 indicating statistical significance.
The distributions of continuous variables were checked for
normality via the Shapiro-Wilk test. Normally distributed
variables are shown as the mean ± standard deviation (SD),
and nonnormally distributed variables are expressed as the
medians with interquartile ranges in parentheses (25th and
75th percentiles). Variance analyses and homogeneity
comparisons among the groups were made with one-way
analysis of variance (ANOVA).

The radiomic features and models’ performance statistical
analysis was implemented by using the Pycharm platform and
Python SCIKIT-LEARN (version 0.18.1). The mutual
information (MI) feature selection algorithm was used to
identify and rank order the top 32 radiomic features that
distinguish three labels within the training set. The mutual
information calculation formula is as follows:

I X;Yð Þ =∑
x∈X
∑
y∈Y

P x, yð Þlog P x, yð Þ
P xð ÞP yð Þ

In this study, X represents the selected radiological characteristics,
and Y represents the final characteristic coefficient.

To ensure generalizability, the five ML models were
optimized through five times repeated 5-fold cross-validation.
Algorithms performance was assessed using the receiver
Frontiers in Oncology | www.frontiersin.org 5
operating characteristic (ROC) curves and areas under the
ROC curves (AUCs). And further analyses included
contingency tables for assessing sensitivity, specificity, the
Youden index, positive and negative predictive values (PPVs
and NPVs, respectively), and Brier scores.
3 RESULTS

3.1 Patient Characteristics
A total of 315 patients (average age: 70.56 ± 8.337; range: 42~89)
were involved in this study, among which 51 were classified as 0
(average age: 70.784 ± 7.412), 133 as label 1 (average age: 69.421 ±
8.793) and 131 as label 2 (average age: 71.626 ± 8.108). The three
groups showed no significant differences in age (F=2.351;
P=0.097> 0.05).

3.2 Feature Extraction and Selection
Features were screened from the merged dataset (comprising
T2WI, DWI and ADC images) according to the mutual
information method. A total of 32 modeling features derived
from the T2WI images were finally adopted, of which 4 were
original features and 28 were wavelet features. Twenty-seven
texture features (9 GLRLM, 7 GLCM, 6 GLDM and 5 GLSZM)
and five first-order statistics were obtained. The metrics for the
features of the merged dataset model are summarized in
Figure 3. The retained features are listed in descending order
of their variable contributions.
FIGURE 3 | Sorted element mutual information values.
June 2022 | Volume 12 | Article 911426
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3.3 ML Models for P504s/P63 Prediction
3.3.1 ML Algorithm Comparison
The overall prediction effectiveness of the five models is
displayed in Figure 4, and the RF algorithm yielded a better
AUC (microaverage AUC=0.920, macroaverage AUC=0.870)
than the GBDT(microaverage AUC=0.910, macroaverage
AUC=0.870), LR(microaverage AUC=0.890, macroaverage
AUC=0.840) , AdaBoos t (microaverage AUC=0.890 ,
macroaverage AUC=0.870) and KNN algorithms (micro-
average AUC=0.890, macro-average AUC=0.860). As
summarized in Table 1, the RF algorithm also obtained the
Frontiers in Oncology | www.frontiersin.org 6
best overall estimated values (the recall, F1 score and accuracy of
the RF were 0.740, 0.750 and 0.850, respectively).

We also conducted sublabel prediction performance analyses
on the different algorithms. Table 2 illustrates the forecasting
indices of the five models, and all the models achieved
satisfactory label classification performance (the accuracies of
label 0, 1, and 2 were 0.831, 0.831, and 0.932, respectively).

As shown in Figure 5, additional verification analyses were
performed on an independent validation cohort (N=59), and the
results showed that the highest accuracy was achieved by the RF
algorithm, which was consistent with the performance on the
B

C D

E

A

FIGURE 4 | ROC curves of five ML prediction models. (A) ROC curve of RF. (B) ROC curve of AdaBoost. (C) ROC curve of GBDT. (D) ROC curve of LR. (E) ROC
curve of KNN. The solid line represents the prediction efficiency of each group in the corresponding model. Dotted lines represent the overall prediction performance
of the models, including the macro-average ROC curves and micro-average ROC curves.
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training cohort (the accuracies of the validation cohort and
training cohort were 84.7% and 85.0%, respectively).

3.3.2 Comparative Sequence Datasets
Based on the best model RF mentioned above, we compared the
performance of the single T2WI, DWI and ADC sequence
features with that of the merged datasets. As shown in
Figure 6, T2WI was the best-performing candidate among the
single sequences (microaverage AUC=0.94; macroaverage
AUC=0.78), but T2WI, DWI and ADC worked best under the
merged condition (microaverage AUC=0.930; macroaverage
AUC=0.900, accuracy=0.850). The numerical results
representing the effects of different datasets are summarized in
Table 3. The merged datasets displayed optimal precision, recall,
F1 scores and accuracy (0.84, 0.85, 0.88, and 0.85, respectively).
4 DISCUSSION

In this study, radiomic signatures were extracted from MR
images to construct ternary ML classification models for
predicting the P504s/P63 status, which shed new light on the
diagnosis of prostate disease.

To the best of our knowledge, this is the first report to achieve the
goal of a noninvasive and accurate PCa diagnosis method via an
Frontiers in Oncology | www.frontiersin.org 7
MRI-based ML approach for IHC biomarker prediction. The
constructed classifiers exhibited good predictive ability between
label 1 (P504s-/P63+: BPH) and label 2 (P504s+/P63-: PCa) states;
notable, the RF algorithm performed especially well (label 1:
sensitivity: 0.917, specificity: 0.857; label 2: sensitivity: 0.962,
specificity: 0.909, respectively). This signifies that our models
possess good diagnostic ability for PCa and BPH and decrease the
number of required biopsies. Yi-YanZhang et al. (21) reported aPSA
density (PSAD)-relatedMLmethod that enhanced the detection rate
of PCa (sensitivity: 0.866; specificity: 0.781), while our P504s/P63-
related ML technique further improved upon this diagnostic
performance. However, we found that the models showed good
specificity and accuracy (0.980, 0.831) but poor sensitivity (0.333) for
label 0. The reason for this phenomenonmight be as follows. On the
one hand, the relatively small sample size of the label 0 group for
model training resulted in a lower true-positive rate (i.e., sensitivity).
On the other hand, label 0 represented an atypical hyperplasia group,
ranging between benign andmalignant tumors. Histopathologically,
atypical hyperplasia does not exhibit classic heterogeneity, while
from the imaging perspective, atypical nodular hyperplasia can also
cause restricted water diffusion (22), leading to difficulties in case
identification and misdiagnosis.

In our study, 32 meaningful radiomic features were selected: 27
texture features and 5 first-order statistics. Of these 27 prominent
texture contributors, 7 were GLCM features and 9 were the GLRLM
TABLE 2 | Interlabel predictive performance of five ML models.

Models label Sensitivity Specificity PPV NPV Youden index Accuracy

RF 0 0.333 0.980 0.750 0.891 0.313 0.831
1 0.917 0.857 0.815 0.938 0.774 0.831
2 0.962 0.909 0.893 0.968 0.871 0.932

GBDT 0 0.222 1.000 1.000 0.877 0.222 0.881
1 0.875 0.829 0.778 0.906 0.704 0.847
2 0.962 0.848 0.833 0.966 0.810 0.898

LR 0 0.222 0.900 0.286 0.865 0.122 0.797
1 0.750 0.829 0.750 0.829 0.579 0.797
2 0.961 0.909 0.893 0.968 0.871 0.932

AdaBoost 0 0.333 0.920 0.429 0.885 0.253 0.831
1 0.792 0.857 0.792 0.857 0.649 0.831
2 0.962 0.909 0.893 0.968 0.871 0.932

KNN 0 0.444 0.900 0.444 0.900 0.334 0.831
1 0.750 0.886 0.818 0.838 0.636 0.831
2 0.962 0.909 0.893 0.968 0.871 0.932
Ju
ne 2022 | Volume 12 | Arti
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; GBDT, gradient boosting decision tree; LR, logistic regression; KNN, k-
nearest neighbours.
TABLE 1 | Results obtained by different ML algorithms.

Models AUC Brier-score Precision Recall F1-score Accuracy

Micro-average Macro-average

RF 0.920 0.870 0.407 0.820 0.740 0.750 0.850
GBDT 0.910 0.870 0.441 0.870 0.690 0.690 0.800
LR 0.890 0.840 0.746 0.640 0.640 0.640 0.760
AdaBoost 0.890 0.870 0.610 0.750 0.700 0.700 0.800
KNN 0.890 0.860 0.610 0.720 0.720 0.720 0.690
AUC, area under the curve; RF, random forest; GBDT, gradient boosting decision tree; LR, logistic regression; KNN, k-nearest neighbours.
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features. These GLCM and GLRLM features represented
gray value changes between pixels and could reflect the complexity
and heterogeneity of lesions (23), demonstrating a great ability
to differentiate between benign, intermediate, and malignant
tumors because the ma l i gnant tumor s had more
Frontiers in Oncology | www.frontiersin.org 8
inhomogeneous internal structures than the benign and intermediate
lesions (24). Moreover, cancer cells have rapid and overcrowded
growth patterns as well as an insufficient supply of blood and
oxygen, which causes cell hypoxia and the formation of various types
of neovasculature. Additionally, different levels of tumor
FIGURE 5 | The recognition effects of five prediction models. The information above the horizontal axis represents the model prediction grouping, and that below
this axis represents the actual grouping. Purple represents the correct prediction group, and blue represents a case of misrecognition by the corresponding model.
FIGURE 6 | ROC curves of the RF models established by T2WI (red), DWI (blue), ADC (green) and merged sequences (black). The corresponding areas under the
micro-average ROC curves were 0.94, 0.92, 0.92, and 0.93, respectively. The corresponding areas under the macro-average ROC curves were 0.78, 0.84, 0.84
and 0.90, respectively.
June 2022 | Volume 12 | Article 911426
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aggressiveness result in different manifestations. All of these
characteristics displayed significant spatial differences. Histogram
analysis (i.e., first-order radiomics) is an approach that captures the
distribution of individual voxel value intensities that may quantify
tumor heterogeneity in a routine MRI volume of interest (VOI), and
some tumor studies have suggested that such analyses indeed
assisted with the evaluation of diagnoses, biologic aggressiveness and
prognoses (25–28). However, the performance gains of models built
with first-order statistics are relatively limited when the
spatial variations between voxels are not considered. Texture
parameters maximize the information extracted from medical
images to reflect disease relations from cell morphology
microheterogeneity and molecular expression to imaging
microheterogeneity, this was proven to be reliable in distinguishing
malignant from benign tissue and useful for improving the predictive
ability of classification techniques in multiple studies (29, 30).

Additionally, this study revealed the strengths of T2WI in
biomarker prediction because all highly ranked radiomic features
were derived fromT2-weighted images; this finding was consistent
with that of a prior study (31). Our previous study (32) also found
that the entropy derived from T2WI and the kurtosis, skewness,
uniformity, and entropy derived from ADC maps showed a good
ability to differentiate between high-grade PCa (HGPCa) and non-
high-grade PCa (NHGPCa). Similar to ourfindings, the results of P.
Xing et al. (33) also demonstrated that whole-volume histogram
and texture analyses of T2WI and ADCs could provide efficient
evidence for clinical decision making. However, Bonekamp et al.
showed that added value comes fromADCs rather thanT2WI (34).
Although the underlying causes were unknown, we speculated the
following. First, different MRI parameters have different emphases:
quantitativeADCmaps, resulting fromthe cell density andmobility
of water molecules around lesion changes, are commonly used to
estimate the malignancy degrees of tumors and risk-stratify
patients. However, P504s/P63 represent the structures and
expression product transformations in prostate epithelial cells
and basal cells, respectively. Therefore, T2 is more likely to
represent structural changes. Second, clearly resolved T2WI
images might provide more details about diseases. Moreover, we
applied different feature selectionmethods and procedures, leading
to different radiomic features.

For the five final constructed ML predictive models, the RF
algorithm (accuracy: 0.85; F1 score: 0.75; recall: 0.74) was superior to
the other four algorithms (the GBDT, LR, AdaBoost and KNN).
This finding was consistent with that of P. Chiu et al. (35). An RF
algorithm (36) builds each tree independently in parallel and
integrates the results at the end, contributing to noise reduction
and prediction accuracy improvement. Some studies (37) have
Frontiers in Oncology | www.frontiersin.org 9
suggested that an RF algorithm is a stable, popular and efficient
decision tree algorithm in practical classification applications. In
contrast to our study, Muhammad Arif et al. (36) found that a linear
model and the KNN algorithm had better validity. The
inconsistencies in the literature may occur under different model
application conditions, as further discussed below. LR (38) involves
techniques for determining the effects of multiple independent
variables on a dependent variable. Logistic sigmoid units are
typically used to output (class) binary classifiers rather than
ternary classifications, while KNN relies on several nearest
neighbor points for classification and is known to work reliably in
smaller datasets, as has been shown in previous studies (39).
However, KNN may not be suitable for classification in this case
since potentially significant impacts may be caused by the k value,
the distance calculation and appropriate predictors (40). Finally, ML
algorithms are sensitive to the input sample size. The GBDT (41)
and AdaBoost (42) both require massive data volumes for training
and correction based on feedback. The small sample size in the
present study may explain why the GBDT and AdaBoost methods
generally achieved moderate performance. Therefore, it seems more
reasonable to select specific algorithms for target study situations.

In addition to the influencing factors mentioned above, the
background of disease (e.g., inflammation) and race should be
taken into consideration. Some patients included in the study
concurrent with prostatitis. Although the relationship among
prostatitis, BPH and PCa remains inconclusive, some studies
indicated that these disorders promote each other. Prostatitis
patients were more likely to suffer with BPH, and prostatitis or
BPH contributing to a rising risk of PCa (43). In some cases, the
effects caused by these changes and consequent treatments (44)
were indistinguishable from suspected cancerous lesions at MRI.
P504s and P63 indicators couldn’t make a more detailed analysis
in prostatitis, either, which could potentially cause confusion to
the model. On the other hand, the differences in markers
expression of differing racial cohorts might lead to variable
results. Hence, our models may not applicable to ethnically
diverse populations, as seen in other malignancies (45).

This study had several limitations. First, the final were based on
biopsy materials rather than radical prostatectomy, which might have
induceda samplingerror. Second,P504s+/P63+andP504s-/P63-were
merged into one group (label 0) instead of being discussed separately.
Third, the models didn’t discriminate between clinically significant
PCa (csPCa) and not-csPCa, the predictions focus on the integrity of
the basal membrane and expression of P504s by malignant cells.
What’s more, in terms of PCa, the region of interest (ROI) was not
subdivided into transitional and peripheral zone lesions. Finally, this
study was based on a single-center and small-scale population and
TABLE 3 | Results obtained by the RF models constructed with different datasets.

Datasets AUC Precision Recall F1-score Accuracy

Micro-average Macro-average

T2WI 0.940 0.840 0.790 0.800 0.790 0.800
DWI 0.920 0.840 0.800 0.830 0.800 0.830
ADC 0.920 0.780 0.800 0.810 0.800 0.810
Merge 0.930 0.900 0.840 0.850 0.880 0.850
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some clinical features such as demographic, racial, and biochemical
characteristics were not included.
CONCLUSION

This radiomic ML study based on MRI images showed that the
RF classifier could effectively predict the immunopathologic
expression status of P504s/P63 before surgery to achieve the
goal of a noninvasive and accurate PCa diagnosis method.
However, further research will be necessary to confirm these
findings in a larger sample and to determine whether ML models
will provide a novel strategy for pathological index prediction
and further change clinical decision making regarding the initial
prostate biopsies of patients with PCa.
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