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Background: Non-alcoholic fatty liver disease (NAFLD) is a risk factor for

hepatocellular carcinoma (HCC). However, its carcinogenic mechanism is

still unclear, looking for both diseases’ transcriptome levels, the same

changes as we are looking for NAFLD may provide a potential mechanism of

action of HCC. Thus, our study aimed to discover the coexisting pathogenic

genes of NAFLD and HCC.

Methods: We performed a variance analysis with public data for both diseases. At

the same time, weighted gene correlation network analysis (WGCNA) was used to

find highly correlated gene modules in both diseases. The darkturquoise gene

module was found to be highly correlated with both diseases. Based on the

diagnosis related module genes and the differential genes of the two diseases, we

constructed diagnostic and prognostic models by logistic regression, univariate

Cox regression, and LASSO regression. Public datasets verified the results.

Meanwhile, we built a competing endogenous RNA (ceRNA) network based on

the model genes and explored the related pathways and immune correlation

involved in the two diseases by using Gene Ontology, Kyoto Encyclopedia of

Genes and Genomes, and gene set enrichment analyses. Immunohistochemistry

was used to verify the different expression of ABCC5 and TUBG1 among the

normal liver, NAFLD, and HCC tissues. Sodium palmitate/sodium oleate was used

to establish high-fat cell models, and Real Time Quantitative Polymerase Chain

Reaction (RT-qPCR) was used to verify the messenger RNA (mRNA) expression of

ABCC5 in lipidization cells.

Results: A total of 26 upregulated genes and 87 downregulated genes were found

using limma package identification analysis. According to WGCNA, the

darkturquoise gene module was highly correlated with the prognosis of both

diseases. The coexisting genes acquired by the two groups were only three central

genes, that is, ABCC5, DHODH and TUBG1. The results indicated that the
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diagnostic and prognostic models constructed by ABCC5 and TUBG1 genes had

high accuracy in both diseases. The results of immunohistochemistry showed that

ABCC5 and TUBG1 were significantly overexpressed in NAFLD and HCC tissues

compared with normal liver tissues. The Oil Red O staining and triglyceride

identified the successful construction of HepG2 and LO2 high-fat models using

PA/OA. The results of RT-qPCR showed that the lipidization of LO2 and HepG2

increased the mRNA expression of ABCC5.

Conclusions: The gene model constructed by ABCC5 and TUBG1 has high

sensibility and veracity in the diagnosis of NAFLD as well as the diagnosis and

prognosis of HCC. ABCC5 and TUBG1 may play an important role in the

development of NAFLD to HCC. In addition, lipidization could upregulate the

mRNA expression of ABCC5 in HCC.
KEYWORDS

ABCC5, bioinformatics, hepatocellular carcinoma, nonalcoholic fatty liver
disease, TUBG1
Introduction

Cancers like hepatocellular carcinoma (HCC) have one of the

highest mortalities in the world. Pathological metabolic diseases

are the primary causes of HCC, such as hepatitis C or B and

alcoholic and non-alcoholic fatty liver disease (NAFLD) (1). Due

to the rapid increase in obesity and NAFLD patients, the

prevalence of NAFLD-related HCC has increased accordingly

(2). As the harmful effects of NAFLD can ultimately cause

cirrhosis and even cancer, the prevalence of HCC has also

started to rise suddenly. Based on some research findings (3),

NAFLD can act synergistically with other HCC risk factors to

accelerate cancer development. Over the past decade, an analysis

of US health insurance databases found (4), according to the

report, that 59% of HCC patients enrolled in medical plans are

believed to have NAFLD as their primary cause. In ameta-analysis

by Younossi et al. (5), all studies from 1989 to 2015 involving

NAFLD were screened and estimated to determine point

estimates [95% confidence intervals (CIs)] of HCC incidence,

mortality, and incidence rates using a random-effects model. In

NAFLD patients, HCC incidence was found to be 0.44/1,000

person-years (range: 0.29–0.66). A retrospective cohort study (6)

evaluated the cancer risk in patients with NAFLD; it is also

required to follow up the successive prevalence of HCC. Tumor

biomarkers can assist medical researchers with early screening,

diagnosis, treatment evaluation, recurrence, and prognosis

prediction of tumors. With the prevalence of HCC and the

estimated continued increase in this tumor (7), it is suggested

that early monitoring and screening of tumor markers can reduce

the mortality rate. In fact, in most patients, even after a complete
02
resection or ablation of HCC tumors, the remaining carcinogenic

tissue will progress to incurable terminal disease (8), thus, early

detection and prevention of HCC development are considered to

be the most effective strategies worldwide for improving patient

outcomes. Up to now, the exact pathogenesis of NAFLD

transition to HCC has not been explained. Identifying new

marker genes can be used to predict risk and target treatment

for individual patients. Hence, the prediction of candidate genes

based on NAFLD-HCC pathogenesis is also an option. Based on

bioinformatics analysis, earlier studies have established that

telomerase reverse transcriptase (hTERT) (9), hypoxia-inducible

transcription factor-2a (HIF-2a) (10), S100 calcium-binding

protein A11(S100A11) (11), squalene epoxidase (SQLE) (12),

and deoxycytidine kinase (DCK) (13) were associated with

NAFLD to HCC progression and prognosis and could act as a

related marker. Therefore, in an era of precision medicine, the

diagnostic markers of NAFLD progressing to HCC need to be

explored further.

In the human genome, the ATP-binding cassette (ABC)

transporter is one of the largest protein families. More than 48

genes encoding human ABC transporters have been identified

and sequenced, and the largest member of the family is

multidrug resistance-associated protein (MRP), including

MRP1 (ABCC1), MRP5 (ABCC5), and MRP6 (ABCC6) (14).

In addition to its role in chemotherapy-resistant tumors, as one

of the major classes of membrane ATPase, it is also implicated in

the treatment failure of HCC with a multidrug-resistant

phenotype (15). Studies in NAFLD have shown that several

ABC transporter family members, such as ABCA1 and ABCC5,

are closely related to the progression of NAFLD (16).
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g-Tubulin (TUBG1) is a member of the human tubulin

family. There are five known tubulin subtypes in the human

tubulin family based on the c-terminal region with the greatest

variation: a-tubulin, b-tubulin, g-tubulin, d-tubulin, and

ϵ-tubulin. Complex cortical malformations related to tubulin

gene mutations, also known as tubulin diseases, are a

heterogeneous group of diseases with a wide range of clinical

severity (14). A family of GTP enzymes called tubulin is highly

enriched in microtubules and centrosomes.

This study aimed to identify candidate biomarkers for

predicting NAFLD and HCC diagnoses by using the full

public repository for Gene Expression Omnibus (GEO) and

The Cancer Genome Atlas (TCGA) databases. We screened

differentially expressed genes (DEGs) from public datasets of

NAFLD and HCC and also screened overlapping genes between

DEGs and the constructed weighted gene correlation network

analysis (WGCNA); constructed NAFLD and HCC models,

functional and pathway enrichment analyses, established

ceRNA network, and protein–protein Interaction (PPI)

network, respectively, and finally identified the hub gene.

Therefore, this study hopes to provide new candidate

diagnostic markers during the progression of NAFLD to HCC,

offer the best screening strategy for high-risk patients, and

advance the accuracy of HCC prevention.
Materials and methods

Data download and processing

Through the GEOquery package (17), NAFLD datasets

GSE48452, GSE89632, and GSE37031 were downloaded from

the GEO database. The GSE48452 dataset is from Homo sapiens,

and the data platform is GPL11532, which has 73 samples in

total, including 14 normal liver tissue control samples, 27 liver

tissue samples from obese patients, and 32 NAFLD tissue

samples (18).This study included 14 normal liver tissue

control samples and 32 NAFLD tissue samples from the

dataset. The GSE89632 dataset is from Homo sapiens, and the

data platform is GPL14951, which contains 63 samples,

including 24 normal liver tissue control samples and 39

NAFLD tissue samples. This study included all the samples

(19). The GSE37031 dataset is from Homo sapiens, and the data

platform is GPL14877, containing 15 samples, including 7

normal liver tissue control samples and 8 NAFLD tissue

samples. In this study, all samples were included as a

validation set (20). GSE48452 and GSE89632 datasets are

combined, and batches are removed through the SVA package

(21). The data were normalized and standardized through the

limma package (22).

Through the TCGAbiolinks package (23), the hepatoma

dataset was downloaded from the TCGA database, TCGA-

LIHC (Liver Hepatocellular Carcinoma, n=445 cases). The
Frontiers in Oncology 03
data type Count was selected and converted to the TPM

format. HCC data were taken from the International Cancer

Genome Consortium database, and TCGA-LIHC (n = 419 cases)

was used as a validation set.
Model building and validation

For the construction of diagnostic models, the minimization

of absolute contraction and selection operator LASSO regression

are commonly used machine learning algorithms. In curve

fitting, regularization is used to solve the overfitting and

improve model accuracy. The glmnet package (24) was used to

construct the model, and the parameter was set as: seed (2),

family = “ binomial “.

The prognostic model of HCC patients was developed using

univariate and multivariate COX regression.
Variance analysis

The limma package was used for the gene difference analysis

of GEO chip data in the normal group and disease group, and R

package DESeq2 was used for the gene difference analysis of the

normal group and disease group (25). LogFC >0.5 and the adjp

value <0.01 were fixed as the threshold of differential genes.

LogFC >0.5 was considered to be upregulated in the high-risk

group, while logFC <0.5 was downregulated. The outcomes of

difference analysis were represented by R package pheatmap

heatmap and GGplot2 volcano map (26).
Analysis of enrichment (gene ontology/
kyoto encyclopedia of genes and
genomes/gene set enrichment analysis/
GSVA/ssGSEA)

Gene Ontology (GO) is a common analysis for large-scale

functional enrichment studies, such as biological processes

(BPs), molecular functions (MFs), and cellular component

(CC). The Kyoto Encyclopedia of Genes and Genomes

(KEGG) is a widely used database keeping information about

genomes, biological pathways, diseases, and drugs. The Cluster

Profiler R software package was used to analyze the GO

annotation and KEGG pathway enrichment analysis of

differential genes, and the critical value of False discovery rate

(FDR) < 0.05 was considered statistically significant (27).

The gene set enrichment analysis (GSEA) method analyzes

whether a particular gene set is statistically different between two

biological states and is commonly used to estimate changes in

the pathway and biological process activities in expression

dataset samples (27). For GSEA analysis, the “msigdb. v7.0.

Symbols” gene set was downloaded from the MSigDB database.
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Furthermore, the enrichment fractions of related pathways

in the MSigDB database were calculated according to the gene

expression matrix of each sample using the Gene Set Variation

Analysis (GSVA) method by R-packet (28). The limma package

was used to screen the differences, and the relevant enrichment

items with statistically significant differences were displayed by a

heat map. Using the R-packet GSVA and single-sample Gene Set

Enrichment Analysis (ssGSEA) methods combined with the 28

characteristic gene matrices of immune cells, we calculated the

immune cell enrichment fraction of each sample.
Weighted gene correlation network
analysis

The aim (29) is to identify coexisting gene modules, explore

the relationship between gene networks and phenotypes, and

study the core genes in the network. Soft threshold was

calculated by pick soft threshold function, and 5 were

considered to be the optimal soft threshold. Scale-free

networks were subsequently constructed based on soft

thresholds, topology matrices were created, and hierarchical

clustering was performed. Considering 50 as the minimum

number of genes in the module, the identification gene

module was dynamically cut and eigengenes were calculated.

Based on eigengenes, the correlation between modules was

constructed, and hierarchical clustering was carried out. The

modules with a correlation above 0.7 were merged again, and

lastly, 13 modules were obtained. The correlation between

modules and clinical features was understood through

Pearson’s correlation analysis.
Construction of ceRNA network

CeRNA discloses the interaction mechanism among lncRNA,

microRNA, and mRNA. The possible upstream miRNAs of TUBG1

and ABCC5 were searched through the mirTarbase database using

multiMiR package (30). The StarBase database was used to download

lncRNA–miRNA data (starBaseV3_hg19_CLIP-seq_LncRNA_all).

Using pancancerNum >10 and clipExpNum>4 as criteria, lncRNAs

are screened and intersected with those with significant differences in

HCC data, and finally, four lncRNAs and 30 miRNAs are obtained.

We completed the visual analysis using Cytoscape.
PPI network building (STRING)

The STRING database (https://cn.string-db.org/) searches

known and predicted protein interactions across 2,031 species,

comprising 9.6 million proteins and 1.38 million PPIs. It

includes results obtained from experimental data, PubMed

Abstracts in Chinese, and the synthesis of data from other
Frontiers in Oncology 04
databases, as well as results predicted using bioinformatics

methods. We used the STRING database to construct the PPI

network of genes with common differences between the two

diseases and set the parameter as correlation coefficient 0.7. The

results from PPI are exported from the STRING database and

visualized through Cytoscape. Furthermore, the CytoHubba

plug-in was used to analyze Hub genes in the PPI network.
Specimen collection

The study was approved by the Ethics Committee of the First

Affiliated Hospital of Guangxi Medical University [NO.2022-

KY-E-(115)]. NAFLD, HCC, and normal liver tissues were

collected from tissue sections preserved in the Department of

Pathology of our hospital. Informed consent was obtained.
Cell model construction and cell culture

HepG2 and LO2 were cultured with Dulbecco's modified

eagle medium (DMEM) (Multicell) containing 1% penicillin–

streptomycin and 10% fetal bovine serum (FBS; Gibco) in a

moist cell incubator at 37°C and 5% CO2.

High-fat LO2 cells and HepG2 cells (HF-LO2 group, HF-

HepG2 group) were constructed by using sodium palmitate/

sodium oleate (PA/OA) to simulate a high-free fatty acid

environment. After the growth density of HepG2 and LO2

cells reached 70%–80% according to the manufacturer’s

instructions, approximately 1 × 105 cells were inoculated in 6-

well plates and incubated for 24 h. The NAFLD model was

established by a complete culture medium containing 500-mM
sodium oleate and 250-mM sodium palmitate for 24 and 48 h. A

complete culture medium supplemented with solvent was used

as the control group (Control-LO2 group, Control-HepG2

group). The lipid accumulation level was detected by oil red O

staining and triglyceride (TG). The TG assay kit (Jiancheng

Bioengineering Institute, Nanjing, China) was utilized for

extracting the contents of TG using the GPO-PAP method.

According to the instruction, the cell homogenate and

triglyceride assay reagents were added to the 96-well plate,

mixed, and incubated at 37°C for 10 min, and the optical

density (OD value) of each well was measured with the

microplate reader (546 nm). The calculation formula was as

follows: TG content = (sample OD value − blank OD value)/

(calibration sample OD value − blank OD value) * Calibration

sample concentration/sample protein concentration.
RNA extraction and RT-QPCR

According to the manufacturer’s instructions, total RNA was

isolated from cultured cells using a TRIzol reagent (TAKERA,
frontiersin.org
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Tokyo, Japan), and cDNA was obtained by reverse transcription

using RT SuperMix for qPCR (Vazyme). The extracted cDNA

was stored at -80°C. The target genes were amplified and

detected using SYBR qPCR Master Mix (Vazyme, Nanjing,

China) in the Applied Biosystems 7500 Fast real-time PCR

system (ABI, Waltham, Massachusetts, USA). Primers for

ABCC5 and Glyceraldehyde-3-Phosphate Dehydrogenase

(GAPDH) are as follows: ABCC5-F (5’-ATC ATG GCT TGA

GTG CTC TGA-3’) and ABCC5-R (5’-AGA CCA CAC GTC

CAT TGA-3’); GAPDH-F (5’-AAT CAA GTG GGG CGA TGC

TG-3’) and GAPDH-R (5’-GCA AAT GAG CCC CAG CCT

TC-3’). The setting parameters were as follows: the denaturation

temperature was 95°C for 15 min, the annealing temperature

was 60°C for 1 min, and the extension was 40 cycles. The relative

mRNA expression of ABCC5 was calculated by the 2-DDCT

method (GAPDH as a housekeeping gene).
Immunohistochemistry

Samples were prepared into paraffin sections, followed by

dewaxing and hydration, and high-pressure and high-

temperature antigen recovery in sodium citrate buffer (pH

6.0). Subsequently, it was incubated with endogenous

peroxidase blockers and then incubated with a primary

antibody for 12 h at 4°C. Sections were then rinsed with

phosphate-buffered saline (PBS), followed by washing with

an enzyme-coupled goat anti-rabbit/mouse IgG polymer for

another 20 min and rinsed with PBS three times. Then, the

sections were incubated with a DAB staining solution for

5 min. After washing with water, the paraffin sections were

immersed in a hematoxylin- staining solution for 15 s and

finally identified, rinsed, and returned to the laboratory for

staining. The antibodies used included ABCC5 (Cat No.

19503-1-AP, 1:100; Proteintech, Wuhan, China) (31) and

TUBG1 (Cat No. 15176-1-AP, 1:100; Proteintech, Wuhan,

China) (32). Two pathologists observed the results. The

number of positive cells was divided into five grades (0–4

score) according to the ratio (<5%, 5%–25%, 26%–50%, 51%–

75%, 75%–100%), and the intensity of staining was divided

into four grades (0–3 score). The group is obtained by

multiplying the two fractions (from 0 to 12). A score of >4

was suggested to be positive.
Statistical analysis

We performed all data calculations and statistical analysis

using R programming (https://www.r-project.org/, version

4.0.2). The statistical significance of the normally distributed

variables was calculated using an independent Student’s t-test,

and the differences between the non-normally distributed

variables were analyzed using the Mann–Whitney U test (i.e.,
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Wilcoxon rank-sum test). All statistical p-values were bilateral,

and P <0.05 was considered statistically significant.
Results

Weighted gene correlation network
analysis consensus module identification

NAFLD can ultimately cause HCC, but the mechanism by

which hepatitis leads to HCC remains unclear. We assumed that

the same gene modules expressed in both diseases might play a

role in the copathogenesis of both diseases. NAFLD datasets

GSE48452 and GSE89632 were downloaded from the GEO

database and HCC dataset from the TCGA database. WGCNA

analysis was used to identify gene modules that were expressed

uniformly in both NAFLD and HCC. We removed large outliers

with hierarchical clustering analysis (Figure 1A), scale-free

networks and topological matrices were constructed by soft

threshold (Figure 1B), and then topological overlapping

matrices were scaled to make them comparable between two

disease sets (Figure 1C). By extracting the minimum of parallel

positions in two topological overlapping matrices [we now

calculate the consensus topological overlap by taking the

component-wise [“Parallel”)], the minimum of the topological

matrices in individual sets acted as the consensus topological

overlap matrix. Finally, we obtained 13 gene modules with

similar expression in both diseases (Figure 1D). As clinical

features, we explored modules related to the diagnosis of both

diseases based on whether they were sick or not. The dark

turquoise module had a high correlation and statistical

significance with NAFLD and HCC among the 13 modules

(Figures 2A–C). Then, we performed GO and KEGG function

analysis on 58 genes in the dark turquoise module, and the

results indicated that these genes were primarily involved in

DNA-related enzyme activity, DNA shear, and the repair

process (Figures 2D, E).
Differences in gene

We performed difference analysis on the two datasets to

understand the correlation of transcriptional level changes in the

two diseases. Using principal component analysis (PCA), we

found some differences in expression profiles between the

NAFLD group and the normal group. We used the limma

package for difference analysis to obtain DEGs in the two data

groups, including 181 upregulated genes and 232 downregulated

genes, which were visualized by the volcanic diagram and heat

maps (Figures 3A–C). Significant differences were found

between HCC and the control group gene expression profiles.

We used the Deseq2 package to analyze the differences of genes

in different groups, comprising 2,490 upregulated genes and
frontiersin.org
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1,077 downregulated genes, which were also used and visualized

by the volcano map and heat map (Figures 3D–F).

Subsequently, we searched for both upregulated and

downregulated genes in the two diseases and demonstrated

them through the Venn diagram. The results showed that 27

genes were upregulated in the two diseases compared with the

control group, while 83 genes were downregulated in the two

diseases compared with the control group (Figure 4A). We

performed the GO function analysis of genes to further

understand the biological function of these genes with same

trend. The results indicated that these genes were mainly

involved in cell chemotaxis, neuroresponse, response to
Frontiers in Oncology 06
lipopolysaccharide, response to the molecule of bacterial

origin, response to steroid hormone; a variety of lipid-related

functional items are involved, and then we used the mesh

diagram to visualize the main items (Figure 4B; Supplement

Table 1). Then, we used GSEA enrichment analysis to enrich the

pathway-related dataset in MSigDb based on the above gene list.

The results indicated that it was associated with multiple

immune, HCC, and cancer-related pathways (Figures 4C, D;

Supplement Table 2). Consequently, we constructed the PPI

network through STRING (correlation coefficient 0.7) and

visualized it using Cytoscape (Figure 4E). The top three genes

interacting with other proteins were EGR1, FOSB, and CCL2.
A
B

DC

FIGURE 1

WGCNA. (A) The datasets of non-alcoholic fatty disease (NAFLD) and hepatocellular carcinoma (HCC) were based on the Euclidean distance
clustering tree of samples. The red line of the dataset of NAFLD was the tangent line of outlier detection. Samples cut by this line are
considered outliers. The tangents of the corresponding liver cancer samples are outside the tree, indicating that no samples from the HCC set
are considered outliers. (B) Soft threshold power (x-axis) selection. NAFLD is approximately scale-free when the soft threshold is 7, while HCC is
implemented at 20. With the increase of the soft threshold power, the comprehensive connectivity measure decreases sharply. Finally, we
choose 7 as the soft threshold to construct the scale-free network. (C) Quantile–quantile plots of the dataset topological matrices (TOMs) for
NAFLD and HCC. The black dots are TOMs before scaling, and the red dots are TOMs after scaling. After scaling, the two TOMs are comparable.
(D) The gene tree was obtained by similarity clustering based on the overlap of consensus topology. As shown in the figure, there were 13
consensus gene modules in the two diseases, among which gray indicated unmatched genes.
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To construct a diagnostic model of non-
alcoholic fatty liver disease

The consensus module genes related to the diagnosis of

the two diseases obtained by WGCNA were intersected with

the different genes (DEG) with the same change trend in the

two diseases to find efficient diagnostic and therapeutic

markers (Figure 5A), suggesting three coexisting genes

(ABCC5, DHODH, and TUBG1). After univariate and

multivariate logistic regression analyses, ABCC5 and

TUBG1 genes were found to be independent risk factors for

the diagnosis of NAFLD and HCC (OR>1; P <0.05), while
Frontiers in Oncology 07
DHODH was an independent protective factor in HCC

(OR<1; P < 0, 05) (Tables 1, Table 2). These findings

propose that ABCC5 and TUBG1 may have certain roles in

the occurrence and development of the two diseases. We

visualized the expression of the two genes by a heat map in the

group of NAFLD (Figure 5B). The above three genes were

reverified using minimal absolute contraction and selection

operator LASSO regression. The results were in line with

multivariate logistic regression. Two genes, ABCC5 and

TUBG1, were involved in constructing a diagnostic model

of NAFLD (Figures 5C, D). Its correlation coefficient was used

to calculate the risk values of all samples, and a box plot was
A

B

D

E

C

FIGURE 2

Identification of diagnostic-related modules. (A) Correlation analysis was used to find the correlation between 13 gene modules in NAFLD and
whether they were sick or not. Red indicated positive correlation, blue indicated negative correlation, and P<0.05 was considered statistically
significant. (B) Correlation analysis was used to find the correlation between 13 gene modules in HCC and whether they were sick or not. Red
indicated positive correlation, blue indicated negative correlation, and P<0.05 was considered statistically significant. (C) The module dark
turquoise is associated with the diagnosis of both diseases. (D) Gene Ontology (GO) function analysis of the dark turquoise module gene.
(E) Kyoto Encyclopedia of Genes and Genomes (KEGG) function analysis of dark turquoise module gene.
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used to visualize the difference of risk values between the

NAFLD group and the normal group, indicating that the risk

values of NAFLD were significantly higher (Figure 5E).

According to the ROC curve results, the diagnostic model

constructed by ABCC5 and TUBG1 genes had very good

diagnostic efficiency (AUC = 0.893) (Figure 5F). As further

validation of our results, we downloaded the NAFLD dataset

GSE37031 through the GEO database. The results showed
Frontiers in Oncology 08
that the risk value of the NAFLD group was significantly

higher, and the TUBG1 expression level was also higher in the

NAFLD group (P<0.01) (Figures 5G, H). While the box plot

indicated that the ABCC5 expression level was high in the

NAFLD group (P = 0.064), the p-value was insignificant as

well as the AUC value of the ROC curve was 1, which may

result from the small sample size. (Figure 5I, Supplement

Figure 1). Results from these studies suggest that the high
A
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FIGURE 3

Variance analysis. (A) Volcanic diagram shows the differentially expressed genes (DEGs) of the NAFLD gene dataset, the horizontal axis is logFC
value, the y-axis is -log10 (adjusted p-value), and the dotted line in the figure representslogFC> 0.5, adj-P < 0.05). Red represents upregulated
genes, and blue represents downregulated genes. The first five gene labels are displayed in the adjusted p-value arrangement. (B) PCA principal
component analysis of the NAFLD dataset: light green represents the samples of NAFLD, and red represents the samples of normal liver tissue
(normal). (C) Heat map of differential genes. Red represents the sample of NAFLD, and dark blue represents the sample of normal liver tissue
(normal). The top 20 genes are, respectively, visualized in adjusted p-value arrangement (yellow indicates high expression, and blue indicates
low expression). (D) Volcanic diagram shows the DEGs of the HCC gene dataset; the horizontal axis is logFC value; the y-axis is -log10 (adjusted
p-value), and the dotted line in the figure representslogFC> 1, adj. P < 0.05). Red represents upregulated genes, and blue represents
downregulated genes. The first five gene labels are displayed in the adjusted p-value arrangement. (E) Principal component analysis (PCA) of
HCC datasets: light green represents HCC tissue samples (cancer), and red represents normal liver tissue samples (normal). (F) Heat map of
differential genes. Red represents HCC tissue samples (cancer), and dark blue represents normal liver tissue samples (normal). The top 20 genes
are, respectively, visualized by adjusted p-value arrangement (red indicates high expression, and dark green indicates low expression).
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expression of ABCC5 and TUBG1 is an independent risk

factor for NAFLD and can be used as a diagnostic indicator.
ABCC5 and TUBG1 are independent risk
factors for diagnosis of hepatocellular
carcinoma

By performing univariate and multivariate logistic

regression analysis on three coexisting genes (ABCC5,

DHODH, and TUBG1) in TCGA HCC dataset, it was
Frontiers in Oncology 09
found that ABCC5 and TUBG1 were independent risk

factors for HCC (OR>1; P <0.05), whereas DHODH was an

independent protective factor in HCC (OR<1; < 0, 05)

(Table 2). To further confirm our conclusions, we used

HCC dataset (LIRI-JP) from the ICGC database for

validation and found ABCC5 and TUBG1 genes were

independent risk factors for HCC (OR>1; P <0,05), while

DHODH was not (Table 3). These outcomes showed that

ABCC5 and TUBG1 were independent risk factors for

NAFLD and HCC, suggesting that the two genes possessed

potential diagnostic value in both diseases.
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FIGURE 4

Common differential genes. (A) Venn diagram shows the coupregulated and codownregulated genes in the two diseases. (B) Network diagram
showing the GO function analysis of common differential genes. (C) Gene set enrichment analysis (GSEA) of common differential genes: the
logFC value was used to arrange genes, and the GSEA algorithm was used to calculate the first two enrichment items and the last two
enrichment items in descending order. (D) GSEA analysis: the top 10 enrichment pathway were visualized in the bubble diagram, arranged with
the descending order of the absolute value of enrichment fraction (NES). (E) PPI network construction, from red to blue; continuous color
change represents the logFC value from high to low.
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Construction of prognostic model in
hepatocellular carcinoma

Univariate and multivariate Cox regression analyses were

performed to explore whether three coexisting genes (ABCC5,
Frontiers in Oncology 10
DHODH, and TUBG1) were associated with the prognosis of

HCC, and the results showed that ABCC5 and TUBG1 were

independent risk factors for the prognosis of HCC (HR>1,

P<0.05) (Figure 6A). Subsequently, we calculated the risk value

of each sample based on the correlation coefficient. There were
TABLE 1 Univariate and multivariate logistic regression (non-alcoholic fatty liver disease).

Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P-value

ABCC5 18.133 (5.445–60.391) <0.001 7.188 (1.900–27.196) 0.004

DHODH 0.195 (0.090–0.426) <0.001 NA

TUBG1 63.821 (13.06–311.663) <0.001 32.515 (5.976–176.904) 0
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FIGURE 5

Establishment of a diagnostic model of NAFLD. (A) Venn diagram shows the coexisting genes (ABCC5, DHODH, TUBG1) of the diagnosis-related
gene module darkturquoise in WGCNA and common differential genes. (B) Visualizing the expression profile of ABCC5 and TUBG1 in NAFLD by
a heat map. (C) LASSO model tuning parameters were selected through 10-fold cross-validation. (D) LASSO coefficient spectra of diagnosis-
relevant gene sets with dotted lines representing values selected by 10 cross-validations. A diagnostic model containing two genes (ABCC5 and
TUBG1) was obtained. (E) Box plot presenting the difference in the risk score between the NAFLD group and the normal group. (F) ROC curve
confirms that the diagnostic model has high diagnostic efficiency (AUC = 0.893). (G) Based on the new dataset (GSE37031), the risk score was
calculated according to the model; the risk value in the NAFLD group was significantly higher than that in the normal group. (H) The expression
level of TUBG1 in the GSE37031 dataset visualized by box plot in the NAFLD group and normal liver tissue sample group (P<0.05 is considered
statistically significant). (I) Box plot visualization of ABCC5 expression in the GSE37031 dataset between the NAFLD group and the normal group.
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more deaths, shorter survival time, and higher expression levels

of ABCC5 and TUBG1 in the high-risk group (Figures 6B, C).

Afterward, we verified our prognostic model using ROC curves

with survival time nodes of 1, 2, and 3 years. The results

presented the AUC value of 1-year, 2-year, and 3-year ROC

curves to be 0.80, 0.68, and 0.68, respectively (Figure 6D). As

shown in Figure 6E, the risk value was higher in the death group

(P<0.05). Using the nomogram, we found that when combined

with age, gender, stage, and the depth of invasion, the risk score

significantly contributed to survival risk (Figure 7A). We

performed a multivariate Cox analysis in combination with

c l i n i c a l f e a t u r e s t o d e t e rm ine th e influenc e o f

clinicopathological features on riskScore. The findings

indicated that the predictive model’s riskScore remained an

independent risk factor in combination with other clinical

features (HR = 2.225 95%, CI [1.716–2.885]; P < 0.001)

(Figure 7B). Next, we tested the predictive accuracy of the

model using the calibration curve, and the results showed that

the prediction accuracy of 1-year, 2-year and 3-year survival

rates was very high (Figure 7C). The survival curve showed that

both ABCC5 and TUBG1 were significantly correlated with poor

prognosis in HCC and the survival rate of patients in the high-

risk group was significantly lower than that in the low-risk group

(Figures 7D, E). So as to further verify our prognostic model,

HCC-related data (LIRI-JP) from the ICGC database were used

for confirmation. The ABCC5 and TUBG1 expressions were

significantly increased in the HCC group. In the meantime,

based on the model, it was determined that the HCC group had a

significantly higher risk score than the normal group

(Figures 8A, B). Then, we verified our prognostic model by

using ROC curves with survival time nodes of 1, 2, and 3 years.

The results disclosed that the AUC of 1-year, 2-year and 3-year

ROC curves was 0.70, 0.66, and 0.74, respectively (Figure 8C).

Meanwhile, the survival curve showed that high risk score was
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significantly correlated with poorPrognosis in LIRI-

JP (Figure 8D).
Changes of immune microenvironment
and construction of ceRNA network

We used the GSVA algorithm to analyze pathway-related

datasets in MSigDb in the two diseases and the limma package

for difference analysis. LogFC = 0.5, ADj. P<0.05 were used as

thresholds to screen related pathways with significant differences

between the disease and normal groups. The results showed 46

significantly upregulated and 122 significantly downregulated

pathways in NAFLD and 1,418 significantly upregulated and

1,669 significantly downregulated pathways in HCC. We

visualized the top 10 pathways with significant changes using

heat maps (Figures 9A, B) and then obtained both upregulated

and downregulated pathways in the two diseases (Figure 9C,

Table 4). The outcomes showed that NAFLD and HCC had

different fat metabolism, immunity, tumor, and other related

pathways as compared to the normal group. These pathways

may disclose the principal mechanisms by which NAFLD

progresses to HCC. We conducted enrichment analysis of 28

immune cell components in the two datasets ssGSEA to

understand the immune infiltration of the two diseases and

found that the immune microenvironment of the two diseases

had significantly changed. Furthermore, effector memory CD4 T

cells, eosinophils, mast cells, neutrophils, and type 1 T helper

cells showed significant differences and the same trend in the

high- and low-risk groups of the two diseases (Figure 9D).

CeRNA discloses the interaction mechanism among lncRNA,

microRNA, and mRNA. The upstreammiRNAs and lncRNAs of

ABCC5 and TUBG1 were predicted through the ceRNA

network, and visualization analysis was executed using
TABLE 3 Univariate and multivariate logistic regression (ICGC).

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P value

ABCC5 10.444 (6.676–16.339) <0.001 2.109 (1.197- 3.715) 0.01

DHODH 0.353 (0.281–0.445) <0.001 NA

TUBG1 50.090 (24.340–103.081) <0.001 26.418 (12.231–57.063) 0
front
TABLE 2 Univariate and multivariate logistic regression (The Cancer Genome Atlas).

Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

ABCC5 40.238 (15.785–102.571) <0.001 5.514 (1.884–16.135) 0.002

DHODH 0.245 (0.167–0.358) <0.001 0.429 (0.247– 0.744) 0.003

TUBG1 44.468 (16.669–118.632) <0.001 13.254 (4.369–40.214) 0
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Cytoscape (Figure 9E). According to the ceRNA mechanism,

lncRNAs can upregulate the expression of their target mRNA.

Hence, we used the upregulated lncRNAs expressed in HCC

data based on TCGA and intersected with the predicted

lncRNAs to find four lncRNAs with high confidence and

consistent expression.
Expression of ABCC5 and TUBG1 at
tissue and cell levels

Subsequently, the expression of ABCC5 and TUBG1 in

normal liver tissue, NAFLD tissue, and HCC tissue was
Frontiers in Oncology 12
detected by immunohistochemistry. The results showed that

compared with normal liver tissue, the protein expression levels

of ABCC5 and TUBG1 in NAFLD and HCC tissues were

significantly increased (P <0.05) (Figures 10A, B).

In order to further explore the expression of ABCC5 and

TUBG1 in NAFLD and HCC. We simulated a high-fatty-acid

environment by mixing PA and OA (33). HF-LO2 group and

HF-HepG2 group models were constructed (34–36). Oil red O

staining results showed that OA significantly increased lipid

accumulation in HepG2 cells and LO2 cells compared with the

control group (Figures 10C, D). The results of the quantitative

analysis of triglyceride were consistent with the above results,

and the triglyceride content of cells in HF-LO2 and HF-HepG2
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FIGURE 6

Construction of hepatocellular carcinoma prognostic model. (A) Univariate Cox analysis suggested that ABCC5 and TUBG1 were correlated with
the prognosis of HCC. Multivariate Cox analysis suggested that ABCC5 and TUBG1 were independent risk factors (red represents HR>1; dark
blue represents HR<1, P<0.05 is statistically significant). (B) Both ABCC5 and TUBG were upregulated in the high-risk group (red represents
high-risk group; dark blue represents low-risk group). (C) The risk value was calculated by multivariate Cox regression. With the increase of the
risk value, the survival time decreased, and the number of patients who died increased. (D) With risk score as the observed value, the time ROC
curve confirmed that it had good diagnostic value at 1-year, 2-year, and 3-year survival nodes (the AUC of a 1-year ROC curve was 0.8, the 2-
year ROC curve was 0.68, and the 3-year ROC curve was 0.68). (E) The box plot shows that the death group has higher risk scores (0
represents alive group; 1 represents dead group).
frontiersin.org

https://doi.org/10.3389/fonc.2022.911808
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.911808
groups was significantly higher than that in the corresponding

control group (Figure 10E). The above results indicated that the

adipose cell model was successfully constructed.

The transcriptional levels of ABCC5 and TUBG1 in HepG2

cells and LO2 cells were detected by RT-QPCR. The results

showed that ABCC5 expression was significantly increased in

HepG2 cells compared with LO2 cells (P <0.05). Similarly, RT-

QPCR results showed that ABCC5 expression was significantly

increased in both the HF-LO2 group and the HF-HepG2 group

after aliphication, and the increased level increased with the

extension of aliphication time (P <0.05) (Figure 10F). However,
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the transcription level of TUBG1 was not significantly changed

in HepG2 and LO2 cell lines and before and after

adipose treatment.
Discussion

The annual global increase in the HCC incidence is

inseparable from NAFLD, an independent risk factor. In the

wake of increasing living standards, the incidence of NAFLD

is increasing at an alarming speed. The prevalence of NAFLD
A
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FIGURE 7

Risk model testing. (A) Nomogram recommends that risk score would contribute the most than other clinical characteristics (age, gender, stage,
and the depth of invasion). (B) Multivariate Cox regression analysis of the risk score combined with clinical characteristics (age, gender, stage,
and the depth of invasion) suggested that the risk score was still an independent risk factor. (C) The results of 1-year, 2-year, and 3-year
calibration curves show that the prediction accuracy of risk models is high. (D) The survival curve suggested that patients in both ABCC5 and
TUBG1 high-expression groups had a poor prognosis (red represents a high-expression group; yellow represents low-expression group). (E) The
survival curve suggested that patients in the high-risk group had a poor prognosis (red represents a high-risk group; yellow represents low-risk
group, P<0.05 is statistically significant).
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is increasing at an alarming rate and has been considered an

induc ib le cause of HCC (37) , and non-a lcoho l i c

steatohepatitis (NASH), as a manifestation of NAFLD, can

progress to cirrhosis or even HCC (38). Elucidating the

mechanism of NAFLD to HCC will enable us to have the

opportunity to take measures at the early stage, so as to

achieve early prevention and reduce the incidence of HCC,

which will be of great significance.

Currently, some excellent studies have tried to explore the

underlying mechanism of the progression of NAFLD to HCC.

Dabin Liu (39) et al. found that SQLE (squalene epoxidase) may
Frontiers in Oncology 14
play an important role in the progression of NAFLD to HCC.

The authors found that SQLE was abnormally upregulated in

both NAFLD and HCC. In vitro and in vivo experiments have

confirmed that abnormal expression of SQLE leads to a

significant increase in intracellular cholesterol esters and

induces oxidative stress. Increased intracellular cholesterol

esters are associated with the growth and invasion of a variety

of tumors, while oxidative stress can activate multiple

downstream tumor-related pathways, such as the PI3K/AKT/

mTOR signal pathway. Meanwhile, the authors also

demonstrated that terbinafine may exert its antitumor effect by
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FIGURE 8

Risk model was tested with the ICGC-HCC dataset. (A) The box plot shows that the expression of ABCC5 and TUBG in the ICGC-HCC dataset
weas significantly higher in the HCC group. (B) The box plot shows that in the ICGC-HCC dataset, the risk score in the HCC group was
significantly higher than that in the normal group. (C) With the risk score as the observed value, the timeROC curve confirmed that our
prognostic model still had a high diagnostic value (the AUC of the 1-year ROC curve was 0.7, the 2-year ROC curve was 0.66, and the 3-year
ROC curve was 0.74). (D) The survival curve suggested that patients in the high-risk group had a poor prognosis (red represents high-risk group;
yellow represents low-risk group, P<0.05 is statistically significant).
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targeting SQLE. However, the pathogenesis of HCC induced by

NAFLD still stays uncleared. Therefore, we explored the

potential mechanism of NAFLD to HCC and found two

key genes.

In this study, 26 upregulated and 87 downregulated genes

were obtained by limma package analysis using the NAFLD

dataset (GSE48452, GSE89632, GSE37031) and HCC dataset

TCGA-LIHC (n = 445 cases). By using the limma package to

analyze the differences in the data of the two diseases, 26

coupregulated genes and 87 codownregulated genes were
Frontiers in Oncology 15
obtained. Then, we used 13 consensus modules screened by

WGCNA from the two diseases , among which the

darkturquoise module was highly correlated with the

diagnosis of both diseases. The intersection of the dark

turquoise module and common downregulated genes was

obtained, and the coexpressed genes ABCC5, DHODH, and

TUBG1, which were expressed uniformly in both diseases and

were related to diagnosis, were finally obtained. After the

establishment of diagnostic and prognostic models and the

verification process of prediction ability, it was concluded
A B

D

E

C

FIGURE 9

Immune infiltration and ceRNA. (A) Heat map showing pathways that differ significantly between the normal and NAFLD groups (red for NAFLD
group and dark blue for normal group). (B) Heat map shows pathways with significant differences between the normal group and the HCC
group (red represents the cancer group; dark blue represents the normal group). (C) Venn diagram shows coupregulated and codownregulated
pathways in both diseases. (D) The upper box plot shows the immune infiltration of 28 cells in the high- and low-risk group of NAFLD, and the
lower box diagram shows the immune infiltration of 28 cells in in the high- and low-risk group of HCC. (E) ABCC5 and TUBG1-related ceRNA
networks were constructed. Red represents mRNA, purple represents microRNA, and yellow represents lncRNA.
frontiersin.org

https://doi.org/10.3389/fonc.2022.911808
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.911808
that the expression patterns of ABCC5 and TUBG1 in

NAFLD and HCC were consistent, which were common

diagnostic markers and highly correlated with the prognosis

of HCC. Both may be closely related to NAFLD-induced HCC

and may become new biomarkers for the biological diagnosis

and prognosis of HCC. Current studies indicate that ABCC5

plays an oncogene role in HCC. Borel et al. (40) studied the

expression of 15 ABC transporters related to multidrug

resistance in 19 samples of HCC patients (16 untreated and

3 treated with chemotherapy); 12 ABC transporters were

found to be upregulated in HCC as compared to healthy

livers, and one of them is ABCC5. Chen has found that (41)

ABCC5 levels are significantly increased in HCC, and it is

considered to be an independent risk factor for HCC

progression and prognosis mainly because of immune cell

infiltration. Due to its drug resistance characteristics, Huang

et al. (42) proved that the regulation of the PI3K/AKT/NRF2

pathway activates and upregulates ABCC5 to promote the

resistance of sorafenib (a first-line molecular targeted drug

for advanced HCC) acquired in human HCC cells. This result

suggests that ABCC5 is an important regulator and a

promising therapeutic target of sorafenib resistance

acquired in human HCC cells. ABCC5 has also been found

to be able to regulate and reduce GPx4 consumption in

sorafenib-resistant HCC cells to inhibit lipid peroxidation.

Additionally, ABC transporters mainly mediate the

transmembrane transport of cyclic nucleotides or nucleotide

analogs, able to transport organic anionic compounds,

including glucoside acids, and the sulfate conjugates of

steroids (43). Further studies (44) have found that it

actively transports bile acids made by cholesterol in liver

cells. Lyu (45), Liu (46), and Akbulut (47) et al. further

demonstrated that ABCA1 could mediate the transport of
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cholesterol and phospholipids from cells to high-density

lipoprotein apolipoprotein, thereby affecting the transport

of liver cholesterol and inducing fatty liver disease. Hardwick

et al. (16) suggested that six ABC transporters, including

ABCC5, ABCB1, and ABCG2, showed an increasing trend in

the progression of NAFLD. In support of this theory, Cyranka

et al. (48) demonstrated that ABCC5 gene knockout mice had

reduced white and brown adipose tissue, and the most

prominent metabolic phenotype was the reduction of total

adipose mass, suggesting a new concept that ABCC5 protein

expression plays a key role in mammalian energy metabolism.

The results of our bioinformatics analysis are consistent with

the above studies. ABCC5 is a diagnostic marker in both diseases

and is associated with the prognosis of HCC. In addition, it was

found for the first time in vitro that the expression level of

ABCC5 was significantly increased in hepatocellular carcinoma

after adipose transformation, and the increased level was

positively correlated with the degree of adipose transformation.

TUBG1 is a member of the human tubulin family and is

involved in the development of various tumors. In the study of

Hubert (49) and Hsu (50) et al. it is found the breast Cancer 1

protein (BRCA1), an inhibitor of breast and ovarian tumorigenesis,

maintained a high fidelity of cell division after centrosome binding

to TUBG1 produced a ubiquitination reaction. Furthermore, its

association with tumor suppressor P53 and centrosome was

explained by Morris (51) and Kanai (52) et al. It was also

revealed by Horějs ̌ı ́ et al. that high expression of TUBG1

antagonized its inhibitory effect on DNA damage (53). In a

hospital-based case–control study (54), variations in TUBG1 were

also associated with breast cancer risk. Blanco et al. (55) further

explored that TUBG1 interacts with associated proteins in sporadic

breast tumors to regulate the mammary epithelial polarization and

affect patient survival. However, the relationship between TUBG1
TABLE 4 GSVA: both upregulated and downregulated pathways occur in both diseases.

GSVA

UP GO_LONG_CHAIN_FATTY_ACYL_COA_BINDING

UP BIOCARTA_TCAPOPTOSIS_PATHWAY

UP GO_WATER_SOLUBLE_VITAMIN_BIOSYNTHETIC_PROCESS

DOWN BIOCARTA_GHRELIN_PATHWAY

DOWN TIAN_TNF_SIGNALING_NOT_VIA_NFKB

DOWN AMIT_SERUM_RESPONSE_40_MCF10A

DOWN PHONG_TNF_TARGETS_UP

DOWN GRAHAM_CML_QUIESCENT_VS_CML_DIVIDING_UP

DOWN AMIT_EGF_RESPONSE_20_HELA

DOWN GO_POSITIVE_REGULATION_OF_CARDIOBLAST_DIFFERENTIATION

DOWN GO_NEGATIVE_REGULATION_OF_PLASMINOGEN_ACTIVATION

DOWN FUNG_IL2_TARGETS_WITH_STAT5_BINDING_SITES_T1

DOWN GO_POSITIVE_REGULATION_OF_SARCOMERE_ORGANIZATION

DOWN REACTOME_RUNX1_REGULATES_TRANSCRIPTION_OF_GENES_INVOLVED_IN_INTERLEUKIN_SIGNALING

DOWN GO_SNORNA_LOCALIZATION
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and the progression of HCC and NAFLD patients is still unclear,

and few studies have been conducted in this context. Through

bioinformatics multiple analysis, we believe that this gene may be a

common carcinogenic factor in the pathogenesis of NAFLD and

HCC. Our immunohistochemical results were consistent with the

results of the bioassay, and the TUBG1 expression level was

significantly increased in both NAFLD and HCC tissues.

However, there was no significant change in the transcription

level after fatty treatment. We speculated that the increase of the

TUBG1 protein level may not be caused by its own increase but

rather due to changes in the microenvironment of liver cells under a
Frontiers in Oncology 17
high-lipid environment. We believe that TUBG1 is a very

promising research site.

Although we verified the above results by using a variety of

methods, there are still limitations. The regulatory mechanism of

ABCC5 and TUBG1 in the development of HCC in the context

of NAFLD is not detailed yet, and whether the differences of the

last two genes in different stages of NAFLD-HCC progression

also needs further study and confirmation.

Our results showed that ABCC5 and TUBG1 were increased

in both NAFLD and HCC and were independent risk factors.

The diagnostic model of NAFLD and the prognostic model of
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FIGURE 10

Lipidization increased the expression of ABCC5 in LO2 and HepG2. (A) The expression of ABCC5 in human normal liver tissue, NAFLD tissues
and HCC tissues (magnification ×200, scale bars 100 mm; magnification ×400, scale bars 50 mm). (B) The expression of TUBG1 in human normal
liver tissue, NAFLD tissues, and HCC tissues (magnification ×200, scale bars 100 mm; magnification ×400; scale bars 50 mm). (C) The Oil Red O
staining of LO2 cells treated with or without sodium palmitate/sodium oleate (PA/OA) for 24 h (magnification ×200, scale bars 100 mm). (D) The
Oil Red O staining of HepG2 cells treated with or without PA/OA for 48 h (magnification ×200, scale bars 100 mm). (E) TG content in HepG2
cells and LO2 cells treated with PA/OA for 24 and 48 h. (F) The mRNA expression of ABCC5 examined by RT-qPCR. ([HF] represents high-fat
group) (P < 0.05 *, P <0.01 **, P <0.001 ***, P <0.0001 ****).
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HCC jointly constructed by ABCC5 and TUBG1 had high

predictive ability. Both may be closely related to NAfLD-HCC.

We found for the first time that a high-fat environment

promotes the expression of ABCC5 in HCC, further

elucidating the carcinogenic mechanism of ABCC5 in HCC

and its possible important role in the pathogenesis of

NAFLD-HCC.

Furthermore, we also explored the immune cells with the

same changing trend of the immune microenvironment in

NAFLD and HCC, as well as the common up–downregulation

pathway, providing new clues for exploring the pathogenesis of

NAFLD-HCC. Simultaneously, referring to the studies that

established that lncRNA- D16366 (56)and circ_0067934 (57)

could be used as novel diagnostic and prognostic markers of

HCC, the upstream miRNAs and lncRNAs of ABCC5 and

TUBG1 were predicted through the ceRNA network. In

conclusion, ABCC5 and TUBG1 are likely to become

copathogenic factors of NAFLD and HCC, opening a new

window of opportunity for individualized and precise

diagnosis, prevention, and treatment of NAFLD.
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