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Colorectal cancer (CRC) is the third most common malignancy in the world

and one of the leading causes of cancer death; its incidence is still increasing in

most countries. The early diagnostic accuracy of CRC is low, and themetastasis

rate is high, resulting in a low survival rate of advanced patients. MicroRNAs

(miRNAs) are a small class of noncoding RNAs that can inhibit mRNA translation

and trigger mRNA degradation, and can affect a variety of cellular and

molecular targets. Numerous studies have shown that miRNAs are related to

tumour progression, immune system activity, anticancer drug resistance, and

the tumour microenvironment. Dysregulation of miRNAs occurs in a variety of

malignancies, including CRC. In this review, we summarize the recent research

progress of miRNAs, their roles in tumour progression andmetastasis, and their

clinical value as potential biomarkers or therapeutic targets for CRC.

Furthermore, we combined the roles of miRNAs in tumorigenesis and

development with the therapeutic strategies of CRC patients, which will

provide new ideas for the diagnosis and treatment of CRC.

KEYWORDS
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Abbreviations: CRC, colorectal cancer; 3’-UTR, 3’-untranslated regions; VEGF, vascular endothelial

growth factor; PGE2, prostaglandin E2; EMT, epithelial-mesenchymal transition; MET, mesenchymal-to-

epithelial transition; RASA1RASp21, protein activator 1; PGRN, progranulin; PD-1, programmed death-1;

KEGGKyoto, Encyclopedia of Genes and Genomes; PD-L1, Programmed death ligand 1; MSCs,

mesenchymal stem cells; TME, tumor microenvironment; TAMs, tumor-associated macrophages; 5-Fu,

5-Fluorouracil; OXA, Oxaliplatin; OAZ2O, rnithine Decarboxylase Antizyme 2; MTX, methotrexate; MSS,

microsatellite stability; MSI, microsatellite instability; MSI-H, microsatellite instability-high; MMR,

mismatch repair; lncRNAs, long non-coding RNAs; ncRNAs, non-coding RNAs; ICI, simmune

checkpoint inhibitors; mRNAs, messenger RNAs; circRNAs, circleRNAs; PTCs, patient-derived tumor-

like cell clusters.
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Introduction

Colorectal cancer(CRC) is the third leading cause of cancer

deaths in humans, with an overall incidence of approximately

5% and a 5-year survival rate of 40% to 60% (1). In 2018, there

were approximately 1.8 million new CRC cases and 860,000

deaths. It is estimated that by 2040, the global CRC burden will

increase by 72% to more than 3 million new cases, which will

pose a serious threat to human health (2). Environmental and

genetic factors play an important role in the pathogenesis of

CRC (3). Dietary habits, smoking, low levels of physical activity,

population ageing, and obesity are also factors that affect the

pathogenesis of CRC (3). In recent years, although some

progress has been made in the screening and treatment of

CRC, the overall survival rate of patients with advanced stage

disease remains low. Because the symptoms of CRC patients are

not obvious in the early stage, and the prognosis is poor when it

develops to the advanced stage, early detection and treatment are

particularly important.

MicroRNAs are a group of single-stranded small noncoding

RNAs of 21-23 nucleotides (nt) in length. They were first

discovered and reported in 1993 (4), and an increasing

number of studies have focused on the regulatory role of

microRNAs since then. MicroRNAs play important roles in

biological and pathological processes such as metabolism,

apoptosis, differentiation, cell proliferation, cell cycle, invasion

and metastasis, and are closely related to the occurrence and

development of tumours. They regulate the expression of their

target genes post transcriptionally and they may be involved in

various physiological and pathological processes, including CRC

metastasis, by affecting various factors in the human body (5).

Recent studies have shown that dysregulated microRNAs

play an important role in the development and metastasis of

CRC, and the abnormal expression of microRNAs may act as

potential oncogenes or suppressors in the development of

tumours. Disordered microRNAs may have carcinogenic or

tumour suppressor functions, and can regulate some

oncogenes and tumour suppressor genes. Similarly, they are

also regulated by oncogenes and tumour suppressor genes (6).

Studies have shown that alterations in theWnt/b-catenin, EGFR,
TGF b and TP53 signalling pathways can affect CRC survival,

proliferation and metastasis, and specific miRNAs can lead to

changes in these signalling pathways, thereby promoting or

inhibiting tumorigenesis (7). The same microRNAs may act as

a tumour promoter in one cancer and a tumour suppressor in

another, so there is no need to study the role of the same

microRNAs in different cancers. For example, miR-146a may

have a carcinogenic effect in thyroid cancer and a tumour

inhibitory effect in CRC (8).

As microRNAs could be used for the diagnosis and

prognostic monitoring of CRC, their high tissue specificity and

role in tumorigenesis make them novel biomarkers for

diagnosing cancer and predicting patient outcomes (9).
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Meanwhile, due to the role of abnormal expression of

microRNAs in tumour development and the therapeutic

response, correcting miRNA deficiency or restoring miRNA

function may be a new cancer treatment strategy.

In addition, the association of microRNAs with tumour

angiogenesis, cell proliferation, metastasis, and apoptosis

suggests that the related microRNAs may serve as potential

targets for CRC therapy (10). This article reviews the roles of

microRNAs in the occurrence, development and metastasis of

CRC and provides new ideas for the diagnosis and treatment

of CRC.
Colorectal cancer

CRC is one of the most common gastrointestinal

malignancies, the incidence of CRC in young adults is rapidly

increasing (11). Patient survival is closely related to tumour stage

at diagnosis, with approximately 50% of patients dying from

distant metastases (12). The diagnosis of CRC is generally based

on the evaluation of symptoms or screening. However, because

CRC has no obvious symptoms in the early stage, most tumours

have already metastasized at the time of diagnosis.

The treatment of CRC includes primary tumour resection,

radiotherapy, chemotherapy, targeted therapy, immunotherapy

and so on. Despite advances in surgery and adjuvant therapy,

cure rates and long-term survival have barely changed over the

past few decades (13). Decreased chemotherapy sensitivity

remains a major obstacle preventing effective treatment of

advanced disease. The development of cancer resistance to

chemotherapy also often leads to treatment failure. Although

there are targeted therapies for CRC, there are still relatively few

ways to improve survival (14). Therefore, we need to clarify the

mechanism of tumour progression and find new therapeutic

targets. CRC patients are still at risk of recurrence after surgical

removal of the tumour. Routine surveillance of postoperative

patients to detect recurrence during the early asymptomatic

period is one of the ways to improve survival (15).
MicroRNAS

MicroRNAs are the most abundant small RNAs in animals

and play a key role in the regulation of gene expression. They are

involved in mRNA degradation by binding to the 3’-

untranslated region (3’-UTR) and play important roles in cell

differentiation, development, cell cycle regulation and apoptosis

(6). It is estimated that microRNAs can regulate up to 30% of

protein-coding genes in the human genome (16). Most

microRNAs are detected in the cellular microenvironment, but

circulating microRNAs or extracellular microRNAs can be

detected in extracellular environments such as biological fluids.

Circulating microRNAs exist as proteins or lipoprotein
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complexes in exosomes, microvesicles, apoptotic bodies,

Argonaut protein complexes, and high-density lipoprotein

complexes (17). These molecules are transported to recipient

cells and regulate various physiological and pathological

processes (18).

MicroRNAs are involved in the development and

progression of cancer. Under specific conditions, microRNAs

can act as both tumour promoters and tumour suppressors.

Dysfunctional microRNAs can affect tumour progression,

including maintaining proliferative signals, escaping growth

inhibitors, resisting cell death, activating invasion and

metastasis, and inducing angiogenesis (19). In recent years, an

increasing number of studies have shown that microRNAs are

not only potential biomarkers for CRC diagnosis and prognosis,

but also potential therapeutic targets, and have broad application

prospects in clinical diagnosis and treatment.
The role of microRNAs in
tumour progression

Angiogenesis

Angiogenesis, the process of growing new blood vessels from

venules of the existing capillaries, is an important step in tumour

cell proliferation and metastasis (20). Studies have found that

microRNAs can regulate all stages of angiogenesis (21).

Approximately 33 different microRNA families have been

reported to play a role in angiogenesis (22).

Zeng et al. (23) found that miR-25-3p secreted by CRC can be

transferred to vascular endothelial cells through exosomes, destroy

the integrity of the endothelial barrier, induce angiogenesis, and

promote CRC metastasis. MTDH is a target gene of miR-375 in

CRC. Han et al. (24) proved that the expression level of MTDH is

negatively correlated with the expression of miR-375 in CRC.

Inhibition of miR-375 expression in CRC can regulate cell

proliferation and angiogenesis by increasing the expression of

MTDH. Meanwhile, overexpression of miR-218 can significantly

inhibit angiogenesis (25). In addition, miR-17~92 can inhibit CRC

progression by inhibiting angio-genesis in tumours (26). Hu et al.

(27) showed that exomiR-1229 has a positive effect on

angiogenesis by activating the vascular endothelial growth factor

(VEGF) pathway and may be a therapeutic target for inhibiting

tumour angiogenesis. The recent findings of He et al. (28) revealed

that miR-21-5p secreted by CRC cells is a key switch for cancer-

induced angiogenesis and vascular permeability, and may also

serve as a new target for cancer therapy. Moreover, hypoxia is

closely related to angiogenesis. Targeting hypoxia-related

microRNAs, such as miR-145, can inhibit CRC metastasis and

may also help control tumour metastasis (29). In conclusion, the

pathogenesis of cancer is related to the imbalance of angiogenesis,

and miRNAs can regulate the related pathways of angiogenesis.
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Therefore, they are expected to become potential therapeutic

targets for CRC.
Premetastatic niche formation

The primary tumour creates a favourable microenvironment

for subsequent metastasis in the secondary organs and tissues,

that is, the premetastatic niche. The premetastatic niche can

increase angiogenesis and vascular permeability, thereby

promoting metastasis (30). Therefore, analysis of the

molecular and cellular components of the premetastatic niche

in blood may contribute to the diagnosis and prognosis of cancer

metastasis. The study by Shao et al. (31) showed that during the

development of CRC, miR-21 secreted by primary CRC cells is

phagocytosed by macrophages in the liver, thereby forming a

premetastatic niche in the liver, and circulating CRC cells can

settle there and survive. A recent study demonstrated that

upregulated miR-135a-5p plays a key role in CRC liver

metastasis by promoting the formation of a premetastatic

niche through dual regulation of immunosuppression and cell

adhesion (32). Furthermore, circulating tumour-derived

exosomal miR-203 can promote distant metastasis by inducing

host M2 macrophages to form a premetastatic niche (33).

Exosomal miR-25-3p is also involved in the formation of the

premetastatic niche and may serve as a blood-derived biomarker

for CRC metastasis (23). These studies show that miRNAs can

participate in the formation of the premetastatic niche and

promote CRC metastasis. Quantitative blood detection of the

level of relevant miRNAs in circulating exosomes may be helpful

for the diagnosis of CRCmetastasis and the preventive treatment

of high-risk metastatic patients.
Cell proliferation and metastasis

Immortal proliferation of CRC cells is the basis of cancer

development. MicroRNAs play an important role in the process of

cell proliferation. Previous studies have shown that many

microRNAs can affect the proliferation of CRC cells in different

ways. For example, Huang et al. (34) found that upregulation of

miR-17 could promote CRC proliferation. In contrast, miR-22 can

inhibit the proliferation of CRC cells and slow the growth rate of

tumours (35). In prostaglandin E2 (PGE2)-induced tumour cells,

overexpression of miR-206 can reduce the proliferation of CRC

cells (36), which may be a potential therapeutic target for PGE2-

induced CRC cells. In addition, upregulation of miR-1258 and

miR-500a-5p both inhibited tumour cell proliferation by blocking

the cell cycle in G0/G1 (37, 38).

MicroRNAs can control multiple aspects of epithelial-

mesenchymal transition (EMT) and mesenchymal-epithelial

transition (MET) and support tumour progression and

metastasis (39) (Figure 1). Exosomes from tumour cells can
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transfer miRNAs to normal cells, stimulating carcinogenesis and

promoting metastasis (40). Exosomes promote EMT by

targeting RASp21 protein activator 1 (RASA1) to deliver miR-

NA-335-5p, thereby promoting CRC cell invasion and

metastasis (41). In addition, miR-29b-3p can directly target

progranulin (PGRN) to alter the downstream Wnt signalling

pathway and promote EMT (42). The miR-496/RASSF6 axis can

also promote EMT and CRC migration through Wnt signalling

(43). The study by Wang et al. (44) showed that miR-25-3p,

miR-130b-3p, and miR-425-5p can induce tumour cell

proliferation and metastasis, and may be potential therapeutic

targets for blocking CRC metastasis.

In addition to cancer-promoting microRNAs, there are also

cancer-suppressing microRNAs. Upregulation of miR-200c can

inhibit EMT, thereby inhibiting tumour progression (45).

Furthermore, the expression of miR-382-5p was significantly

down-regulated in CRC tissues and cell lines. Upregulation of

miR-382-5p expression can target NR2F2 and PD-L1, thereby

inhibiting CRC cell proliferation and metastasis (46, 47).

Przygodzka et al. (48) reported that miR-192 and miR-194 can

inhibit snail-induced EMT and metastasis. Therefore,

prevention of EMT may be a promising approach to block

CRC metastasis. In a word, under normal physiological

conditions, miRNAs can maintain the normal regulation of

some cellular processes, and their abnormality will lead to

abnormal growth and biosynthesis of cells, thus promoting or

inhibiting the spread and metastasis of tumors.
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Apoptosis

Apoptosis is a programmed death process that occurs during

normal cell development and senescence. Chemotherapy forces

cancer cells to undergo apoptosis by causing DNA damage or

cell damage. Abnormal apoptosis is one of the pathogenic

mechanisms of CRC and plays a role in the resistance to

chemotherapeutic drugs and radiotherapy (49). MicroRNAs

play an important role in tumour cell apoptosis and drug

resistance. Activation of the caspase family of proteases is the

main pathway for inducing apoptosis (50). MiR-433 can increase

the expression of caspase-3 and caspase-9, thereby promoting

apoptosis (51). Overexpression of miR-218 can also promote

CRC cell apoptosis by increasing caspase-8 levels (52). In the

Kyoto Encyclopedia of Genes and Genomes (KEGG) apoptosis

pathway, miR-92a is associated with two apoptosis-related

genes, CSF2RB and BCL2L1. Moreover, increased expression

of miR-92a-3p in tumour tissue can improve patient survival

time (53). Overexpression of miR-766 reduces CRC cell growth

and induces apoptosis by inhibiting the MDM4/p53 pathway

(54). MiR-27a-3p increases apoptosis through the ERK-MAPK

pathway, while miR-422a induces apoptosis in CRC cells

through the p38-MAPK pathway (55, 56). In contrast, mi-421

exerts an anti-apoptotic effect in CRC by downregulating

caspase-3 (57). Therefore, the regulation of microRNAs will

help to regulate the occurrence and development of CRC,

promote cancer cell apoptosis, and alleviate drug resistance.
FIGURE 1

Epithelial-mesenchymal transition (EMT) is regulated by microRNAs in colorectal cancer (CRC). MicroRNAs affect multiple signalling pathways and
participate in EMT by decreasing epithelial markers (e-cadherin, claudin, and occludin) and increasing interstitial markers (vimentin, fibronectin, and
N-cadherin). During this process, epithelial cells acquire mesenchymal phenotypes, which play an important role in the progression and metastasis
of CRC. Tumour cells that have undergone EMT can invade the local stroma and enter the vasculature, travel in the circulation, and finally establish
a secondary tumour at a distant site. This figure summarizes some microRNAs involved in the EMT process in CRC.
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Immune system activity

Escape from immune system surveillance is an important

link in tumorigenesis and development. Studies have shown that

microRNAs may be involved in the immune escape process of

CRC and are significantly associated with tumour survival.

MicroRNAs may be involved in the differentiation of

monocytes into M2 macrophages, which have been implicated

in playing key roles in colon cancer (58, 59). Exosomes derived

from M2 macrophages transfer miR-21-5p and miR-155-5p to

CRC cells, promoting cell migration and invasion (60). The

results of Ma et al. showed that M2 macrophage-derived

exosomal miR-155-5p could promote immune escape by colon

cancer, enhancing the progression of CRC (61). Studies have

shown that miR-203-containing exosomes released by CRC cells

can be internalized by monocytes, thereby promoting the

expression of M2 markers (33). However, the PD-1/PD-L1

pathway, as an important immune checkpoint, is dysregulated

in various human malignancies, including CRC, and is involved

in tumorigenesis by inhibiting antitumor immune response.

MiR-124 inhibits PD-L1 expression in CRC cells, which in

turn promotes T-cell mediated anti-cancer responses (62). In

conclusion, the interaction between miRNAs and immune

checkpoints has great application prospects in the personalized

treatment of CRC in the future.
Impact on the tumour microenvironment

Tumour growth and metastasis are highly dependent on the

interaction between tumour and relevant microenvironment,

and several miRNAs have been shown to play a key role in the

interaction between tumour and tumour microenvironment

(TME). In every step of tumour growth and metastasis,

complex molecular interactions occur between cells in the

tumour microenvironment, such as fibroblasts and immune-

related cells (63). Cancer-associated fibroblasts (CAFs) affect

tumour growth by regulating inflammation or direct cell-to-cell

communication. Studies have shown that miRNA can alter

chemokines secreted by fibroblasts to alter TME, thereby

promoting migration and invasion (64). Tumour-derived

microRNAs affect the matrix and immune cell components of

the tumour microenvironment. In TME, miRNA is considered

to be an important molecular mechanism for the interaction

between tumour cells and immune cells. For example, miRNAs

can control the production of chemokines or cytokines by

tumour cells, which in turn affect the aggregation and

expansion of immune cells (65). Tumour-associated

macrophages (TAMs) are the key components of TME, and

miRNAs play an important role in the regulation of TAMs on

tumour progression. TAMs have been shown to be associated

with a poor prognosis of CRC. TAMs can induce EMT in CRC
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cells by regulating the STAT3/miR-506-3p/FoxQ1 axis, thereby

promoting metastasis (66). However, miR-195-5p could inhibit

the polarization of M2-like TAMs, and patients with low miR-

195-5p levels have significantly shorter overall survival

times (67).

Mesenchymal stem cells (MSCs) are also an important part

of the TME and play a key role in promoting tumour

progression (68). In the TME, microRNAs generally have

tumour-promoting effects and are an important direction for

future cancer therapy. Although MSCs have some antitumor

activity, microRNAs mediate immunosuppressive activity (69),

which provides ideas for future cancer therapy. Intestinal

microRNAs can influence the growth and composition of the

intestinal microbiota (70). The pathogenesis of CRC is also

associated with disorder in the microbiota, termed ecological

disorder (71). Imbalances in microRNAs can affect the survival

or gene expression of some beneficial bacteria in the microbiota.

Dysfunctional microRNAs in tumour cells can be transmitted to

stromal cells and immune cells, creating a more favourable

microenvironment for tumour cells (72). Thus, microRNAs

can modulate the microbiota, promoting the growth of

beneficial bacteria and inhibiting the growth of cancer-causing

bacteria. In short, the interaction between microRNAs and the

TME may also be one of the entry points for antimetastatic

treatment in the future.
The role of microRNAs in
tumour tumourigenesis

MiRNAs also play an important role in the initiation

of human cancer. MiRNAs are related to the pathogenesis of

various types of human malignant tumours. In several types of

cancer, the decreased expression of miR-34 and let-7 can trigger

tumorigenesis, and the up-regulation of miR-34 and let-7 can

lead to tumour growth inhibition (73). Moreover, there is ample

evidence that miRNAs are closely related to the dysregulation of

several key pathways in CRC. miR-31 is a potential driver of

colon tumorigenesis by targeting EphB2 and EphA2 signalling

pathways (74). Mamoori et al. (75) demonstrated that miR-21

expression was increased many times in colonic cancer stem cells

compared to parental cells. Moreover, since the expression of

miR-21 is increased, the expression level of PTEN in the colon

bulb is decreased, and the Akt signalling pathway is activated,

miR-21 is considered to play an important role in the

tumorigenic regulation of colon cancer stem cells.

Inflammation also drives the steps of tumorigenesis. Jeffries

et al. (76) found that miR-223 can regulate tumorigenesis at

multiple levels, including by inhibiting the inflammatory tumour

microenvironment and regulating the malignancy of cancer

cells. And some studies have proved that the level of miR-223

can be used to predict the probability of CRC by sequencing
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circulating exosomal miRNAs (77). MiRNAs can be used as

therapeutic targets and prediction means, and are potential tools

for cancer management and treatment in the future. However,

more research is needed before they can be applied to clinic.
Clinical applications

Early diagnosis

Increasing evidence suggests that miRNAs can serve as non-

invasive biomarkers for CRC diagnosis and prognosis (Figure 2).

They exist in the bloodstream in a highly stable form by binding

to specific proteins or vesicles (78, 79). Karimi et al. (80) showed

that miR-23a and miR-301 were upregulated in patients

compared with healthy individuals, which can be used to

distinguish CRC patients from normal subjects. Zhu et al. (81)

found that miR-19a-3p, miR-21-5p and miR-425-5p were

significantly upregulated in CRC patients compared with

healthy individuals. Cheng et al. (82) found that the

circulating abundance of exocrine miR-146a correlated with

high levels of CD66 neutrophils. However, the proportion of

tumour-infiltrating TCD8 cells decreased. MiR-146a is the main

miRNA in the exosomes of CRC stem cells and can be used as a

diagnostic biomarker. In addition, both miR-486-5p and miR-

18b-5p have potential for use as non-invasive biomarkers for the

early diagnosis of CRC (83, 84). Min et al. (85) found that miR-

92b was differentially expressed in CRC patients and healthy

individuals but could not be used to differentiate between CRC

and adenoma. Even so, it has promise as a minimally invasive
Frontiers in Oncology 06
tool for the early diagnosis of CRC. In addition, miR-21, miR-

155, and miR-221, which are expressed differently in colon and

rectal cancers, can be used to distinguish colon and rectal cancer

(86). In addition, the levels of miR-17-5p and miR-92a-3p

isolated from serum exosomes were found to correlate with

the pathological stage and grade of patients with CRC (87).

Numerous studies have shown that microRNAs in serum,

exocrine and even faeces have the potential for early diagnosis.

Decreased expression of miR-4478 and miR-1295-p in stool

specimens is a noninvasive and effective diagnostic marker for

CRC patients, which can be detected at an early stage of CRC,

suggesting that it may be a promising CRC screening approach

(88). Moody et al. (89) found that miR-20a in the faeces of CRC

patients also serves as a potential prognostic biomarker.

Furthermore, stool miR-135b-5p is not only a potential

biomarker but also an ideal candidate intervention strategy for

CRC patients (90). The establishment of appropriate miRNA

biomarkers is very important for the early diagnosis of CRC. Of

course, prospective studies with larger patient cohorts are

needed to confirm the diagnostic value of these microRNAs.

Further efforts are required before microRNAs in faeces can be

used clinically.

Treatment options for patients with CRC require accurate

assessment of TNM staging. Therefore, biomarkers that can

accurately predict preoperative TNM staging will significantly

improve the treatment efficiency of CRC. Bjørnetrø et al. (91)

found that low levels of miR-486-5p and miR-181a-5p were

associated with locally advanced dis-ease and lymph node

metastasis, while high levels of miR-30d-5p were associated

with metastatic progression. Orosz et al. (86) also evaluated
FIGURE 2

Application of miRNAs as biomarkers for colorectal cancer (CRC). MicroRNAs are generally expressed abnormally in CRC patients. Blood samples
collected from CRC patients are used as a source of circulating exosomes and after their isolation, we can analyse the pattern of microRNA
expression, which is helpful for the diagnosis and treatment of CRC. This can play an important role in the early diagnosis of cancer, identification of
high-risk patients requiring intensive treatment, monitoring of drug efficacy and real-time monitoring of the effectiveness of treatment.
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the potential of several microRNAs to distinguish individual

TNM stages. The results showed that the expression levels of

miR-155, miR-34a, and miR-29a in the serum of TNMII, III, and

IV patients were downregulated.
Treatment of CRC

Drug resistance
Although good progress has been made in the systemic

treatment of tumours in recent years, in addition to surgery,

chemotherapy is still the main treatment for CRC. The resistance

of cancer cells to chemotherapy is a major factor leading to

chemotherapy failure, often resulting in a poor prognosis. Many

studies have shown that there is a certain relationship between

tumour drug resistance and microRNA imbalance. Tumour

drug resistance can occur through a variety of mechanisms,

including apoptosis inhibition (92). Studies have shown that

ectopic expression of miR-520 g resists 5-FU-induced apoptosis

by inhibiting the expression of p21 (6). Decreased levels of miR-

125b-5p have also been shown to contribute to tumour cell

metastasis and 5-FU chemotherapy resistance (93). Similarly,

miR-22 and miR-206 can also promote apoptosis induced by 5-

FU (94, 95). Recent studies have shown that the tumour

suppressor miR-27b-3p can increase the sensitivity of CRC

cells to 5-FU (96). Oxaliplatin (OXA) resistance is also a

major obstacle to the treatment of advanced CRC. Li et al.

(97) reported that miR-34a was significantly downregulated in

OXA-resistant patients, which could reduce OXA resistance by

targeting OAZ2. In addition, studies have shown that miR-128-

3p can enhance tumour sensitivity to chemotherapy and may

become a promising OXA chemotherapy marker (98). In

contrast, mir-5000-3p, mir-135b-5p, and mir-208b were

associated with decreased sensitivity to OXA chemotherapy

(99–101). Recent studies have shown that miR-24-3p can

enhance the resistance of CRC cells to methotrexate

(MTX) (102).

The hypothesis that drug resistance is the result of tumour-

host interactions has been proposed, suggesting new strategies

for overcoming the development of cancer chemotherapy

resistance (103). Studies have shown that miR-21 and 5-FU

combined with engineered exosomes can effectively reverse the

drug resistance of 5-FU-resistant colon cancer cells and improve

therapeutic efficiency (104). More efforts are needed to prevent

cancer cells from developing resistance to chemotherapy and to

try to resensitize cancer cells to chemotherapy drugs (Table 1).

There are two different types of CRC: “microsatellite stability”

(MSS) and “microsatellite instability” (MSI). Cancers of MSS

and MSI types promote tumorigenesis and progression through

two distinct molecular pathways (105). Microsatellite stability-

high (MSI-H) is caused by functional defects in the DNA

mismatch repair (MMR) system. MSI-HCRC immune

checkpoint molecules, such as PD-1 and PD-L1, have
Frontiers in Oncology 07
been shown to be resistant to the antitumor immune

response (106). MicroRNAs can play a role in cancer-related

immune responses by targeting immunosuppressive or

immunostimulatory factors. It has been proven that miR-140-

3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-

200c-3p, miR-138-5p and miR-15b-5p can regulate immune

escape by inhibiting tumour PD-L1. They can also transform

the immunosuppressive tumour microenvironment into a

proinflammatory tumour microenvironment, enhancing the

chemosensitivity of tumour cells (107). Therefore, it may be

possible to alleviate the drug resistance of MSI-H CRC by

regulating microRNAs.

Long noncoding RNAs (lncRNAs) are noncoding RNAs

(ncRNAs) and microRNAs. Studies have shown that lncRNAs,

as precursors of microRNAs, are also associated with drug

resistance. For example, the lncRNA MIR100HG, a precursor

of miR-100 and miR-125b, can lead to cetuximab resistance

(108). The lncRNA-XIST/miR-125b-2-3p axis can also induce

chemoresistance in CRC, but the specific mechanism by which it

affects chemosensitivity has not been elucidated (109). The

complex feedback loop between lncRNAs and microRNAs

may provide new perspectives for the reversal of CRC drug

resistance. In contrast, the lncRNA-XIST/miR-137 axis can

enhance CRC glycolysis and chemotherapy resistance,

providing a possible alternative to improve chemotherapy

efficacy in CRC patients (110).
Therapeutic target and microRNA therapy
The aberrant expression of microRNAs plays an important

role in the development of cancer and the response to anticancer

drugs. Correcting microRNA defects or restoring microRNA

function can be used as a new cancer treatment strategy.

MicroRNAs have been proven to be therapeutic targets for

CRC (111). For example, miR-135b has been shown to be

upregulated in CRC and associated with tumour progression

and a poor clinical prognosis. Therefore, tumour growth can be

inhibited by reducing miR-135b. Studies have shown that

blocking exocrine miR-25-3p in CRC can reduce the vascular

permeability and metastasis of CRC, suggesting that miR-25-3p

can be used as a therapeutic target for interfering with CRC

metastasis (23).

With the development of high-throughput sequencing

technology, the interaction of the gene expression network

system comprised of messenger RNAs (mRNAs), miRNAs,

lncRNAs and circular RNAs (circRNAs) in CRC progression

has been discovered. It has been proven that lncRNA-miRNA

cross-talk is a novel mechanism affecting CRC cell proliferation,

invasion and metastasis (112). For example, lncRNA TUG1 can

promote the growth and migration of CRC cells by secreting

miR-145-5p, and the TUG1/miR-145-5p/TRPC6 pathway can

serve as a target for CRC diagnosis and therapy (113). Liu et al.

showed that the circIFT80/hsa-miR-370-3p/WNT7B signalling
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axis might also play a role in carcinogenesis (114). CircIFT80

inhibits the expression of hsa-miR-370-3p in CRC cell lines,

thereby inhibiting apoptosis. Therefore, in addition to research

on microRNAs, research on lncRNAs and circRNAs may also

provide new ideas for the targeted therapy of CRC.

In recent years, the application of immune checkpoint

inhibitors (ICIs), especially anti-PD-1 therapy, has greatly

improved the efficiency of tumour treatment. However, the

role of ICIs in CRC is generally limited to MSI-H tumours.

The latest study by Liu et al. (115) found that miR-15b-5p

downregulated the expression of PD-L1 at the protein level,

inhibited tumorigenesis, and improved the sensitivity to anti-

PD-1 therapy. Elevating the level of miR-15b-5p can improve

the sensitivity of MSS CRC patients to ICI treatment. Blocking

oncogenic microRNAs may adversely affect the physiological

functions regulated by these microRNAs, thus requiring specific

sites or cellular targets to avoid potential adverse effects. At the

same time, extensive clinical trials are needed to evaluate the

efficacy and safety of microRNAs as therapeutic targets

in patients.

Despite advances in the application of immune checkpoint

blockade therapy in malignancies, CRC patients usually only

benefit if they have tumours with mismatch repair deletions or

severe mutations in MSI-H (116). However, most tumours are

MSS, so immunotherapy has a low response rate in treating

CRC. Many studies have shown that microRNAs can modulate

immune responses, and some of these microRNAs can inhibit

the progression of CRC and are expected to be effective

antineoplastic drugs. Since the disorder of microRNAs was

first discovered in cancer, it has been studied extensively and

uncovered new therapeutic possibilities. MiRNAs can regulate

multiple signalling pathways of the immune system and have the

advantage of multiple targets (117). Previous studies have shown

that restoration of miR-34 expression can reduce the

proliferative potential of CRC cells; thus, miR-34 can be used

as a therapeutic drug (118). In addition, miR-34 can also

increase tumour sensitivity to 5-Fu, thereby reversing drug

resistance (119). Unfortunately, the therapeutic application of
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microRNAs is limited by technical barriers. MicroRNA

molecules are unstable and are rapidly cleared from the blood,

with only a small fraction absorbed by cells (120).

In some studies, exosomes have been used as transporters for

microRNA drugs, and the lipid bilayer membrane of exosomes

can protect exosomes from being degraded during blood

circulation. Han et al. (121) used CBMSC-derived exosomes to

infiltrate anti-miRNA-221 into solid tumours and significantly

inhibited tumour growth. As a tumour suppressor microRNA,

miR-124 can regulate several oncogenes and signalling pathways

closely related to tumour growth and promote T-cell dependent

immune responses. The study by Rezaei et al. (1) used CT-26-

derived exosomes as a natural vehicle for miR-124-3p delivery,

which elicited potent antitumor immune responses and reduced

tumour growth. In the future, the response rate of

immunotherapy may be significantly improved by increasing

the technology of exosomes carrying microRNAs. However, the

source of exosomes is limited and lacks targeting, there are still

many challenges in future applications, and further research is

needed. In addition, the efficacy and safety of microRNA therapy

in patients need to be studied.
Prognosis of colon cancer

Predicting recurrence
Approximately one-third of patients with CRC undergoing

radical surgery will experience disease recurrence (13). Studies

have shown that miRNAs can be used as biomarkers for

predicting CRC recurrence, which is beneficial to the

prognosis of CRC patients. The serum levels of exocrine miR-

1229, miR-1224-5p, miR-223, let-7a, miR-150 and miR-21 in

CRC patients were significantly increased, and then they

decreased after resection (122). Plasma miR21-5p could be

used to predict recurrence and disease progression after

surgical resection (123). Studies have shown that serum

exocrine miR-21 could be used to predict CRC recurrence and

a poor outcome in TNM stage II, III, or IV (124). In addition,
TABLE 1 Several microRNAs are involved in CRC resistance.

microRNA Effect on drug resistance Type of drug Target(s) Reference

miR-520g Inhibit 5-FU P21 (6)

miR-125b-5p Inhibit 5-FU Sp1, CD248 (93)

miR-22 Inhibit 5-FU HDACs (94)

miR-206 Inhibit 5-FU Bcl-2 (95)

miR-34a Inhibit OXA OAZ2 (97)

miR-128-3p Inhibit OXA Bmi1,MRP5 (98)

miR-5000-3p Promote OXA USP49 (99)

miR-135b-5p Promote OXA MUL1 (100)

miR-208b Promote OXA PDCD4 (101)

miR-24-3p Promote MTX CDX2 (102)
fro
ntiersin.org

https://doi.org/10.3389/fonc.2022.911856
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liang et al. 10.3389/fonc.2022.911856
postoperative plasma miR-31, miR-141, and miR-16 have also

been shown to be biomarkers of disease recurrence after surgical

resection (125). In general, for patients with stage II CRC,

surgical resection of the primary tumour is effective and may

not require other treatment, but whether adjuvant

chemotherapy should be used in patients with stage II CRC

remains controversial (111). Yamazaki et al. (126) proposed that

high expression of miR-181c plays a role in predicting

recurrence of stage II CRC. Through the study of microRNAs,

it is possible to assess which postoperative patients with stage II

CRC may benefit from adjuvant therapy (Table 2).

Aberrant expression of microRNAs as biomarkers may

contribute to individualized treatment of patients. A study by

D’Angelo et al. (128) showed that miR-194 was a potential

predictive biomarker of chemotherapy response. Meanwhile,

other studies have found that miR-33a-5p, miR-21, miR-99b,

and miR-375 can predict clinical response and outcomes in

patients treated with radiotherapy and chemotherapy (127, 129).

Yin et al. (130) established an in vitro tumour model called

patient-derived tumour-like cell clusters (PTCs), which has been

shown to be useful for assessing tumour sensitivity to drugs. By

incorporating microRNAs as markers into this predictive model,

real-time efficacy monitoring can be achieved to assess the

benefit of chemotherapy or targeted therapy.

Metastasis of colon cancer
Approximately 50% of CRCs will metastasize in the advanced

stage of malignant tumours, and distant metastasis is the main

cause of death of CRC patients (Figure 3). Early detection and

treatment of distant metastasis is of great significance to improve

the long-term survival of CRC patients. MicroRNAs are

significantly associated with tumour metastasis. Several

microRNAs, including members of the miR-34 and miR-200

families, have been found to target the mRNAs of EMT

transcription factors, such as ZEB1, ZEB2, and SNAIL (131).

Downregulation of these microRNAs is associated with distant

metastasis and advanced tumours. The liver is the most common
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metastatic site of CRC. The study by Hur et al. (132) showed that

elevated serum miR-203 levels are closely associated with liver and

systemic metastasis. Teng et al. (133) detected significantly elevated

plasma miR-193a levels in CRC patients with liver metastasis. Lan

et al. (60) found that miR-21-5p and miR-155-5p were transferred

to CRC cells via exosomes and were key factors in promoting CRC

metastasis. Preventing such messages may be a new strategy to

suppress CRC metastasis. These microRNAs can be used as

biomarkers to determine prognosis and predict distant metastasis.

MiR-181a is significantly upregulated in CRC tissues of patients

with liver metastases and promotes tumour cell growth and

proliferation, which is closely associated with distant metastasis

and poor survival (134). In contrast, miR-802 is negatively

correlated with lymphatic and distant metastasis of CRC (135),

and may be a regulatory target for suppressing metastasis.

Induction of muscular dystrophy
Cachexia is a complex metabolic and behavioural syndrome

associated with underlying disease and is characterized by loss of

skeletal muscle. Previous studies have found a significant

correlation between skeletal muscle mass and circulating miR-

21 expression in CRC patients, suggesting that assessment of

serum miR-21 levels can be used to assess the risk of sarcopenia

and cancer cachexia in patients with CRC (136). The results of

Miao et al. (137) suggest that abundant microRNAs in tumour

exosomes may induce muscle atrophy mainly by targeting Bcl-2-

mediated apoptosis. In addition, the detection of serum miR-203

expression can be used to evaluate the risk of sarcopenia, and

miR-203 may be a new therapeutic target for inhibiting

sarcopenia in patients with CRC (138).
Conclusion and perspectives

MicroRNAs have a wide range of biological functions and

are involved in many physiological and pathological processes,

including cancer. An increasing number of studies have shown
TABLE 2 Examples of microRNAs associated with CRC prognosis.

microRNA Clinical application reference

miR21-5p Predicting recurrence after surgical resection as well as disease progression (123)

miR-21 Prediction of CRC recurrence and poor prognosis when stratified by TNM stage II, III or IV;
Prediction of clinical response and outcome in patients treated with chemoradiotherapy

(124, 127)

miR-31 Biomarkers of disease recurrence after surgical resection (125)

miR-141 Biomarkers of disease recurrence after surgical resection (125)

miR-16 Biomarkers of disease recurrence after surgical resection (125)

miR-181c Prediction of CRC recurrence with TNM stage II (126)

miR-194 Potential predictive biomarkers of chemotherapy response (128)

miR-33a-5p Predictive markers of chemotherapy efficacy (129)

miR-99b Prediction of clinical response and outcome in patients treated with chemoradiotherapy (127)

miR-375 Prediction of clinical response and outcome in patients treated with chemoradiotherapy (127)
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that microRNAs play an important role in the progression and

metastasis of CRC. Specific microRNAs can be used to overcome

diagnostic and therapeutic challenges of different types of

tumours. The combination of novel microRNA markers with

traditional biomarkers may help to improve the specificity and

sensitivity of detection. Using microRNAs as new therapeutic

targets to correct maladjusted microRNAs would be a promising

approach for CRC therapy. In future studies, we should

determine which biological fluids and assays are most suitable

for CRC screening and which microRNA combinations have the

best diagnostic performance. We should maximize the specificity

of these microRNA biomarkers. At the same time, we should

increase our understanding of the role of microRNAs in the

molecular pathogenesis and treatment of cancer. This will

facilitate the clinical application of microRNAs.

At present, some progress has been made in the study of

microRNAs reversing drug resistance, but there are still few

studies on immunotherapy resistance in MSI-H CRC. In

addition, the biggest problem facing microRNA therapy is the

choice of carrier. Nanoparticles or exosomes are used as carriers in

the current studies. Both of these carriers have certain limitations,

and more research is needed to overcome these difficulties

and allow for their application in clinical practice. The roles and

functions of individual microRNAs in CRC remain unclear and

more research is needed. Investigating the effects of microRNAs

on the occurrence, development and metastasis of CRC is of great

significance for the diagnosis and treatment of CRC.

lncRNAs, circRNAs andmicroRNAs are all ncRNAs and have

great potential in clinical applications. Accumulating evidence

suggests that a complex regulatory net-work exists between

lncRNAs, circRNAs, and microRNAs. They have great
Frontiers in Oncology 10
biological potential and may regulate CRC initiation,

progression and metastasis. However, the exact mechanisms of

how these interactions affect tumorigenesis and progression have

not been fully revealed. Future analysis of different RNA

molecules with potential crosstalk may provide new insights

into the diagnosis and treatment of CRC, contributing to the

improvement of biomarker prediction and the development of

new treatments.
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FIGURE 3

Signalling pathways involved in CRC metastasis. CRC metastasis is mediated by a complex network of signalling pathways, which include the
Wnt/b-catenin signalling pathway, TGF-b/Smad pathway, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue (PTEN)/AKT
pathway, KRAS-ERK signalling pathway, NF-kB signalling pathway, and JAK/STAT3 signalling pathway. These pathways lead to tumour anti-
apoptosis, EMT, proliferation, and invasion.
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