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Glioblastoma is the most common primary malignant tumor in the brain and has a dismal
prognosis despite patients accepting standard therapies. Alternation of genes and
deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/
MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-
chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play
pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the
abnormalities change the cellular biological behavior and microenvironment of tumor
cells. The differences between tumor cells and normal tissue become the vulnerability of
tumor, which can be taken advantage of using targeted therapies. Small molecule
inhibitors, as an important part of modern treatment for cancers, have shown
significant efficacy in hematologic cancers and some solid tumors. To date, in
glioblastoma, there have been more than 200 clinical trials completed or ongoing in
which trial designers used small molecules as monotherapy or combination regimens to
correct the abnormalities. In this review, we summarize the dysfunctional molecular
mechanisms and highlight the outcomes of relevant clinical trials associated with small-
molecule targeted therapies. Based on the outcomes, the main findings were that small-
molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the
clinical studies involving progressive glioblastoma usually claimed “noninferiority”
compared with historical results. However, as to the clinical inferiority trial, similar
dosing regimens should be avoided in future clinical trials.

Keywords: glioblastoma, small molecule inhibitor, molecular mechanism, TKI—tyrosine kinase inhibitor,
clinical trial
Abbreviations: GBM, glioblastoma multiforme; TCGA, The Cancer Genome Atlas; GSCs, glioma stem cells; NCCN, National
Comprehensive Cancer Network; TMZ, Temozolomide; RT, Radiotherapy; Bev., Bevacizumab; EGFR, Epidermal growth
factor receptor; OS, Overall survival; mOS, Median overall survival; PFS, Progressive free survival; mPFS, Median progressive
free survival; OR, Response rate; PR, partial response; CR, complete response; SD, stable disease; RTK, Receptor tyrosine
kinase; TKI, Tyrosine kinase inhibitor; nRTK, Nonreceptor tyrosine kinase; BBB, Blood–brain barrier; HDAC, Histone
deacetylases; mTOR, mammalian target of rapamycin; PTEN, Phosphatase and tensin homolog; PARP, Poly (ADP-Ribose)
polymerase; Grb,2Growth factor receptor-bound protein 2; GPCRs, G Protein-Coupled Receptors; NHEJ, Nonhomologous
DNA end joining; HR, Homologous recombination repair system; BER, Base excision repair.
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INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant
brain tumor. Based on the data from 2011 to 2015 in the United
States, the average annual age-adjusted incidence of GBM is 3.21
per 100,000 population, with an overall prevalence of 9.23 per
100,000 population (1). Maximal safe surgical resection followed
by radiotherapy with concomitant and adjuvant temozolomide
has gradually become the standard regimen since 2005 (2).
However, after standard therapy, almost every patient recurs
within 6 months, and there is no effective therapy for recurrent
GBM (3, 4). Although plenty of effort has been made toward
studying the mechanisms of pathogenesis and progression of
glioma, there was no significant change in treatment regimen
and survival for GBM patients. In the past 20 years, targeted
cancer therapies were promising methods, and simultaneously,
various targeted drugs gradually entered clinical trials and then
were approved by the FDA for cancer treatment.

Gliomas were deemed to derive from neural stem cells and,
based on different classification criteria, can be generally divided
into circumscribed gliomas and diffuse gliomas, or into low-
grade (WHO I, II) and high-grade (WHO III, IV), or adult-type
and pediatric-type (5–7). Futhermore, adult high-grade diffuse
glioma affects the most people and is also the hardest to cure,
predominantly including GBM (WHO IV) and anaplastic glioma
(AG, WHO III, including AOD: anaplastic oligodendroglioma
and AA: anaplastic astrocytoma) and accounts for approximately
80%. In 2008, Parsons et al. computed by the TCGA database
and proposed three core alterations of signaling pathways in
GBM: P53, retinoblastoma pathway (pRB), and receptor tyrosine
kinases (RTKs) (8). Besides, mutation of phosphatase and tensin
homo l o g d e l e t e d on ch r omo s ome t e n ( PTEN) ,
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neurofibromatosis (NF1), isocitrate dehydrogenase (IDH), B-
Raf Proto-Oncogene (BRAF), and chromosome 1p19q co-
deleted are common in glioma, even being used for molecular
classification and prognosis prediction. In 2016, it was the first
time the WHO Classification of CNS Tumors used molecule
profiles to define the sub-types of gliomas. It is an important way
to translate the abundant knowledge of the moleculer
mechanisms to clinical applications (9). But regardless of IDH
mutation, 1p/19q co-deletion, and H3 K27 mutation, the therapy
regimen is similar and the classification method plays a limited
role in guiding treatment. On the other hand, all the typical
hallmarks of cancer can be detected in GBM, especially
angiogenesis, tumor-promoting immune microenvironment,
and reprogramming metabolism, which is gradually getting
attention (10). The relative mechanisms of the hallmarks
become therapeutic targets (Figure 1). Over the last two
decades, since the specimen which was capable of generating
tumor cells containing multiple lineage markers was reported,
the concept of glioma stem cells (GSCs) has been more and more
accepted by scientists (11, 12). GSCs are ascribed to a population
accounting for heterogeneity in glioma mass and therapeutic
resistance through self-renewal and differentiation to variant
subpopulations. The elucidation of features of GSCs may be a
key step in developing next-generation therapies (13). However,
GSCs were not a bulk of homogeneous cells but rather a mosaic
of discrete populations with distinct features (14). The
complexity of GBM requires us to more deeply understand the
mechanisms, in particular, the genetic and phenotypic
characteristics of subclones distributed in the mass of tumor
(15, 16).

NCCN guidelines on central nervous system cancers indicate
that the preferable treatment option for patients with recurrent
FIGURE 1 | The major druggable targets in glioblastoma and corresponded hallmarks of tumor.
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GBM is enrollment in clinical trials due to the dismal outcomes of
other therapies, including carmustine/lomustine, TMZ,
radiotherapy, and bevacizumab (Bev.). There are more than 1,500
clinical trials associated with glioma completed or ongoing, among
which contain hundreds of targeted therapies (https://clinicaltrials.
gov/, Figure 2). Targeted therapies predominantly include two
methods: small molecule and monoclonal antibodies.
Simultaneously, various gene therapies such as microRNA,
lncRNA, and exosome are a hotspot of research. Compared with
monoclonal antibodies, small-molecule inhibitors possess several
exclusive characteristics: reduced financial burden, taken orally, and
more extensive druggable targets, including intracellular proteins
(17). According to the targets of the small molecule inhibitors, we
divided them into three main categories: tyrosine-kinase inhibitor
(TKI), non-receptor tyrosine kinase (nRTK), intracellular signal
transduction pathway inhibitor, and cellular biological process
inhibitor. TKIs are still the most studied small-molecule
Frontiers in Oncology | www.frontiersin.org 3
inhibitors. But the outcomes of TKIs for the treatment of GBM
and AG are often disappointing. An important reason for this is the
complex network of intracellular signaling pathways leading to drug
resistance. Besides, interference with biological processes and
impact on the hallmarks of tumor growth can inhibit the growth
of tumors through different mechanisms. In this review, we revisited
the outcomes of recent clinical trials of adult high-grade glioma
(mainly including GBM and AG) published in PubMed and the
functional mechanisms of small-molecule inhibitors (Additional
File 1). We hope to provide advice on the combination of drugs in
future clinical trials by understanding the characteristics of
different drugs.

RTK

Receptor tyrosine kinases (RTKs) and the downstream signal
transduction are the most characterized networks associated
FIGURE 2 | The time line of publicly published clinical trials of the small-molecule inhibitors.
June 2022 | Volume 12 | Article 911876

https://clinicaltrials.gov/
https://clinicaltrials.gov/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Small-Molecule Inhibitors in Glioma
with glioma pathogenesis and progression. To date, scientists
have found more than 60 RTKs such as EGFR, VEGFR, MET,
PDGFR, and FGFR (18, 19). Mutations in RTKs are also the most
frequent alterations in GBM, namely, copy number variation,
structure variation, nucleotide variation, and over-activation of
the autocrine growth factor/receptor loop (18, 20). And then
RTKs cause deregulation of several important pathways, namely,
Ras/MAPK, PI3K/Akt/PTEN, PLC gamma/PKC, and Jak/
STAT3 (21, 22). For instance, more than 50% of GBM harbor
EGFR amplification and 25% cause EGFR mutation (23).
EGFRvIII, a common mutant of EGFR which is continually
activated even without ligand binding to the receptor, occurs
after the pathogenesis of GBM to change the pattern of tumor
growth and increase the intra-tumoral heterogeneity and
resistance to targeted therapies (23). PDGFR, VEGFR, and
FGFR are the most important RTKs associated with tumor
angiogenesis (24). c-Met, also known as mesenchymal–
epithelial transition factor, plays an important role in
migration, therapy resistance, and vasculogenesis. In addition,
Ret, c-Kit (CD177), and Flt3 (CD135) are also the targets of
TKIs. The dynamic change of variant RTKs over time and space
in tumor entities accounts for the complexity of GBM and
therapy resistance after recurrence (3). RTKs also regulate the
expression of GSC relevant transcription factors such as OLIG2,
SOX2, and ZEB, which are also GSC marker molecules (25, 26).
According to the chronological order, TKIs include three
categories, and up to now, the most studied TKIs in glioma are
predominantly first and second generation. The first-generation
EGFR inhibitors, also known as type I, including erlotinib and
gefitinib, can reversely bind to the ATP-binding site of EGFR to
inhibit the activity of the receptor (27, 28). The second-
generation inhibitors, such as afatinib, neratinib, vandetanib,
and dacomitinib, irreversibly inhibit EGFR. Besides EGFR, the
second-generation inhibitors can often inhibit multiple other
RTKs, such as Her2, PDGFR, MET, and VEGFR (29–32). The
third-generation inhibitor, Osimertinib, is used to overcome the
Frontiers in Oncology | www.frontiersin.org 4
resistance due to the T790M mutation, which is usually acquired
after treatment with first-generation EGFR inhibitors. But
researchers found that the acquired exon 20 C797S mutation
would lead to resistance to Osimertinib within 10 months (33).
So, the next-generation inhibitor, such as EAI045, is proposed to
solve the problem of T790M mutation and C797S mutation
inducing resistance (33). sorafenib, anlotinib, cabozantinib,
cediranib, imatinib, lenvatinib, sunitinib, pazopanib, and
motesanib enter clinical trials in glioma after approval by the
FDA for renal cell carcinoma, lung cancer, thyroid cancer, and
other solid tumors. They can target PDGFR, FGFR, C-kit, MET,
and some nRTKs, which play great roles in the growth of
GBM (Figure 3).

Until June 2021, there have been approximately 85 clinical
trials of diverse TKIs to treat GBM and AG published in
PubMed, including 17 studies for newly diagnosed GBM and
68 studies for progressive GBM. When comparing the results
extracted from the publication with the baseline (historic results
of 9 important clinical trials), there are 27 of 40 studies that show
improvement in radiological response rates (ORs). These studies
mainly involved patients with recurrent or progressive GBM.
PFS was evaluated as mPFS in 71 studies and as PFS6 in 61
studies. There were 6 of 17 studies involving newly diagnosed
GBM and 13 of 63 studies involving recurrent GBM that had an
improvement in mPFS compared with baseline. OS was
evaluated as mOS in 72 studies and as OS12 in 22 studies. But
the most urgent problem is the only improvement of PFS while
infrequently increasing the OS (Additional File 1).

Erlotinib is the most studied TKI in glioma. A phase II trial in
2014 that added Bev. and erlotinib to TMZ after completion of
radiation involving 59 patients with newly diagnosed GBM
showed an amazing result (mPFS: 13.5 m; mOS: 19.8 m),
although the study did not reach the primary endpoint of
improved OS (34). A study in 2010 using erlotinib as
monotherapy for recurrent GBM had 40% PFS6 and 53%
OS12 with 14 months of mOS (35). In summary, regardless of
FIGURE 3 | A table which summary the major targets of Pan-TKIs.
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monotherapy or combined regimen, the result did not reach the
expected outcome. And the improvement of ORs was partly
deemed to be unauthentic because of improper imaging criteria
(McDonald criteria). Combining erlotinib with other small-
molecule inhibitors, such as sorafenib and sirolimus, did not
play a greater role. Maybe due to the toxicity of sirolimus and its
derivate temsirolimus, erlotinib combined with sirolimus
decreased the PFS and OS in a phase II trial for recurrent
malignant glioma (36, 37). Sorafinib is a pan-TKI, and it can
also effectively inhibit the Ras pathway. Based on hypothesizing
that inhibition of both EGFR and Ras would improve the survival
time of patients with recurrent GBM, a phase II trial in 2013 was
launched but did not reach the effective hypothesis H0 (30%
increase in overall survival time compared with historical
controls) (38). More clinical trial results will be helpful to
clarify the efficacy of the combination of sorafenib and
erlotinib. To date, the studies of erlotinib in glioma have
stopped in phase II trials, and there is not enough evidence to
show the potential efficacy of erlotinib.

Gefitinib is another well-characterized first-generation EGFR
inhibitor. Just like erlotinib, it is more effective in cancers with
mutated and overactive EGFR. Gefitinib did not show the
potential to increase the OS of glioma. In 2012, a phase I/II
trial involving 178 newly diagnosed GBM combining gefitinib
with radiotherapy showed a disappointing result (mPFS: 4.9 m,
mOS: 11.5 m) compared to baseline (38). Two important trials
using gefitinib monotherapy for recurrent CNS tumor
(NCT00025675, 2003) or combination with radiation for newly
diagnosed GBM (NCT00052208, 2003) involving 105 and 158
patients respectively did thus far not show their results. There are
no more results to evaluate the efficacy of gefitinib. As such, the
outcomes of two classic first-generation EGFR inhibitors are a
little disappointing. The insensitivity of GBM to erlotinib and
gefitinib is partly due to the different models of EGFR
overactivity in GBM cells. The two first-generation TKIs have
a higher inhibiting ability of mutant EGFR such as L858R and
exon 19 deletion type EGFR, which increases the kinase activity.
In contrast to non-small cell lung cancer and adenocarcinoma
harboring activating nucleotide mutations within the EGFR
kinase domain, GBM overly activates EGFR by the increasing
copy number and the substituted mutations occur in the
extracellular domain (39) (Figure 4).

Lapatinib can selectively inhibit EGFR and HER2. Lapatinib
combined with TMZ is a potential salvage option for recurrent
ependymoma due to a phase II study (NCT00826241)
demonstrating clinical activity with objective responses and
prolonged disease control associated with disease-related
symptom improvements (40). To date, three clinical trials
including 74 patients did not present good results (41–43).

Afatinib is a second-generation irreversible ErbB family
inhibitor, mainly used to treat cases of NSCLC that harbor
mutations in the EGFR gene. Simultaneously, afatinib can
effectively block EGFRvIII, a common mutant occurring in
glioma (23, 44). A phase I study (NCT00977431) of afatinib
combined with chemoradiotherapy demonstrated a favorable
objective rate but simultaneously resulted in a high rate of
Frontiers in Oncology | www.frontiersin.org 5
serious adverse events. In 2015, a parallel-arm phase II trial
(NCT00727506) showed that the addition of afatinib
significantly decreased the PFS6 compared with TMZ alone
(44). In the future, a pulsatile-increased dosing schedule of
afatinib will be tested in glioma. It may be feasible to make a
difference and reduce the adverse effects (44).

Vandetanib acts as a kinase inhibitor of several receptors,
including VEGFR, EGFR, and the RET-tyrosine kinase. Because
of the dual inhibition of EGFR and VEGFR2, vandetanib was
supposed to play a greater role than combining erlotinib and Bev.
in inhibiting angiogenesis. The prevailing rates and PFS usually
showed favorable increases. A phase I/II study (NCT00441142)
of parallel arm design demonstrated that adding vandetanib to
TMZ and radiation can modestly increase the OS (45). These
results give researchers the faith to continue their clinical studies.
There are more than 7 phase I studies ongoing.

Sorafenib is a classical pan-TKI, targeting VEGFR, PDGFR,
FGFR, c-Kit, Flt3, and RAF kinases, which are important in the
angiogenesis of solid tumors. Pan-TKI is a trend of development
of small-molecule inhibitors because of the complex crosstalk
between various growth factors and compensatory mechanisms
of RTKs. GBM cells can rapidly switch their signaling addiction
from reliance on a single RTK to multiple RTK pathways. This
may be driven by glioma stem cells (46). In general, sorafenib did
not demonstrate sufficient efficacies to improve the outcome of
patients with glioma. Many phase II trials (NCT00597493,
NCT00544817, and NCT00621686) that have added sorafenib
into the Stupp protocol or Bev. showed disappointing outcomes,
even those inferior to Bev. monotherapy (47–49). In addition,
sorafenib combined with erlotinib can play a synergic role by
inhibiting EGFR and other RTKs in theory. But a phase II study
(NCT00445588, 2013) using the combination regimen only
showed an OS of 5.7 months and a PFS6 rate of 14% (38).
Sorafenib combined with mTOR inhibitors such as temsirolimus
did not improve the outcome in two phase I/II studies
(NCT00335764, NCT00329719). Many clinical trials evaluating
targeted combinatorial blockade frequently have disappointing
outcomes due to overlapping toxic events, including serious
diarrhea, seizure, and rash. Alternative administration
schedules will probably reduce toxicity (17).

Imatinib is a specific inhibitor of several tyrosine kinase
enzymes, including ABL, c-Kit, and PDGFR by occupying the
tyrosine kinase active site to decrease the activity of kinases.
PDGFR is deemed as a driven gene in low-grade glioma and is
overexpressed in GBM. Imatinib has limited efficacy as
monotherapy in GBM, and the chemotherapeutic agent
hydroxyurea (HU) was found to play a synergic role when
combined with imatinib due to imatinib sensitizing cancer to
chemoradiotherapy and the penetrability of the blood–brain
barrier (BBB) of HU (50). A multi-center phase II study
(NCT00290771) involving 231 patients with progressive GBM
showed a good safety profile among patients, which receiving up
to 1,000 mg of imatinib and 1,000 mg of hydroxyurea. But the
efficacy is not enough to induce anti-tumor (51). A phase III
study (NCT00154375) involving 240 patients with TMZ-
resistant GBM presented similar results of not meeting the
June 2022 | Volume 12 | Article 911876
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primary study end point despite a good safety profile (52). Thus
far, imatinib has not brought good news for glioma patients, just
like in CML.

Cediranib is mainly a VEGFR inhibitor, and later the
inhibiting c-Kit was found. Cediranib had a narrower
inhibiting spectrum of RTKs than other pan-TKIs. But just
because of this, cediranib has the chance to function as anti-
VEGF therapy in combination with chemoradiotherapy for
newly diagnosed GBM (NCT00662506 in 2008; NCT01062425
in 2010). The adverse effects of multiple TKIs are predominantly
driven by the inhibition of VEGFR (17). The anti-angiogenesis
and normalization of micro-vessels driven by anti-VEGF such as
Bev. are deemed to sensitize patients to radiotherapy by
increasing the supply of oxygen (53). The impact of
angiogenesis inhibition on tumor distribution of TMZ is also a
key factor considering the combination of standard therapy and
anti-angiogenesis drugs (54).
Frontiers in Oncology | www.frontiersin.org 6
Sunitinib inhibits all subtypes of PDGF-Rs and VEGFRs and
c-Kit, RET, so that the safety is disquieting (55). Recently,
sunitinib has mainly functioned as a monotherapy in clinical
trials of CNS tumors, but the outcomes of patients were dismal.
A phase II study (NCT00923117) of sunitinib to treat recurrent
brain cancer has been terminated because of an unexpected
result. The OS of Bev. resistant patients is 0.92 months and that
of Bev. naive patients is 1.08 months. The regimen of sunitinib
monotherapy caused high adverse event rates of 100% with more
than 30% serious adverse events, such as skin, mucosal, and
gastrointestinal adverse events (56). Bev. is a unique targeted
therapy drug recently approved by the FDA for recurrent GBM.
The various TKIs are considered in combination with Bev. or to
be used in Bev.-resistant patients, even the VEGFR inhibitors.
Continuous schedules enhance the efficacy of sunitinib. How to
balance the dose plan and safety is the key factor to acquiring a
satisfactory outcome.
A

B

FIGURE 4 | In contrast to lung cancer, glioma majorly harboring amplification of EGFR, instead of nucleotide mutation (cBioPortal). (A) The EGFR alteration
frequency in different tumor types based on the PanCancer study “Pan-cancer analysis of whole genomes (ICGC/TCGA, Nature 2020)” in cBioportal database.
(B) The collection of genetic alteration of EGFR based on four different studies in cBioportal database.
June 2022 | Volume 12 | Article 911876
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Pazopanib limits tumor growth by targeting angiogenesis via
the inhibition of VEGFR, PDGFR, c-KIT, and FGFR (57, 58). A
phase II study (NCT00459381) involving 35 patients with
r e cu r r en t GBM was d i s appo in t ing (59 ) . Add ing
chemotherapeutic drug topotecan with pazopanib did not
significantly increase the OS of patients with recurrent GBM
(NCT01931098) regardless of prior Bev. exposure or not.
Simultaneously inhibition of EGFR and other RTKs increased
the efficacy and theoretically led to a series of phase I trials to
evaluate the safety and maximum toxic dose of the combination
of EGFR inhibitors and pazopanib (60–62). But the accurate
efficacy of GBM warrants more studies.

Vatalanib was designed for advanced cancers, especially those
that have not responded to chemotherapy. It inhibits all known
VEGF receptors, as well as PDGFR-beta and c-kit, but is most
selective for VEGFR-2 (63). The outcomes of two phase I trials
for newly diagnosed GBM were not poor compared with
baseline, but the efficacy of vatalanib for treating GBM needs
to be tested in more clinical trials.

Regorafenib, as a sorafenib derivative and pan-TKI of several
kinases involved in tumor angiogenesis (VEGFR1–3 and TIE2),
oncogenesis (KIT, RET, RAF1, and BRAF genes), the tumor
microenvironment (PDGFR and FGFR), and tumor immunity
(colony-stimulating factor 1 receptor), is recommended in the
newest NCCN guideline for testing in future clinical trials due to
a phase II parallel trial harboring a notable outcome (64, 64). In
Frontiers in Oncology | www.frontiersin.org 7
addition, regorafenib can induce autophagy arrest by the PSAT1/
PRKAA autophagy-initiating pathway (65). By 2015, it had two
US approvals for advanced cancers. However, the conclusion
from the phase II study was defective. The outcome of
regorafenib was just better than that of the control arm in the
trial instead of baseline (66).

Many other TKIs are being tested in clinical trials, namely,
anlotinib, cabozantinib, dovitinib, vatalanib, tandutinib,
lenvatinib, and nintedanib, but so far, there are few trials with
outcomes of these small-molecule inhibitors. Some TKIs have
been approved by the FDA for other types of cancer and have not
been widely tested in glioma. For instance, third-generation
osimertinib with improved CNS penetration has broader
coverage for mutated versions of EGFR.

In summary, (i) first EGFRi such as gefitinib and erlotinib, and
PDGFRi imatinib may play great roles in specific patients with over-
acting EGFR (especially EGFR with kinase domain mutation) and
PDGFR. However, Pan-TKIs, such as sorafenib, sunitinib, and
regorafenib did not show enough efficacy thus far (Table 1). (ii)
Afatinib, which block EGFRvIII, a common structure mutation
occurring after over-activating wild-type EGFR. The judgment of
the time window of afatinib is a challenge of deeply understanding
of heterogeneity in GBM temporally and regionally. (iii) VEGFR is a
more important target than EGFR for GBM therapy. Anti-
angiogenesis is a promising method including vandetanib,
cediranib, vatalanib, and cabozantinib, just like Bev. Normalizing
TABLE 1 | Part of clinical studies which claimed “non-inferiority” for historical results.

Small
molecule

First author Phase Year Patient
number

Therapy CR PR OR SD mPFS PFS6 mOS OS12

gefitinib Amanda L.
Schwer (67)

I 2008 15 gefitinib 250 mg pod + radiotherapy 13.3% 13.3% 13.3% 7 m 63.0% 10 m 40.0%

erlotinib Jeffrey J.
Raizer (35)

I 2010 32 erlotinib 150–775 mg pod 3.3% 3.3% 6.7% ~40%1 14 m 53.0%

Jennifer L.
Clarke (34)

II 2014 59 ertlotinib + TMZ + RT + bev. 13.5
m

19.8
m

afatinib David A.
Reardon (44)

II(pilot) 2015 119 afatinib 40 mg pod 0.0% 2.4% 2.4% 34.1% 3.0% 9.8
m

afatinib 40 mg + TMZ 2.6% 5.1% 7.7% 35.9% 10.0% 8.0
m

Vandetanib Jan
Drappatz
(54)

I 2010 13 Vandetanib + TMZ+ RT 90.0% 8 m ~75% 11 m ~80%

Cabozantinib Patrick Y.
Wen (68)

II 2018 222 cabozantinib at up to 140 mg/day 17.6% 17.6% 3.7 m 22.3% 7.7
m

~35%

cabozantinib at up to 100 mg/day 14.4% 14.4% 3.7 m 27.8% 10.4
m

~40%

Imatinib David A.
Reardon (50)

II 2005 33 imatinib mesylate 400–500 mg +
hydroxyurea (500 mg twice a day)

3.4 m 27.0% 11.4
m

David A.
Reardon (69)

I 2008 65 imatinib + TMZ 6.2 m 52.3% 11.1
m

David A.
Reardon (70)

I 2009 37 vatalinib + imatinib + hydroxyurea 24.3% 24.3% 48.6% 3 m 25.0% 12 m

sorafenib David A.
Reardon (47)

II 2011 32 sorafenib (400 mg twice daily) +
temozolomide

3.1% 3.1% 46.9% 1.5 m 9.4% 14.3
m

34.4%

vorinostat Katherine B.
Peters (71)

I/II 2018 39 vorinostat 200–400 mg/d +TMZ +
bev.

5.10% 38.50% 43.60% 6.7 m 53.80% 12.5
m

51.30%

veliparib H. Ian
Robins (72)

I/II 2016 225 veliparib +TMZ 2 m 17.00% 10.3
m

~38%
June 20
22 | Vo
lume 12
 | Article
1When exact percentages and survival times were not provided, these were estimated from the time to progression and survival curve.
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the immature vessels in the mass of glioma may play a supporting
role in other therapies. (iv) Modest efficacy of inhibiting wild-type
EGFR, effectively suppressing VEGFR, FGFR to anti-angiogenesis,
along with inhibiting EGFRvIII may play an unexpected role. (v)
Blindly using Pan-TKIs such as sorafenib, sunitinib, and regorafenib
always did not show better efficacy and rather brought the risk of
off-target effects. (vi) The side effects of TMZ and radiation are brain
necrosis andmyelosuppression, respectively. The side effects of TKIs
are diarrhea and rash. Using TKIs and decreasing the dose of
chemoradiotherapy may reduce the side effects, especially for
patients over the age of 70 or patients with poor performance
status to improve the life quality. (vii) The methylation status of the
MGMT promoter is an important prognosis factor for TMZ
therapy (Stupp regimen, MGMT methylated mOS 23.2 m, mPFS
10.5 m; MGMT unmethylated mOS 16.0 m, mPFS 7.8 m). As for
MGMT unmethylated patients, TKIs may play an effective role. In
the future, RTKs will still be the prime target for treatment of glioma
because of their irreplaceable functions. To seriously appreciate the
efficacy of various TKIs, we need more idealized randomized
controlled trials just like AVAglio and RTOG 0825 for Bev.

NRTK AND INTRACELLULAR SIGNAL
TRANSDUCTION PATHWAYS

Recently, nRTKs have gradually come into the field of view of
researchers. Approximately 32 nRTKs have been identified in
human cells, such as the SRC family, FAK family, and ABL
family. Most of them are located in the cytoplasm, with part of
them anchored on the cellular membrane by amino-terminal
modification (73, 74). At first, the main function of nRTKs is
associated with the immune system, such as activation of T and B
cells (75). Despite lacking an RTK-like extracellular ligand-
binding domain, nRTKs possess an ATP-binding site and a
tyrosine kinase catalytic domain. So nRTKs can function partly
as the same as transmembrane tyrosine kinases to regulate cell
growth, proliferation, differentiation, adhesion, migration, and
apoptosis. Beyond that, as nRTKs are located in the cytoplasm,
they can bind proteins, lipids, and DNA through different
domains to act broadly. Small-molecule inhibitors play a
dominant role in targeted therapy for nRTKs instead of
monoclonal antibodies due to their intracellular location and
structure. In addition, some proteins functioning as part of the
intracellular signal transduction pathway, such as Akt, MEK, and
Erk, are also targets of therapy and discussed in this part.

Until June 2021, there are 48 clinical studies (20 for newly
diagnosed GBM and 28 for progressive GBM) involving 9 small
molecules published in PubMed. The radiological response rates
are optimistic but not mTOR inhibitors compared to baseline.
Thus far, the PFS and OS have not shown obvious benefits
(Additional File 1).

Src
Since Francis et al. found the first proto-oncogene v-Src in the
Rous sarcoma virus, 11 members of the human Src Kinase family
(SFK) have gradually been discovered (76). Among these, c-Src,
Yes, Fyn, Lyn, and Lck have functional roles in glioma involved
Frontiers in Oncology | www.frontiersin.org 8
in survival, proliferation, migration, angiogenesis, irradiation
therapy resistance, and even stemness maintenance (77–81).
Src kinase is the first characterized proto-oncogene (79, 82).
The Src Kinase family thus likely functions as a traffic node of a
complicated gene regulatory network initiated by membranes
such as growth factor receptors, G protein-coupled receptors,
and cytokine receptors (83, 84). Then, SRC-family kinases cross-
talk with multiple pathways and are involved in the regulation of
FAK/STAT3, Wnt/beta-catenin, caspase, cyclin/CDK, and
integrin/FAK intracellularly (85–87). In GBM, the activity of
Src kinase was significantly increased even though there was little
missense mutation or amplification (88). Whereas mutation or
loss of PTEN and EGFRvIII mutation would activate Fyn and c-
Src, respectively, SRC-family kinase activity increasing is due to
upstream deregulation instead of SRC per se (23, 78, 89). CD90
high-expression cells, which are identified as glioma stem cells,
are sensitive to Src inhibitors (77). Moreover, Src activation and
downstream multiple RTKs partially account for radiotherapy
resistance. Si306, an inhibitor of c-Src, can increase the
sensitivity to radiotherapy (79). To date, dasatinib and
ponatinib have entered clinical trials in the area of glioma.
These drugs also belong to pan-TKI.

Dasatinib is a second-generation TKI that can inhibit many
nRTKs, including all types of kinases of the SRC family, such as
c-Src, Lyn, Fyn, and Yes, which play important roles in the brain.
Simultaneously, in a high concentration, it can impair other
kinase activities, including BCR-ABL, Eph A2, c-kit, and
VEGFR2, particularly PDGFR, which is altered in most diffuse
intrinsic pontine gliomas (90, 91). To date, dasatinib has been
evaluated along with conventional treatments or other TKIs in
phase I and phase II clinical trials for GBM and diffuse pontine
glioma in children and adults. The safety and tolerability of
dasatinib demonstrated in the studies is disappointing,
particularly when combined with lomustine in recurrent GBM
and in combination with crizotinib in children with glioma (92,
93). Although theoretically anti-Src therapy can suppress
radiation resistance, in a phase II trial involving 217 patients
with newly diagnosed GBM, and the combination of dasatinib
with concomitant radiation and TMZ did not improve PFS and
OS compared with placebo (NCT00869401). Bev. and dasatinib
in combination can numerically increase the PFS but not OS
compared with Bev. alone (NCT00892177) (94). The above
results suggest that it is effective to combine dasatinib with
TKIs or various targeted drugs at the level of cellular
mechanisms, such as c-MET, PDGFR, and VEGFR inhibitors
(95, 96), but useless in clinical trials.

Ponatinib, the third-generation TKI for CML, targets Src and
VEGFR, PDGFR, and FGFR, which are three crucial receptors
associated with angiogenesis. Therefore, ponatinib is a potent anti-
angiogenesis drug. It did not show a promising effect in a phase II
study including 15 patients with Bev.-refractory GBM (97).

Bosutinib is a small molecule inhibitor targeting BCR-ABL and
Src and is used for treating CML. In 2014, a phase II study involving
only 11 patients with recurrent GBM showed a better mOS of 11.7 m
compared with baseline. More clinical trials are warranted to
evaluate the efficacy of bosutinib (98).
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PKC
Protein kinase C is a serine/threonine kinase that includes three
subgroups: the classical isoforms, novel isoforms, and atypical
isoforms. Among the subgroups, there are tens of isoforms
functioning differently in the survival, proliferation, adhesion,
migration, and therapy resistance of glioma cells because of the
diversity of phosphorylation sites, types of stimuli, and cell
environment (99). The traditional signal pathway is the PLC/
PIP2/IP3 pathway. But studies in various cancers, including
GBM, showed that overexpression of PKC contributes to
tumor pathogenesis and seems to be involved in EGFR, PI3K/
Akt, Ras/MEK/MAPK, hedgehog, and TNFa signaling, which
are deregulated in GBM and are deemed to be potent targets. In
addition, PRKD2, a member of the PKC-activated protein kinase
family, was identified as a mediator of GBM growth involving
decreasing p53 and regulating the phosphorylation of
retinoblastoma protein (100). RTKs, p53, and Rb, the three
pathways that are commonly deregulated in GBM, crosstalk
with PKC (101). Therefore, PKC inhibition is an important
approach for the treatment of GBM and many trials test its
efficacy. Targeting atypical PKC decreases tumor growth in
EGFR inhibitor-resistant mouse models of GBM (102). PKCd,
an isoform of novel PKC, acts as a critical mediator of the
maintenance of tumor stem cells through an autocrine loop with
positive feedback that is driven by the PKCd/STAT3/IL-23/JAK
signaling axis (103).

Tamoxifen is a selective estrogen receptor modulator used to
treat and prevent breast cancer in women (104). Strictly speaking,
tamoxifen is not a classical small-molecule inhibitor. In GBM, it
functions as a targeted inhibitor of PKC. Because overexpression
of PKC in GBM is associated with TMZ and irradiation resistance
and tamoxifen has no significant overlapping toxicities with most
other drugs, clinical trials combine tamoxifen with traditional
therapies for newly diagnosed GBM. Up until now, there have
been no definite results for the regimen in phase II trials. A phase
II trial of RTOG protocol BR-0021 combining high-dose
tamoxifen with radiation did not exhibit improved effects (105).
The later trials combining tamoxifen with TMZ and RT also did
not have a different outcome.

Enzastaurin is a synthetic bisindolylmaleimide with potential
antineoplastic activity. Enzastaurin binds to the ATP-binding
site and selectively inhibits PKC b, a classical isoform involved in
the induction of VEGF-stimulated neo-angiogenesis. In glioma,
enzastaurin functions as an antiangiogenesis drug, entering
clinical trials (106). In 2010, enzastaurin entered a phase III
study as monotherapy but showed modest efficacy compared
with the control arm of lomustine or baseline (107).

PI3K/Akt/mTOR
PI3K/Akt/mTOR, including the endogenous inhibitors PTEN,
TSC1/2, and PHLPP, is one of the most common and most
characterized malfunction pathways in glioma (108). High
activity in the pathway, in general, portends a poor outcome
(109). Since Powis et al. proposed that inhibition of PI3K by
wortmannin could repress growth of human tumor xenografts in
mice (110), there have been more than 20 types of small-
Frontiers in Oncology | www.frontiersin.org 9
molecule inhibitors entering clinical trials and more than 50
types tested in laboratories. In addition, many inhibitors can
regulate the activity of PI3K/Akt to inhibit tumors, though they
do not immediately target the pathway, such as oxymatrine,
baicalin, and gartanin (111–113). Primarily, targeted therapy for
PI3K/Akt/mTOR is mainly proposed to solve the resistance of
chemoradiotherapy (114). On the one hand, the pathway is the
busiest road of signal transduction that is initiated by growth
factors or known as various RTKs and G protein-coupled
receptors (GPCRs) on the cytoplasm membrane. On the other
hand, it can crosstalk with diverse pathways intracellularly, such
as Ras/Raf, Notch, STAT3, and Wnt/catenin. All of the proteins
in the pathway, and upstream RTKs, and the endogenous
inhibitors of the pathway are usually detected malfunctioning
in glioma (114). Whereas in this pathway, every protein is an
independent target, there is a combination regimen targeting
more than one protein to increase efficacy. Simultaneously, PI3K
has four classes and various isoforms with different catalytic-subs
which play different roles. Among them, class I is dominant in
cancers (114, 115). Therefore, there are pan-PI3K, isoform-
selective, and dual PI3K/mTOR inhibitors. The common
mutation of PIK3CA (encodes p110a, a 110 kDa catalytic
subunit of Class IA) in cancer causes constitutive activation of
PI3K and downstream Akt, and it is perhaps a promising target
for therapy, but the mutation is not common in glioma despite
90% of GBMs harboring deregulated PI3K (116, 117). Other
isoforms also impact the pathogenesis of solid tumors and
hematologic malignancies. For instance, PTEN-deficient GBM
largely depended on p110a for proliferation and p110b for
migration (118). Recently researchers found many inhibitors
can increase reactive oxygen species (ROS) to regulate the ROS-
JUN-p53 loop and then decrease the level of phosphorylation
and activity of PI3K/Akt/mTOR (119, 120). Inhibition of PI3K
would promote the expression of the genes associated with
glioma stem cells, such as SOX2, OCT4, and MSI1 (121). This
is probably one of the mechanisms of resistance.

Akt, also known as PKB, includes three isoforms, and among
these, Akt1 plays a major role in the PI3K/Akt pathway (122). It
is not only an indispensable part of the PI3K/Akt pathway but
also a serine/threonine-specific protein kinase that activates NF-
kB, Bcl-2 family protein, and MDM2 to regulate multiple cellular
processes (123). In addition, Akt also accepts the immediate
regulation driven by other kinases (124). The drugs, which target
Akt, combined with TMZ and fractional radiation, gradually
enter the field of vision because chemoradiotherapy would
increase the level of phosphorous Akt (125, 126).

Lastly, targeting mTOR is the most studied approach for the
treatment of glioma. There are two different complexes,
regulatory-associated protein mTORC1 and rapamycin
insensitive mTORC2, the latter functioning in resistance to
rapamycin by activating Akt in a positive feedback manner
(127). 2-hydroxyglutarate (2HG) produced by IDH1/2
mutation promotes mTOR activity by depleting KDM4A and
decreasing DEPTOR protein stability (128), presenting another
mechanism of IDH1/2 mutation promoting the genesis of glioma
and the possibility of a combination IDH inhibitor and mTOR
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inhibitor. Simultaneously, the pathway is a hotspot of studies on
microRNA, lncRNA, and exosomes because of the extensive
functions of noncoding RNA and PI3K/Akt (129–132). In
addition, the downstream targets of the pathway, such as
p70S6K, 4EBP1, and eIF-4E, are also druggable targets (133).
However, in summary, the approach of targeting PI3K/Akt is
failing in glioma clinical trials (Additional File 1). Single-target
drugs are usually fed back to activate upstream and other
pathways such as Erk through complex networks (124, 133).
The content of phosphorous Akt, the status of PTEN, and other
proteins may be prognostic factors that indicate the sensitivity to
PI3K/Akt inhibitors (134, 135), but to date, the tissue analysis
usually does not show that the molecular markers correlate with
survival. The occurrence of heterogeneity and stem cells within
the tumor adds to these difficulties (121).

PI3K
As mentioned above, there are isoform-selecting and pan-PI3K
inhibitors. The former includes eganelisib, idelalisib, and
alpelisib, but does not enter clinical trials in glioma. Eganelisib
is a highly selective inhibitor of the enzyme PIK3C gamma
(p110gamma) (136). But p110 gamma is predominantly
expressed in the pancreas, skeletal muscle, liver, and heart
instead of the brain (137). Idelalisib, approved by the FDA in
2014, blocks selectively P110d, which is expressed in normal and
malignant B-cells. Alpelisib is a PI3K alpha specific inhibitor for
the treatment of breast cancer with a PIK3CA mutation after
disease progression (138).

The drugs targeting PI3K that have entered clinical trials are
mainly Pan-PI3K inhibitors, namely, taselisib, pilaralisib,
buparlisib, and copanlisib. Thus far, the trials are mainly
MATCH (Molecular Analysis for Therapy Choice) models
because PI3K has diverse effects on the regulation of biological
processes in a wide variety of human cancers (139). Taselisib is a
pan-PI3K inhibitor but has the strongest activity to repress
p110a (140, 141). Therefore, it is used in cancers with PIK3CA
mutations, in particular uterine serous carcinomas and breast
cancers, which are accompanied by hormone receptor changes
because of the cross-talk between estrogen receptor (ER) and
PI3K (141). The relationship between the expression of estrogen
receptors and glioma expression has gained attention recently
because of sex-specific differences in GBM (142). Copanlisib is
predominantly against PI3K-a and PI3K-d isoforms (143). A
phase II MATCH trial involving the above two pan-PI3K
inhibitors is recruiting (NCT02465060).

Pilaralisib, another pan-PI3K inhibitor, has been tested in
early clinical trials. A phase I trial indicated that pilaralisib had a
favorable safety profile (144), although some researchers thought
that the toxicity of pan-PI3K was high (141).

Buparlisib is the most studied pan-PI3K inhibitor in glioma.
It presented a promising prospect in preclinical studies. At low
concentrations, buparlisib can inhibit the migration and invasion
of GBM cells, and at higher concentrations and with a longer
duration of drug exposure, it can promote apoptosis of cells (145,
146). It is controversial how the status of PTEN influences the
efficacy of buparlisib. Koul showed that PTEN and EGFR status
did not correlate with sensitivity, but mutation or wild type of
Frontiers in Oncology | www.frontiersin.org 10
p53 could change the method of death of tumor cells after
treatment with buparlisib (147). But Xie et al. found that the
buparlisib activity of anti-p110beta was poor and that may limit
the efficacy of treating PTEN-deficient GBM (118). Buparlisib
was also combined with other targeted therapies such as HSP990
(an Hsp90 inhibitor) and ABT-737 (a Bcl-2 inhibitor) because
inhibiting the proteins in other pathways would cause
compensatory overactivation of PI3K/Akt (148, 149). Yet,
buparlisib is combined with other therapies is in phase I or
phase II clinical trials (150–152). To date, the safety profile of
buparlisib is deemed poor, and the regimen did not show enough
efficacy to improve the outcome.

Akt
Akt inhibitors, including ipatasertib, capivasertib, MK2206,
afuresertib, and perifosine, thus far are less studied in glioma.
Ipatasertib is currently in phase II trials for the treatment of solid
tumors. Capivasertib and afuresertib have mainly been tested in
preclinical studies. MK2206 acts as an allosteric Akt inhibitor
and is a highly selective inhibitor of pan-Akt, namely, of all three
Akt isoforms Akt1, Akt2, and Akt3 (153). MK2206 can induce
apoptosis and autophagy, increasing the efficacy of gefitinib
(154). Narayan et al. showed that MK2206 at a low
concentration (1 mM) reduced the phosphorylation of Thr308
and Ser473 residues of AKT in both adherent GBM cells and
spheroids to sensitize them to irradiation and TMZ. At a high
concentration (>5 mM), it inhibited invasion and migration of
cells (155). But in PTEN-deficient cells, MK2206 could not
decrease the level of phosphorylation of mTOR and S6K, the
effectors of the PI3K/Akt pathway, nor induce apoptosis
or autophagy.

mTOR
mTOR inhibitors are the most studied small molecules in the
pathway. Now there are three generations of inhibitors and more
than 70 clinical trials. Everolimus, a generation I mTOR
inhibitor, is a medication used as an immunosuppressant to
prevent rejection of organ transplants and in the treatment of
renal cell cancer and other tumors, approved by the FDA for
various conditions. Everolimus is more selective for the
mTORC1 protein complex (156). It binds to its protein
receptor FKBP12, which directly interacts with mTORC1 with
little impact on the mTORC2 complex (156). Besides, everolimus
could inhibit the production of glutathione from glutamine and
glutamate and then inhibit the repair of DNA damage caused by
carboplatin (157). But everolimus can lead to a hyper-activation
of the kinase Akt via inhibiting the mTORC1 negative feedback
loop while not inhibiting the mTORC2 positive feedback to Akt.
And it has been evaluated in GBM for more than a decade with
26 trials registered on ClinicalTrials.gov (158). But a randomized
phase II clinical trial RTOG 0913 (NCT01062399) presented a
disappointing result: that adding everolimus into standard
therapy reduced mOS by 4.7 months relative to the control
arm (159). This leads us to consider that the penetration through
the BBB, the toxicity of everolimus, and the activity of mTORC2
are influential but uncontrollable (158). But the next two early
phase studies in pediatric patients demonstrated the manageable
June 2022 | Volume 12 | Article 911876

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Small-Molecule Inhibitors in Glioma
toxicity profile of everolimus (160, 161). On this basis, we think
the prospect of mTOR inhibitors is promising. The PI3K/Akt/
mTOR is a busy traffic node in cells, hence it is an important
target just like RTKs and Ras/Raf/MAPK. The combination of
mTOR inhibitors and targeted inhibition of Ras and PDGFR a is
still a possible way to treat glioma (160, 162). The dual inhibitor
of mTORC1 and mTORC2 may be a vulnerability in cancer
(163). In addition, everolimus plays an irreplaceable role in the
treatment of tuberous sclerosis complex and is mainly used for
neurofibromatosis type 1-associated pediatric low-grade glioma
and subependymal giant cell astrocytoma.

Sirolimus, also known as rapamycin and initially developed as
an antifungal agent, functions as an immunosuppressive small-
molecule inhibitor by inhibiting activation and sensitivity to
interleukin-2 (IL-2) of T and B cells through inhibition of mTOR
(164). Although it is a generation I inhibitor of mTOR like
everolimus, it can also inhibit mTORC2. However, this has the
adverse effect of increasing the risk of type 2 diabetes (165). The
effect of sirolimus is complex, even though many studies have
indicated that sirolimus can enhance mouse lifespan in a sex-
specific manner (166). Temsirolimus, a derivative and prodrug of
sirolimus, is converted to sirolimus (rapamycin) in vivo. But
temsirolimus also shows exclusive activity on its own, and the
trials in glioma mainly use temsirolimus instead of sirolimus.
Outcomes of temsirolimus in clinical trials are frequently worse
than those in the control arm. The combination of temsirolimus
and TKIs, such as erlotinib and sorafenib, limits the dose of
temsirolimus to one-tenth of MTD so as to achieve acceptable
safety because of the side effects of temsirolimus. Thus, the
regimen should be tested in more studies combining mTOR
inhibitors and TKIs (37, 167, 168). Combining temsirolimus and
perifosine, an Akt inhibitor, theoretically inhibits mTORC1 and
suppresses the activity of Akt, which is activated by mTORC2 in
a back-feed manner. The regimen was tolerable in a phase I
study (169).

Ras/Raf/MEK/Erk
Ras/Raf/MEK/Erk is another busy traffic road in cells in addition
to PI3K/Akt. Firstly, Ras is a protein superfamily of small
GTPases and, in general, is responsible for cell proliferation
(170). Ras is one of the most frequently altered proteins in
cancer, but rarely in glioma (171). However, it is not a common
target of therapy for cancer despite the many efforts contributed
to the relative studies (172). Raf kinases are a family of three
serine/threonine-specific protein kinases, including A-Raf, B-
Raf, and C-Raf. BRAF became the focus of research recently
since a large portion of human tumors carry oncogenic ‘driver’
mutations in the BRAF gene, with 11% of glioma cell lines
harboring BRAF mutations (171, 173). The activating mutation
in BRAF is a common change in pediatric low-grade gliomas
(174). The BRAF V600E mutation inducing the constitutive
activity of Raf is frequently detected in low-grade pleomorphic
xanthoastrocytoma, ganglioglioma, extra-cerebellar pilocytic
astrocytoma, and epithelioid GBMs instead of other types of
high-grade glioma (175). But the overactivation of Ras/Raf is
highly frequent in GBM. The BRAF V600E mutation is a
successful target in melanoma, non-small cell lung cancer, and
Frontiers in Oncology | www.frontiersin.org 11
thyroid cancer. In high-grade gliomas, it may become a
biomarker of benefit from dabrafenib (BRAF inhibitor) and
trametinib (MEK inhibitor) dual-targeted therapy (176). MEK
is also known as MAPKK, and Erk is a classical MAPK, a classical
cascade amplification pathway. The pathway connects
extracellularly initiated signals from receptors on the surface of
cells to the DNA in nuclei to regulate multiple biological
processes. In addition, MEK and MAPK can function as
kinases to immediately phosphorylate other proteins.
Deregulation of the MAPK/Erk pathway is a necessary step in
the malignant transformation of many cancers.

In summary, the intracellular signal transduction pathway is a
significant embodiment of the complexity of biological
regulation. On the one hand, every kinase can accept
regulation from upstream kinase and activate downstream
kinase to form a complicated network. This network is critical
for maintaining the rule cell behavior. However, the
overactivation of the pathway is usually due to upstream RTKs
and GPCRs but not the abnormality of proteins comprising the
pathway. Therefore, we suppose that it is not an ideal target for
tumor treatment. Perhaps, targeting the intracellular signal
transduction pathway would play an assistant role if the tumor
showed significant overactivation or TKIs caused the second
pathway overactivation by tissue analysis. The utilization of these
inhibitors still requires biomarkers for precision medicine.
PROTEINS REGULATING CELLULAR
BIOLOGICAL PROCESSES

In addition to the kinome, there are several proteins regulating
cellular biological processes. The small molecules inhibiting the
proteins are usually highly selective but difficult to target. There
were 11 small molecules that were involved in 20 clinical trials
that were published in PubMed (Additional File 1).

HDAC
Epigenetic changes refer to alternations affecting the expression
of genes and the phenotypes of cells but not changing the
sequence of DNA. It plays an important role in multiple
aspects of pathogenesis and therapy resistance (177). In
general, post-translational acetylation of histones modulates
the structure of chromatin by relaxing the latter to promote
the binding of transcription factors with motifs in genes and then
increase the expression level of tumor suppressor genes (178). In
addition, GSCs have a distinct pattern of epigenetic alterations,
including DNA methylation and histone modifications (13). The
process is controlled by the balance between the histone
acetyltransferases (HATs) and histone deacetylases (HDACs).
There are at least four classes of HDACs, including various
isoforms (179). Different isoforms function in various ways. This
indicates that HDAC inhibitors targeting multiple isoforms may
be more effective (180–184). Class I and class II were studied
more thoroughly, and the disruption of HDACs was observed in
multiple cancers, particularly diffuse intrinsic pontine gliomas
with H3K27M mutations (182, 185–187). HDAC inhibitors
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decondensing chromatin can prevent DNA double-strand break
repair and regulate the stemness of GBM cells to induce radio
sensitization (180, 188, 189). HDAC inhibitors also regulate the
post-translational acetylation of proteins in the cytoplasm to
influence the function of the latter, which is involved in
angiogenesis, stemness, immune regulation, and ultimately
inducing apoptosis. For example, many studies suggested that
HDACs could downregulate the activity of p53, a classical tumor
suppressor protein (185, 190, 191). HDACs block the NF-kB
pathway by acetylation to inhibit resistance to TMZ and
radiation (192, 193). But there was a study that indicated
HDAC inhibitor suberoylanilide hydroxamic acid (SAHA)
favored the acquisition of TMZ resistance by increasing
recruitment of SP1, C-JUN, NF-kB, and p300 within the
relaxing MGMT promoter region (194). HDAC inhibitors
repress EGFR/EGFRvIII expression inducing the expression of
FOXO1— a t umo r s u p p r e s s o r— i n MYC - d r i v e n
medulloblastoma cells (195, 196). HDACs also influence the
polarization of microglia mediated by glioma cells (197). In
addition, Nguyen et al. found that HDAC inhibitors blunted
glycolysis in a c-Myc dependent manner and lowered ATP levels
to elicit metabolic reprogramming to dependence on fatty acid
oxidation (198). In summary, HDACs impact multiple processes
through epigenetic changes. In the past few years, there have
been a number of studies in which HDAC inhibitors were
combined with radiation, chemotherapy, and other targeted
drugs, presenting exciting efficacy in vitro and in vivo (192,
199–201). Because it is pharmacologically much simpler to
inhibit an enzyme than to induce one, HDAC inhibition has
gained enormous clinical interest as an anticancer strategy (177).
At present, HDAC inhibitors as anti-tumor drugs are mainly
used for the treatment of hematological neoplasms. Some HDAC
inhibitors, such as valproic acid, have been used as anti-seizure
drugs in GBM (202). To date, besides vorinostat, entinostat,
Panobinostat, and VPA, many new HDAC inhibitors are still
found and being studied preclinically. Interestingly, HDAC
inhibitors are also being studied for their potential to induce
viral HIV-1 expression in latently infected cells and disrupt
latency (203).

Vorinostat, also known as SAHA, binds to the active sites of
HDACs and acts as a chelator for zinc ions, which are also found
in the active sites of HDACs. It acts on classes I, II, and IV of
HDAC (204). In addition, SAHA could trigger autophagy in
GBM stem cells through the Akt/mTOR pathway. Many clinical
trials are ongoing or completed, but most are phase II or earlier.
Based on preclinical results, vorinistat-combined drug with
chemoradiotherapy, Bev., or bortezomib (a proteasome
inhibitor) (205, 206). In a phase II north central cancer
treatment group study involving 66 patients with recurrent
GBM, vorinostat monotherapy showed nice tolerability but
modest drug activity (207), and a phase I/II trial of vorinostat
combined with traditional therapy for newly diagnosed GBM
presented the same result. Because of the compromised efficacy
presented in recent trials, there are additional trials registered in
NIH except for a phase I trial of pembrolizumab and vorinostat
combined with temozolomide for newly diagnosed GBM. Now
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preclinical studies focus on molecule markers such as IDH1
mutation, pChek2, and Bcl-XL, imaging parameters, which
indicate sensitivity to vorinostat and other HDAC inhibitors
(208–210), or to identifying some targeted inhibitors, such as
melatonin, chloroquine, and gamitrinib, which can function as
synergic effects with HDAC inhibitors (201, 211).

Romidepsin, also known as FK228 or Istodax, is a natural
product obtained from bacteria. It acts as a prodrug, with the
disulfide bond undergoing reduction within the cell to release a
zinc-binding thiol. Thiol binds to a zinc atom in the binding
pocket of Zn-dependent HDAC to block its activity. So, in
theory, it acts on HDACs of the zinc-dependent classes I, IIa,
IIb, and IV (179). Romidepsin decreases the expression of p21 to
induce apoptosis (212). Wu et al. found that romidepsin
increased the sensitivity to TMZ by blocking the PI3K/Akt/
mTOR pathway (213). A phase I/II trial of romidepsin for adults
with recurrent malignant glioma failed (214).

Panobinostat, trade name Farydak, is a hydroxamic acid and
acts as a non-selective HDAC inhibitor. There are plenty of studies
to research the activity in the treatment of diffuse intrinsic pontine
glioma, a lethal pediatric brain cancer usually harboring mutations
altering the epigenetic regulatory histone tail (H3 K27M) (215).
Panobinostat can increase H3 acetylation and H3K27
trimethylation to partial rescue of the H3K27M-induced global
hypotrimethylation phenotype (216). At present, Panobinostat is
being tested in phase I clinical trials for diffuse intrinsic pontine
glioma and GBM. Its potential of anti-angiogenesis led to
combination with Bev. but failed in phase II (217).

Valproic acid is presently extensively used for epilepsy,
bipolar disorder, and migraine headaches. In addition to
inhibiting HADCs, it can affect GABA levels and voltage-gated
sodium channels (218). Retrospective trials indicated that
patients with GBM receiving valproic acid during the
traditional regimen of TMZ and radiation had an improved
prognosis by sensitizing to chemoradiotherapy (219–222). But
Berendsen et al. proposed that epileptogenic GBM is a favorable
prognostic factor regardless of using antiepileptic drugs or not
(223). In 2016, a retrospective trial including 1,869 patients
showed that valproic acid or levetiracetam, another anti-
epileptic drug, did not improve the outcome of newly
diagnosed GBM (224). To date, the activity of valproic acid in
GBM is controversial. A phase II trial involving 43 patients with
high-grade gliomas who received valproic acid and TMZ plus
radiation indicated no increase in mOS (NCT00302159).

Belinostat, trade name Beleodaq, previously known as
PXD101, is a hydroxamate-based pan-HDAC inhibitor that
induces apoptosis by upregulation of p21 and through multiple
pathways just like other HDAC inhibitors (225). There is
currently no glioma clinical trial registered with the NIH.

CDK4/6
Deregulation of cyclin‐dependent kinase 4/6 (CDK4/6) is
detected in various types of cancers, including glioma (226).
Targeted inhibition of CDK4/6 has emerged as an efficient
approach for treating breast cancer, with three small-molecule
inhibitors approved by the FDA: ribociclib, palbociclib, and
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abemaciclib (227). CDK4/6 inhibitors primarily arrest the cell
cycle in the G1 phase by regulating the CDK4/6–retinoblastoma
(Rb)–E2F pathway to inhibit proliferation. However, as more
and more studies are conducted in vitro and in vivo, the new
targets of CDK4/6 inhibitors and other pathways involved in
CDK4/6 have been proposed, involving cellular metabolism,
autophagy, and immune evasion, despite the high selectivity of
third-generation CDK4/6 inhibitors (228). The on-target and off-
target mechanisms of CDK4/6 inhibitors have been reviewed by
Denisa et al. (227). According to the TCGA database, the CDK4/
6-Rb-E2F axis is deregulated in about 80% of GBMs, including
endogenous inhibitors of CDKs, such as p16, an INK4 family
protein (229). A large-scale data analysis on comprehensive
genomic profiling indicated that 47.1% of brain gliomas
harbored at least one cyclin alteration (230). In glioma, the
activity of CDK4/6 inhibitors depends on the wild type of Rb.
Mutation or deletion of Rb causes resistance to the drug. The
deficiency of endogenous inhibitors, such as p16 and p18, or
known as CDKN2A and CDKN2C, is a strong predictor of
sensitivity to CDK4/6 inhibitors (231, 232). Besides, SHH and
MYC amplification of group 3 medulloblastoma is sensitive to
inhibition of CDK4/6 (233). The RTKs or growth factor pathway,
p53, and CDKs/Rb/E2F pathways are the three most
characterized pathways involved in the pathogenesis of glioma
(234). Previous studies found that the combination of CDK4/6
and RTK inhibitors, such as mTOR inhibitors or c-Met/Trk
inhibitors, could play a synergy (229, 235), possibly because the
monotherapy of TKIs or CDK inhibitors would activate each
other. Simultaneously, inhibition of CDK4/6 can delay radiation
resistance and TMZ resistance by repressing double-strand break
repair (236, 237). In general, the trials of CDK4/6 inhibitors are
mainly in the early phase.

Palbociclib is the first and most studied CDK4/6 inhibitor in
glioma therapy. But acquired resistance is still a problem that
urgently needs to be addressed (238). On the one hand, the
deregulation of the CDKs/Rb/E2F axis is a source of resistance to
palbociclib. For example, gliomas with deletion or mutation of Rb
are naturally insensitive to CDK4/6 inhibitors (232), but the wild-
type Rb cancers would overexpress the Rb protein to gradually
promote resistance to palbociclib (239). In addition, the isoforms of
cyclins and CDKs, such as CDK2 and cyclin E, can play
compensatory roles (227). However, a study found that
palbociclib only induced reversible quiescence but not irreversible
senescence in glioma stem cells (240). Thus far, palbociclib entered
phase II trials for refractory or recurrent GBM, but for the moment
it did not show enough efficacy to improve the outcome.

Ribociclib is used along with an aromatase inhibitor (such as
letrozole). Some studies indicated the good CNS penetration of
ribociclib (241). Ribociclib demonstrates a synergistic effect when
combined with ALK or MEK inhibitors in the treatment of
neuroblastoma (242). A phase I/II study of ribociclib following
radiation therapy in children with newly diagnosed diffuse intrinsic
pontine glioma indicated that the regimen was feasible (243).

Based on CDK4/6 inhibitor suppressing immune evading, the
regimen of abemaciclib plus cancer immunotherapy, such as
humanized antibody targeting the programmed cell death
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protein 1 (PD-1) receptor of lymphocytes pembrolizumab, has
entered clinical trials. Thus far, there has been no result.

PARP
Poly (ADP-Ribose) polymerase (PARP) is a family of enzymes
that catalyze the synthesis of linear or branched polymers of ADP-
ribose (PAR) using NAD+ as substrate, and functions as
radiosensitizer (244). Once PARP detects single-strand DNA
breaks, it binds to DNA through the DNA-binding domain to
induce structural change. Then it initiates the synthesis of a
polymeric adenosine diphosphate ribose chain. The auto-
PARylation of PARP on the auto-modification domain is a
signal that recruits DNA ligase III (LigIII), DNA polymerase
beta (polb), and scaffolding proteins such as X-ray cross-
complementing gene 1 (XRCC1) to repair the damaged DNA, a
process known as base excision repair (BER) (245). Poly (ADP-
ribose) glycohydrolase (PARG) degrades the PAR chain to recycle
the PARP. Thus far, there are 18 members in the family, but
PARP1 and PARP2 play major roles in repairing DNA, especially
the first one. Beyond that, the other members perform other
functions, and the PARylation of proteins as an important and
ubiquitous post-translational modification involving histones and
various transcription factors can also regulate multiple processes
of cells, such as caspase-independent apoptosis by translating
apoptosis-inducing factors into the nucleus (246–248). The high
expression of PARP-1 was detected in multiple types of cancers
(248). In the beginning, studies demonstrated that PARP
inhibitors repressed the activity of PARP to hinder the BER
system by competing with the substrate NAD+ (249). This
would cause the accumulation of DNA damage of N-
methylpurines (N7-methylguanine and N3-methyladenine)
generated by TMZ and then eventually increase the sensitivity
to TMZ and other alkylating agents. Notably, in the preclinical
studies, the function of sensitization is still remarkable in MGMT-
proficient and MMR-deficient glioma cells, which in general are
regarded as drug-resistant cells (250–252). Higuchi et al. found
that the TMZ sensitizer role of the PARP inhibitor was
independent of base excision repair. There are perhaps other
pathways by targeting which PARP inhibitors enhance the
efficacy of chemoradiotherapy (253). For example, sustained
inhibition of PARP-1 activity delays GBM recurrence by
enhancing radiation-induced senescence (253). Similarly, PARP
inhibitors can sensitize cells to ionizing radiation even in glioma
stem cells, which can promote resistance to radiation by
overexpressing PARP (254, 255), because the radiation generates
single-strain DNA to exert clinical effect (256). Another important
anti-tumor mechanism of PARP inhibitors is “synthetic lethality.”
In some breast and ovarian cancers with BRCA mutations,
meaning the deficiency of the homologous recombination repair
system (HR), BER driven by PARP functions as compensation. So,
the inhibition of PARP canmaximize the effect of anti-tumor (257,
258). In glioma, deletion of PTEN, commonly occurring in
primary GBM, can impact genomic stability by regulating the
expression of RAD51, an important homologous recombination
repair component (259). In in vitro, the cell lines with PTEN
deficiency are more sensitive to PARP inhibitors than the wild-
June 2022 | Volume 12 | Article 911876

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Small-Molecule Inhibitors in Glioma
type PTEN cell lines (244). Inducing DNA damage is an important
method to treat tumors. Except for chemotherapy and
radiotherapy, topoisomerase inhibitors, topotecan and
irinotecan, and inhibitors of DNA-dependent protein kinase
(DNA-PK), a key enzyme involved in nonhomologous DNA
end joining (NHEJ), can combine with PARP inhibitors to
enhance the efficacy of antitumors (244). Recently, studies have
demonstrated that IDH1/2 mutations could not only impair the
HR system but also compromise the BER associated with PARP by
decreasing NAD+ availability. This may be a reason for patients
with IDH1/2 mutations have a better prognosis relative to IDH
wild type when they receive chemoradiotherapy, and it also
renders tumor cells sensitive to PARP inhibitors (260–262).
Simultaneously, wild type p53, associated with cell cycle
checkpoints and DNA repair, is supposed to indicate sensitivity
to PARP inhibitors (263, 264). HDAC can repress DNA damage
repair by epigenetic downregulation, which can play a synergistic
role with PARP inhibitors (265). The inhibition of PARP can
probably be used as an adjuvant therapy and there have been some
clinical trials ongoing based on this theory. The loss of p53-
binding protein 1 (53BP1), an antagonism factor of BRCA1, and
the promoter of NHEJ can cause resistance to PARP
inhibitors (266).

Olaparib, particularly in glioma harboring IDH mutation, the
clinical trials were mainly carried out within recent 3 years, and
there are no results thus far. OPARATIC trial, a phase I trial,
demonstrated that olaparib could reliably penetrate recurrent
GBM at radio sensitizing concentrations (267). Niraparib was
tested in a phase II trial as a radiosensitizer (NCT04715620).
Junko et al. showed that niraparib has the strongest potency in
trapping PARP compared to olaparib and veliparib (268). In
addition, pamiparib, talazoparib, and rucaparib which have been
tested in other cancers.

In conclusion, the proteins regulating some specific cell
processes, such as epigenetic changes, cell cycle, and DNA
repair, may make a difference in glioma treatment. But in
general, the relevant clinical trials are in their early phase.
These inhibitors play functions by different mechanisms to
have chance to combinate with TKIs in future clinical trials.
CONCLUSION

Small-molecule inhibitors did not change the survival of GBM
patients in clinical trials. But at present, it is not reasonable to
define small-molecule inhibitors as a failure. On the one hand,
most trials involving recurrent GBM would stop therapy of small
Frontiers in Oncology | www.frontiersin.org 14
molecules after the progression of the tumor. But the mPFS of
recurrent GBM is only 2 months. It causes the duration of the
small molecule therapies to be less than 2 months. The short
exposure duration limits the efficacy of small molecules. In
addition, the efficacy of small molecules includes relieving
edema, improving of neurological function, and improvement
of life quality. On the other hand, anatomical characteristics of
the brain restrain the delivery and efficacy of drugs.
Heterogeneity within the GBM mass, and specifically
mosaicism of glioma stem cells, is a critical factor in
maximizing efficacy. In clinical practice, the tailored therapy
associated with molecular subtyping in different regions of a
tumor mass and the change of recurrence is more useful than
personal therapy. The time and space obstacles could be tackled
by several methods, such as new approaches to drug delivery of
drugs and the scheduling of drug administration. In the future, as
the finding of new targets and new technologies for drug
discovery replaces the “Me-too” model, small molecules will
play a more functional role in the treatment of cancer and
other diseases.
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