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Hepatocellular carcinoma (HCC) stem cells are regarded as an important part of
individualized HCC treatment and sorafenib resistance. However, there is lacking
systematic assessment of stem-like indices and associations with a response of
sorafenib in HCC. Our study thus aimed to evaluate the status of tumor
dedifferentiation for HCC and further identify the regulatory mechanisms under the
condition of resistance to sorafenib. Datasets of HCC, including messenger RNAs
(mRNAs) expression, somatic mutation, and clinical information were collected. The
mRNA expression-based stemness index (mRNAsi), which can represent degrees of
dedifferentiation of HCC samples, was calculated to predict drug response of sorafenib
therapy and prognosis. Next, unsupervised cluster analysis was conducted to distinguish
mRNAsi-based subgroups, and gene/geneset functional enrichment analysis was
employed to identify key sorafenib resistance-related pathways. In addition, we
analyzed and confirmed the regulation of key genes discovered in this study by
combining other omics data. Finally, Luciferase reporter assays were performed to
validate their regulation. Our study demonstrated that the stemness index obtained
from transcriptomic is a promising biomarker to predict the response of sorafenib
therapy and the prognosis in HCC. We revealed the peroxisome proliferator-activated
receptor signaling pathway (the PPAR signaling pathway), related to fatty acid
biosynthesis, that was a potential sorafenib resistance pathway that had not been
reported before. By analyzing the core regulatory genes of the PPAR signaling
pathway, we identified four candidate target genes, retinoid X receptor beta (RXRB),
nuclear receptor subfamily 1 group H member 3 (NR1H3), cytochrome P450 family 8
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subfamily B member 1 (CYP8B1) and stearoyl-CoA desaturase (SCD), as a signature to
distinguish the response of sorafenib. We proposed and validated that the RXRB and
NR1H3 could directly regulate NR1H3 and SCD, respectively. Our results suggest that the
combined use of SCD inhibitors and sorafenib may be a promising therapeutic approach.
Keywords: hepatocellular carcinoma, sorafenib resistance, PPAR signaling pathway, stemness index, prognosis
INTRODUCTION

Primary liver cancer (PLC) is the fourth most common cause of
cancer-related deaths worldwide and the sixth-most common
cancer in the world, according to data provided by the World
Health Organization (WHO) (1–3). HCC is the most common
form of liver cancer and accounts for approximately 80% of all
cases of PLC (4). Numerous patients were first diagnosed with
advanced-stage HCC (5). Sorafenib, which is administered only
as a first-line chemotherapeutic agent in advanced HCC patients,
is the most prevalent oral small-molecule multi-kinase inhibitor
and has been in use for over a decade (5, 6). Sorafenib can inhibit
tumor cell proliferation and angiogenesis, thereby inducing
cancer cell apoptosis, which not only blocks the Ras/MEK/
ERK-mediated cell signaling pathway but also blocks tumor
angiogenesis, by inhibiting kinases such as vascular endothelial
growth factor receptor (VEGFR) and platelet-derived growth
factor receptor (PDGFR) (1, 6). However, some HCC patients
exhibited congenital resistance to sorafenib or acquired
resistance after treatment (6, 7). Only a few patients with HCC
exhibited extended survival after receiving sorafenib treatment
(8). Therefore, we need to develop a method for predicting the
response of HCC patients to sorafenib, to facilitate the precise
treatment of advanced HCC patients. Importantly, we need to
identify the primary and additional mechanisms of acquired
sorafenib resistance.

Stemness was defined as the ability of cells to self-renewal and
interact with their environment to maintain a balance between
quiescence, proliferation, and regeneration (9, 10). Normal adult
stem cells exhibit stemness when involved in tissue homeostasis,
whereas cancer stem cells (CSCs) display stemness when
involved in malignant growth (10, 11). Moreover, it had been
proven that non-CSCs can dedifferentiate into CSCs by the
stimuli of the tumor microenvironment (11, 12). Cancer
progression necessitates the gradual loss of a differentiated
phenotype and restoration of progenitor and stem cell-like
features (11, 13, 14). Both patient prognosis and drug response
are likely to be related to the state of tumor cells (15). Evidence
has shown that an assessment of tumor stemness can reflect
tumor status, and liver cancer stem cells can mediate tumor
growth and sorafenib resistance development (7, 16).
Undifferentiated HCC is more likely to result in tumor
metastasis, disease recurrence, poor prognosis, and drug
resistance (7, 17). However, there is a lack of systematic studies
examining the relationship between sorafenib resistance and the
HCC stemness index. In recent years, despite several efforts to
identify potential biomarkers in HCC patients’ prognosis, only a
few have focused on drug response (18). Numerous HCC risk
2

signatures were identified by gene expression for predicting HCC
patient prognosis. Whereas these signatures were typically
validated using only a single dataset or were not externally
validated (19), resulting in unreliable clinical outcome
prediction. There is still an urgent need for reliable and robust
markers that can be used for predicting the prognosis of different
HCC cohorts and the effect of drug therapy, which are also of
great value for the precise treatment of patients. Several studies
have shown that the stemness index is effective for the prediction
of prognosis and drug resistance in multiple malignancies (20–
23). Here, we aimed to explore the regulatory mechanism under
sorafenib-resistant conditions using the stemness index.

In this study, the cancer stemness was assessed by extracting
sets of transcriptomic features (mRNAsi), using the one-class
logistic regression (OCLR) machine-learning algorithm, which
was proposed in a recent study (22). We systematically analyzed
HCC stem-like indices using a total of 7 independent HCC
cohorts and the OCLR algorithm. We identified mRNAsi-related
subgroups that can distinguish between different responses to
sorafenib treatment and evaluated the prognostic significance of
mRNAsi in several datasets. To our knowledge, this was the first
attempt to use the tumor stemness index to explore the potential
mechanisms of sorafenib drug resistance development.
Moreover, we identified that four genes, which were found to
be involved in the PPAR signaling pathway, might play a role in
sorafenib resistance development. The signature for predicting
sorafenib treatment effectiveness has been extracted. We
additionally discussed the regulation of SCD and its upstream
genes in the PPAR signaling pathway by combining other omics
data such as somatic mutations of key genes, transcription factor
binding site for key genes, and methylation level of the SCD
promoter. And luciferase reporter assays were performed to
validate regulations of key genes.
MATERIALS AND METHODS

Patient Cohorts and Clinical Data
Publicly available data regarding HCC cohorts were
systematically screened and checked, and matched with
individual clinical annotations. In total, we obtained seven
HCC cohorts, involving a total of 991 samples; of these, five
cohorts were used for the survival study (TCGA-HCC, ICGC-JP,
GSE14520 (24), GSE76427 (25), GSE116174), and the other two
were used for a sorafenib drug response study (GSE109211 (26)
cohort and GSE143477 (27) cohort). The expression profiles of
the TCGA cohort were obtained through a data portal (https://
xenabrowser.net/) (28), along with both somatic mutation data
July 2022 | Volume 12 | Article 912694
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and clinical data of tumor samples. Besides, the GSE14520,
GSE76427, GSE116174, GSE109211, and GSE143477 cohorts
were obtained from the Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/). Sixty-seven samples treated with
sorafenib were contained in the GSE109211. The sorafenib
samples of GSE109211 were divided into “responder” (n=21)
and “non-responder” (n=46) groups in terms of recurrence-free
survival (RFS). Compared with the responder group in
GSE109211, sorafenib non-responders were defined as patients
in whom sorafenib had no effect (sorafenib resistance).
GSE143477 contains three sorafenib-resistant samples and
three sorafenib-sensitive samples. The expression profiles and
clinical information regarding the ICGC-JP cohort were
downloaded from the ICGC Data Portal (https://dcc.icgc.org/).
Three methods were adopted to collect clinical information: 1)
Information was downloaded from the database if the authors
had uploaded it; 2) Information was extracted from the original
literature; and 3) It was obtained from the corresponding authors
if necessary. All the information regarding these cohorts has been
summarized in Table 1.

Calculation of mRNAsi for HCC
We collected samples from seven HCC cohorts, and derived their
mRNA expression data and corresponding clinical information
(survival or response to sorafenib), to characterize the mRNA
stemness features of HCC patients, as demonstrated in the
flowchart (Figure 1). We used an OCLR model based on the
Progenitor Cell Biology Consortium (PCBC) embryonic stem
cell data (29), to characterize the stemness signature. We
collected 229 stem cell samples with 13013 protein-coding
genes for use in the training dataset and assessed the stemness
weight of each gene using the R package, gelnet (version 1.2.1)
(30). The stemness weight of each gene has been shown in Table
S1. These values were then applied to characterize the stemness
features for each patient in a total of 6 HCC cohorts and obtain
information regarding their mRNAsi. The mRNAsi, which range
from 0 to 1, could serve as an indicator for assessing the degree of
dedifferentiation of tumor samples.

We selected tumor samples from the TCGA-HCC cohort for
inclusion in the survival training set and calculated the mRNAsi
for the training set. We further classified the HCC patients in the
TCGA-HCC cohort into the high-mRNAsi and low-mRNAsi
groups, based on a median mRNAsi value of 0.55.

To verify the hypothesis that the lower the tumor
differentiation, the higher the malignancy, and the worse the
patient prognosis, we calculated the mRNAsi for five HCC
Frontiers in Oncology | www.frontiersin.org 3
cohorts. Tumor samples in the TCGA-HCC cohort were
selected for inclusion in the training set and classified into the
high-mRNAsi and low-mRNAsi groups, based on a median
mRNAsi value of 0.55. Kaplan-Meier analysis (K-M analysis)
was performed for the two groups. We validated the mRNAsi
cutoff for prognosis prediction for the ICGC cohort and three
GEO cohorts. In each cohort, tumor samples were divided into
the high and low groups based on the mRNAsi cutoff value of
0.55. The validation of the prognostic significance of mRNAsi
was also performed based on K-M analysis. R packages such as
survival and survminer (31–33) were used for performing K-M
analysis and log-rank tests in all cohorts.

Identification of the Relationship Between
mRNAsi Subgroups and Sorafenib
Response
After testing the hypothesis that mRNAsi can predict prognosis
in HCC patients, we further hypothesized that mRNAsi may be
associated with drug treatment sensitivity based on the activity of
multiple inhibitors that were shown to be highly correlated with
cancer stemness index mRNAsi (22). First, we identified
differentially expressed genes (DEGs) between the high and
low mRNAsi subgroups in the GSE109211 cohort. Sixty-seven
samples were divided into two segments based on the median
mRNAsi in the sorafenib cohort (median = 0.2513743).
Additionally, 845 DEGs were analyzed among two segments
using R package limma (34)(| log2foldchange| > 1.5, adjusted p-
value < 0.01).

Then, hierarchical clustering was performed based on DEGs
using the R package ConsensusClusterPlus (35), which used an
algorithm to determine the cluster count and membership
during unsupervised analysis. The process has repeated a total
of 1000 times, to ensure the stability of the classification process;
these samples were clustered into two groups based on the
estimated number of clusters. The relationship between
mRNAsi subgroups and the response to sorafenib was assessed
and visualized using the R package ggstatplot (36).

Identification of Hub Pathways and Genes
Involved in Sorafenib Resistance
After analyzing the relationship between mRNAsi subgroups and
drug resistance, we further explored and evaluated the functional
mechanisms that the DEGs between two subgroups might
participate in, to identify molecular changes at the pathway
level. WikiPathway enrichment analysis and visualization were
performed via clusterProfiler (37) and enrichplot packages. For
TABLE 1 | Information regarding the HCC cohorts used in this study.

Cohort Names Sample Size Direction of Analysis PMID Link

TCGA-HCC 330 Prognosis NA https://xenabrowser.net/
ICGC-JP 229 Prognosis NA https://dcc.icgc.org/releases/release_28/Projects/LIRI-JP
GSE14520 Prognosis 21159642
GSE76427 Prognosis 29117471
GSE116174 359 Prognosis NA https://www.ncbi.nlm.nih.gov/geo/query/
GSE109211 67 Sorafenib response 30108162

GSE143477 6 Sorafenib response 32554246
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focused critical pathways, the key regulatory genes involved also
need to be analyzed. CBNplot (38), which exhibited a Bayesian
network inference approach, was employed to explore molecular
regulatory relationships. We set the parameter R (the number of
bootstraps) to 10000 to ensure that the gene or pathway
regulatory network can be stably inferred.

Generation and Validation of a PPAR-
Related Signature for Sorafenib
Resistance
We additionally examined whether the four hub genes identified
by CBNplot could be used to distinguish the response to
sorafenib. Principal component analysis (PCA) and
visualization were performed via FactomineR (39), ggplot2, and
ggstatplot (36). To assess the possibility of resistance to sorafenib,
we used the first 2 principal components (number of dimensions:
2) to construct a PPAR-relevant gene signature. The signature
scores contained the coordinates of samples in the first 2
principal components (PCs), which indicate the correlation
between a sample and two principal components. The use of
this method can enable the score to focus on the set with the
largest block of correlated (or non-correlated) genes in the set.
We then defined the PPAR-related signature score using a
method similar to that used in Zhang’s study (40–42).
PPARscore was defined as the risk score of sorafenib and was
evaluated by adding the values for Dimi1 and Dimi2. Dimi1 was
defined as the coordinate on PC1 of sample i. Dimi2 was defined
Frontiers in Oncology | www.frontiersin.org 4
as the coordinate on PC2 of sample i. The formula used is
as follows:

PPARscore = Dimi1 + Dimi2
Sixty-seven samples were divided into two segments according to
the best threshold of PPARscore, which was the point closest to
the upper left corner in the Receiver-operating characteristic
(ROC) curve. Patients with PCA scores greater than the
PPARscore cutoff (cutoff = -0.56) had a higher likelihood of
developing sorafenib resistance. The PPARscore and its cutoff
were validated in another sorafenib cohort, i.e., GSE143477.

Analysis of Somatic Mutations for
Hub Genes
We checked the mutation data of hub genes in the TCGA-HCC
cohort, to examine whether the hub genes were affected by
genomic alterations. We downloaded somatic variants in the
mutation annotation format (MAF) and visualized the files. We
compared the frequencies of somatic mutations in the top 10
mutational genes and key genes in the PPAR signaling pathway.
The maftools R package was adopted for analysis (43).

Visualization of Transcription Factor
Binding Site for Key Genes
Cistrome Data Browser, a resource of human cis-regulatory data
derived from Chromatin immunoprecipitation followed by
sequencing (ChIP-seq). ChIP-seq profiling assays provide the
genome-wide locations of transcription factor (TF) binding sites.
FIGURE 1 | The flowchart demonstrates the analytical process of calculating HCC stemness and its association with the response to sorafenib treatment and HCC
patient prognosis.
July 2022 | Volume 12 | Article 912694
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We queried the potential binding transcript factors for specific
genes in the Cistrome Data Browser (44, 45). Two RXRB ChIP-
seq samples were used to analyze the binding of RXRB to the
NR1H3 promoter (ENCODE Project Consortium et al.) (46). In
addition, four NR1H3 ChIP-seq samples were used to analyze the
binding of NR1H3 to the SCD promoter (Savic D. et al.) (47).

Luciferase Reporter Assay
To examine the effect of RXRB on NR1H3 and NR1H3 on SCD
transcriptional activity, we constructed pGL4.18 vectors
composed of NR1H3 or SCD promoters. Empty pcDNA3.1
plasmid, pcDNA3.1-RXRB, or pcDNA3.1-NR1H3 plasmid was
co-transfected with pGL4.18-promoter vectors and phRL-TK
plasmids using Lipofectamine 2000 in MHCC-97h cells.
MHCC-97h cells were then harvested and luciferase activity
was analyzed by using Dual-Luciferase® Reporter Assay
System kit (Promega). In order to compare the transfection
efficiency, the firefly luciferase values were revised by the
corresponding Renilla luciferase values.

Visualization of Promoter DNA Methylation
We examined whether the expression levels of key genes related
to the response to sorafenib were affected by methylation. We
determined and visualized the methylation status of the SCD
promoter using MEXPRESS (48), which is a web tool for
generating fast queries and visualizing methylation data for the
TCGA-HCC cohort.

Statistical Analysis
Univariate survival analysis was performed via K-M survival
analysis and the log-rank test. Correlation coefficients were
assessed via Spearman analysis. Analyses of differentially
expressed genes were performed based on the limma package,
and K-M analysis was performed using the survival package and
survminer package. Gene functional enrichment analysis was
conducted via clusterProfiler. The mRNAsi-related subgroups
were visualized using ggtree, via the generation of gene clustering
trees (49). ROC curve was performed, and the area under the
ROC curve was used to assess the predictive performance of
PPARscore using the R package pROC. Different expressions
between two groups (sorafenib-sensitive or sorafenib-resistant)
were assessed using the Wilcoxon Rank Sum Test and P values
adjusted by the hommel method. All statistical analyses were
performed using R (Version 4.0.2), and the statistical significance
was defined based on whether P < 0.05 or P < 0.01.
RESULTS

mRNAsi Is Significantly Correlated With
the Response to Sorafenib
The mRNAsi value was calculated as Spearman’s correlation
between the weight vectors of the stemness signature using a
gelnet trained OCLR model, based on the stem cell data (29, 30)
and mRNA expression data for each of the HCC samples. Its
value ranges between 0 to 1; a higher mRNAsi represents a lower
Frontiers in Oncology | www.frontiersin.org 5
level of differentiation in a sample, signaling drug resistance (16,
17). We explored mRNAsi subgroups to distinguish the response
to sorafenib therapy. First, the mRNAsi scores of samples in the
sorafenib cohort GSE109211 were calculated, and the samples
were classified into the high and low subgroups using the median
value of mRNAsi (0.2513743). Then, differential expression
analysis was performed. Finally, 845 DEGs were identified
using the screening criteria (|logFC| > 1.5, adj.P-value < 0.01)
(Figure 2A). We could utilize those DEGs to cluster for
identifying mRNAsi subgroups.

To investigate the relationship between DEGs, mRNAsi, and
the response to sorafenib, we implemented a consensus
clustering analysis for 67 patients from the GSE109211 cohort
based on the expression pattern of 845 DEGs. The results
revealed that there were two distinct patient clusters based on
changes in the Cumulative Distribution Function (CDF) area
and consensus matrix (Figure S1). As shown in Figure 2B and
Figure 2C, the responses to sorafenib were notably different
among the two subgroups. We termed two clustered subgroups
as the mRNAsi-high subgroup and the mRNAsi-low subgroup.
Only 8% of patients in the mRNAsi-high subgroup were sensitive
to sorafenib, while 89% of patients in the mRNAsi-low subgroup
exhibited a response to the therapy. The difference in the
responses to sorafenib in the two mRNAsi-related subgroups
was statistically significant (Test of proportion for mRNAsi-high
subgroup p-value = 7.76e-9; Test of proportion for mRNAsi-low
subgroup p-value = 5.79e-4). These results demonstrated that
our mRNAsi-related subgroups could distinguish the drug
response to sorafenib therapy in HCC patients.

The PPAR Signaling Pathway Is the Key
Pathway for Sorafenib Resistance
To determine DEGs-enriched pathways, 845 DEGs, identified by
samples’ mRNAsi (greater than median value or not), were first
used to perform over-representation analysis (ORA). As shown
in Figure 3A, the identified enriched pathways did not include
the commonly reported sorafenib-associated pathway (Ras-
MEK-ERK pathway) but were related to lipid metabolism. To
exclude the analysis bias, more differentially expressed genes
were included between the high-mRNAsi and low-mRNAsi
subgroups in differential expression analysis. Then, we selected
1853 DEGs (|logFC| > 1.5, adj.P-value < 0.01) in total, to repeat
pathway analysis, and similar analysis results were collected.
Indeed, DEGs between the high-mRNAsi and low-mRNAsi
subgroups were mainly enriched in lipid metabolism-
associated biological processes, such as the PPAR signaling
pathway (https://www.wikipathways.org/index.php/Pathway :
WP3942) and fatty acid omega-oxidation (Figure 3B). It was
worth noting that fatty acid biosynthesis and one of the PPAR
subtypes PPARG had been reported to be associated with the
efficacy of sorafenib (50, 51).

Hence, to determine the causal relationships between our
enriched pathways and the response to sorafenib treatment, we
first inferred regulatory relationships between the enriched
pathways via Bayesian network (BN) inference. BN inference
revealed the interactions between the current enriched pathways
July 2022 | Volume 12 | Article 912694
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and other pathways. It provided a more comprehensive insight
into the regulatory impact. As shown in Figure 3C, the most
notable finding was that the PPAR signaling pathway could
trigger fatty acid biosynthesis. The PPARA signaling pathway
had been identified as activated in CSCs (52), and PPARA and
PPARG can enhance stemness and tumorigenicity by PPAR-
fatty acid oxidation program (53). We further identified the
PPAR signaling pathway regulating fatty acids biosynthesis in
low differentiated samples (high-mRNAsi subgroup)
(Figures 3C, E). The results of our analysis suggested that the
PPAR signaling pathway was the “bridge” between fatty acid
imbalance and maintenance of cancer cell stemness.

As shown in Figures 2D, 3E, notably, several genes were
highly expressed in the PPAR signaling pathway. In addition, we
conducted a GSEA analysis between the two mRNAsi-related
subgroups using logFC. And we found that the PPAR signaling
pathway and its upstream pathway nuclear receptors meta-
pathway were significantly enriched in the high mRNAsi
group. This result further demonstrated that the PPAR
signaling pathway was a sorafenib resistance-related pathway
Frontiers in Oncology | www.frontiersin.org 6
(Figure 3F). This considerably different expression (NES=1.615)
in two mRNAsi subgroups suggested that the PPAR signaling
pathway was a sorafenib response-related pathway that deserved
our attention. We hypothesized that genes involved in lipid
metabolism might be related to the response to sorafenib in
HCC patients and that these genes were overlooked in
previous reports.

SCD Is One of the Hub Genes in the PPAR
Signaling Pathway That Plays a Role in
Sorafenib Resistance Development
In the PPAR signaling pathway, SCD was reported to code for an
enzyme crucial for the conversion of saturated C16/C18 fatty acids
into monounsaturated fatty acids and regulation of the saturated
fatty acid:monounsaturated fatty acid (SFA : MUFA) ratio.
Furthermore, we inferred that the SCD expressed in the PPAR
signaling pathway might play a vital role in sorafenib resistance.
Upon visualizing the expression of the entire pathway, we found
that most genes, including SCD, were highly expressed, compared
to those in the mRNAsi-low subgroup (Figures 2D, 3E).
A B

DC

FIGURE 2 | Consensus clustering facilitated the identification of distinct mRNAsi-related clusters associated with different responses to sorafenib treatment; samples
in the mRNAsi-high cluster were resistant to sorafenib and exhibited higher stemness proportions. (A) We extracted and compared 845 DEGs using subgroup
classification in the sorafenib cohort GSE109211. (B) Tree-based visualization of the two mRNAsi subgroups. (C) The proportion of different responses to sorafenib
(responder or non-responder) in the two mRNAsi subgroups with statistical significance. (D) Tree cluster of 1853 differentially expressed genes. Genes in the PPAR
signaling pathway have been highlighted. See also Figure S1.
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After noting the apparent differences in SCD expression, we
inferred the gene regulatory network in the PPAR signaling
pathway and searched for SCD genes with regulatory functions.
As shown in Figure 3D, upon combining literature reports (50)
and regulatory networks inferred from the enriched result, we
could focus on a regulatory route from RXRB to NR1H3 to
CYP8B1, and finally to SCD. It was well known that i) the RXRB
Frontiers in Oncology | www.frontiersin.org 7
TF could induce the transcription of NR1H3 (54), ii) the NR1H3
TF could induce the transcription of SCD (55), and iii) the
CYP8B1 enzyme could catalyze the synthesis of lipid and
cholesterol (56). Our result indicated that the high level
of expression of SCD and its upstream genes in the
PPAR signaling pathway diminished the therapeutic efficacy
of sorafenib.
A

B

D

E

F

C

FIGURE 3 | The high mRNAsi subgroup (sorafenib resistant) exhibits higher expression levels of most genes in the PPAR signaling pathway in HCC cells. (A) We first
selected 845 DEGs for performing functional analysis and found that these DEGs were significantly enriched in the PPAR signaling pathway, cytoplasmic ribosomal proteins,
folate metabolism, etc. (B) Next, we selected 1853 DEGS for performing enrichment analysis and found that the DEGs were significantly enriched in lipid metabolism-related
pathways. (C) Enriched pathway regulatory network for 26 pathways. (D) The gene regulatory network for the PPAR signaling pathway. (E) Visualization of expression of the
PPAR signaling pathway (most genes were highly expressed in the mRNAsi-high subgroup). The expression of the gene in both mRNAsi subgroups ranges from -1 to 1. A
value closer to 1 means that the gene is highly expressed in the high-mRNAsi subgroup (red color); conversely, it is highly expressed in the low-mRNAsi subgroup (blue color).
Most of the genes in the PPAR signaling pathway are highly expressed in the high-mRNAsi subgroup. (F) Meanwhile, GSEA was performed to compare the high-mRNAsi and
low-mRNAsi subgroups, to identify upstream pathways of PPAR signaling that were up-regulated in the mRNAsi-high subgroup, NES =2.049. PPAR signaling pathways were
up-regulated in the mRNAsi-high subgroup, NES = 1.642.
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We further checked the correlation between related genes and
their expression levels in different responses to sorafenib. Three genes
(NR1H3, CYP8B1, SCD) were induced transcription by subtypes of
PPARs (https://www.wikipathways.org/index.php/Pathway:
WP3942) (57). We found that PPARA was slightly different
expressed in two responses to sorafenib, which meant PPARA was
responsible for the change in the expression level of its downstream
target genes (Figure 4A, Figure S2). The expression levels of all the
four key genes were higher in sorafenib non-responders than in
sorafenib responders (Figure 4A). To assess the accuracy of inferred
stem-related sorafenib resistance indices, we conducted correlation
analysis and observed high levels of relevance between mRNAsi
and the expression levels of RXRB, NR1H3, CYP8B1, and
SCD (Figure 4B).

The PPAR-Related Signature Can Be Used
to Predict the Response to Sorafenib
To assess the predictive accuracy of the four-gene signature
(RXRB, NR1H3, CYP8B1, and SCD), we used PCA to assess
Frontiers in Oncology | www.frontiersin.org 8
the ability of the signature to predict the effectiveness of sorafenib
therapy, using the expression levels of the four genes. As shown
in Figure 4C, the expression of these genes was also significantly
correlated with the response to sorafenib. Hence, we calculated
the four-gene signature, named PPARscore, for sorafenib samples
using the coordinates of samples on the first 2 principal
components. The Receiver-operating characteristic (ROC)
analysis showed that PPARscore achieved an Area Under
Curve (AUC) of 0.88, which PPARscore equaled -0.56 with the
highest sensitivity and specificity (Figure 4E). We classified
samples into two groups based on the best threshold of
PPARscore. If the PPARscore was greater than -0.56, it means
that the likelihood of sorafenib resistance development is higher.
The PPAR-related signature was significantly correlated with
sorafenib resistance (Figure 4D, Table S3). Finally, we validated
PPARscore in another sorafenib cohort, i.e., GSE143477
(Figure 4C, Table S4). The scores of three sorafenib-resistant
samples were greater than -0.56 and those of three sorafenib-
sensitive samples were less than -0.56 (Table S4). We also
A

B

D EC

FIGURE 4 | Expression of key genes during the generation of different responses to sorafenib, the correlation between key genes and mRNAsi, and visualization of
PPAR-related signature. (A) Expression of RXRB, NR1H3, CYP8B1 SCD, and PPARA during different responses to sorafenib treatment with statistical significance.
(B) Correlation analysis facilitated the identification of a significant positive association between mRNAsi and several sorafenib resistance genes (RXRB, NR1H3,
CYP8B1, SCD). (C) AUC results are indicative of the expression of four genes in the sorafenib cohort GSE109211 (the left) and PCA results indicate the expression
of four genes in the validated sorafenib cohort GSE143477 (the right). See also Figure S2. (D) The proportion of different responses to sorafenib (responder or non-
responder) in two groups of samples for four-gene scores. (E) ROC of PPARscore, the AUC value of PPARscore was 0.8861. The point with the highest specificity
and sensitivity in the curve was -0.56.
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examined whether the expression of the four genes showed a
similar trend in the GSE143477 cohort. The expression levels of
RXRB, NR1H3, and SCD were higher in samples exhibiting
sorafenib resistance (Figure S2). These results suggested that
the expression levels of RXRB, NR1H3, CYP8B1, and SCD in the
PPAR signaling pathway were strongly associated with the
response to sorafenib.

Differences in the Expression of Key
Genes are Not Related to the Somatic
Mutation Frequency
We explored the potential regulatory mechanisms of the core
genes described above. Variations in genetic expression may be
attributable to the occurrence of key somatic mutations in genes
within the transcriptome across patients with different
phenotypes and specific types of cancer (58). We assessed the
expression of key genes related to the response to sorafenib, to
examine the possibility that the response to sorafenib is affected
by mutations, by comparing the frequencies of somatic
mutations for the top 10 mutational genes and key genes in
the PPAR pathway (Figure 5A). We then identified key genes in
the PPAR pathway that exhibited low mutation rates in the
TCGA HCC dataset. This result proved that somatic mutation
frequencies in key genes were not responsible for the changes in
the expression of key genes. Therefore, we ruled out the
Frontiers in Oncology | www.frontiersin.org 9
possibility that mutation frequency affected the function and
expression of these genes. The result mirrored the Bayesian
inference that these gene-phenotype-related alterations occur
mainly at the transcriptional level.

Transcription Factors in the PPAR
Signaling Pathway Induce the Expression
of NR1H3 and SCD
We also assessed the potential mechanism of occurrence of
alterations in gene expression, because TFs can activate gene
expression by binding to the targeted gene promoter (59). We
combined regulatory networks inferred from enriched results and
literature reports (50, 60), and focused on a regulatory route from
RXRB to NR1H3 to CYP8B1 and finally to SCD. Although it was
well known that RXRB andNR1H3 could separately bind toNR1H3
and SCD (54, 55), we demonstrated that RXRB and NR1H3 could
act as TFs and bind to the promoter regions of NR1H3 and SCD,
respectively. First, RXRB could bind to the promoter region of
NR1H3 in HepG2 hepatocellular carcinoma cells. Each track
corresponds to a HepG2 sample. (Figure 5C). Second, NR1H3
could bind to SCD in HT29 colorectal adenocarcinoma cells (no
similar study was performed with hepatocellular carcinoma cells)
(Figure 5D). An analysis of these results showed that there is
abundant evidence to support the regulatory relationship between
these genes.
A
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D

E
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FIGURE 5 | Other omics analysis of key genes. (A) Somatic mutations in the top 10 mutated genes and key genes in the PPAR signaling pathway. (B) Visualization
of methylation of the SCD promoter region in HCC. The purple shaded area represents the SCD promoter region (C) Chips of RXRB bind to the promoter region of
NR1H3. (D) Chips of NR1H3 bind to the promoter region of SCD. (E) Relative dual luciferase activities of NR1H3 and SCD promoters were determined at 48 h in
MHCC-97h cells (Left: NR1H3; Right: SCD. pcDNA3.1-RXRB and pcDNA3.1-NR1H3 plasmid were empty pcDNA3.1 plasmids as the control). Data results were
shown as mean ± SEM (n ≥ 3). P-values were calculated by two-tailed t-tests. **P<0.01; OE, overexpression; SEM, standard error of the mean.
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Moreover, we validated whether RXRB and NR1H3 could
directly regulate NR1H3 and SCD by luciferase reporter assay. In
MHCC-97h cells, enforced RXRB or NR1H3 expression
significantly increased the NR1H3 or SCD promoter activity.
NR1H3 or SCD showed transcriptional activity in response to
RXRB or NR1H3. The above data demonstrated that RXRB or
NR1H3 can respectively bind to the NR1H3 or SCD promoter
and induce its transcription (Figure 5E).

Similar Methylation Levels in SCD
Promoter Regions Between Patients
Epigenetic modifications can modulate the binding of TFs to
DNA; for example, DNA hypermethylation represses the binding
of TFs to gene promoters (61). We checked the methylation level
of the SCD promoter in the TCGA-HCC cohort using the
MEXPRESS web server. Regardless of the level of SCD
expression in HCC, the level of methylation in the SCD
promoter was low (Figure 5B). This result suggested that the
methylation of SCD promoter has hardly any effects on the
binding of transcription factors to it. There were significant
differences in the expression of SCD in sorafenib-resistant and
sensitive groups, and SCD expression is probably regulated by
NR1H3, while NR1H3 is regulated by RXRB.

Mechanistic Hypothesis Involving Four
PPAR-Related Genes
Based on our BN inference results (Figure 3D) and literature
reports, we proposed the hypothesis that four gene cascades
result in sorafenib resistance. As shown in Figure 6, the RXRB
TF induced the transcription of NR1H3 and the transcription of
SCD was induced by the TF NR1H3 and the enzyme CYP8B1.
The high level of expression of SCD results in a lower SFA :
MUFA ratio, and further causes an imbalance in fatty acid
homeostasis and sorafenib resistance development.

mRNAsi Is a Valuable Prognostic Predictor
for HCC Patients
We also calculated the mRNAsi for HCC samples obtained from
five cohorts. A higher mRNAsi represents a lower level of
differentiation of a sample (20). Survival analysis was
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performed only using samples obtained from patients for
whom the survival duration was less than 5 years. Upon
selecting the median mRNAsi value of 0.55 as the cut-off value
in the TCGA HCC cohort, a 5-year survival analysis was
performed. K-M analysis revealed that patients with a low
mRNAsi had a better OS than those with a high mRNAsi (P =
0.00039; Figure 7A). Then, the prognostic value of mRNAsi was
validated using the ICGC-JP cohort and three GEO cohorts with
the same cutoff (Figure 7B; P < 0.0001; Figure 7C; P = 0.015). To
examine whether the mRNAsi was independent of other clinical
and pathological factors, we performed a multivariable cox
proportional hazard analysis, by including individual clinical
variables and mRNAsi subgroups in these datasets. As shown in
Figure 7D, in the TCGA-HCC cohort, the mRNAsi class and the
TNM Staging System (TNM) were significantly associated with
the OS during multivariate analysis. The mRNAsi class was
significantly associated with the OS in ICGC-JP cohorts
(Figure 7E). But the adjusted P value of mRNAsi class is no
longer significant in three GEO cohorts (Figure 7F). These
results suggest that mRNAsi may is a robust predictive factor
of HCC patient survival.
DISCUSSION

HCC is the most common primary liver cancer in adults and is
the leading cause of cancer-related mortality worldwide (62, 63).
Sorafenib is the only first-line chemotherapeutic treatment
administered to advanced HCC patients (5, 6). Sorafenib
therapy has proven to be effective in the treatment of patients
with advanced HCC. Given that the overall rate of response to
sorafenib therapy is still low (1, 7), it is crucial to identify patients
who can benefit the most from sorafenib therapy. Here, the
predictive value of the stemness index for response to sorafenib
treatment was first confirmed. Despite evaluating different
markers in sorafenib-resistant HCC for several years, we did
not discover a promising index that could predict the response to
sorafenib therapy. This highlights the need to identify a
biomarker for sorafenib treatment in HCC. By applying
mRNAsi to sorafenib therapy cohorts, novel mRNAsi-based
FIGURE 6 | The mechanistic hypothesis for four hub genes in the PPAR signaling pathway. Abnormally high expression levels of four hub genes result in sorafenib
resistance through a cascade reaction in the PPAR pathway.
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subgroups that could enable us to understand the response to
sorafenib were clustered. Two mRNAsi-based subgroups were
strongly correlated with the sensitivity to sorafenib therapy.
Hence, we performed a functional enrichment analysis of
DEGs, to determine whether common sorafenib-related
pathways were differentially expressed in these two subgroups.
We also assessed the effect of several selected DEGs on the results
of enrichment analysis (845 DEGs, followed by 1853 DEGs,
along with 845 genes included in the unsupervised cluster have
been shown in Table S2). Hence, in order to further clarify the
relationship between enriched pathways, we performed Bayesian
network inference using CBNplot, which helped us to identify the
previously overlooked regulatory relationship between pathways.
It was inferred that the PPAR signaling pathway regulated fatty
acid biosynthesis. This suggested that the change in lipid
metabolism might be related to the response to sorafenib in
HCC patients, but had been overlooked in previous reports.

It is known that fatty acids (FAs) can be broadly classified as
saturated FAs and unsaturated FAs. Different ratios of unsaturated
to saturated fatty acids (UFA: SFA ratio) can affect tumor cell
survival, as high levels of saturated fatty acids result in lethal
lipotoxicity (50). However, unsaturated fatty acids cannot induce
reactions to metabolic stress and thus repress lipotoxicity (55). The
PPAR signaling pathway can mediate not only saturated fatty acid
synthesis, but also monounsaturated fatty acid synthesis (64).
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Stearoyl-coenzyme A desaturase 1 (SCD) can convert saturated
fatty acids into monounsaturated fatty acids in the PPAR signaling
pathway (65). The role of SCD in facilitating hepatocarcinoma cell
proliferation and efficacy of sorafenib treatment has been
confirmed (50, 66). We identified that the PPAR pathway
regulating fatty acid biosynthesis also affects the efficacy of
treatment with sorafenib. Recent studies have verified that
PPAR can enhance stemness and tumorigenicity in individuals
consuming a high-fat diet (53, 67). This explained why the PPAR
signaling pathway is strongly associated with mRNAsi stemness
indices and sorafenib resistance. It has been demonstrated that the
inhibition of PPARG, one subtype of the peroxisome proliferator-
activated receptor, could reverse the metabolic reprogramming of
compensatory glutamine and further sensitize HCC cells to
sorafenib (51). This implies that the PPAR signaling pathway
plays an important role not only in glutamine metabolism but also
in fatty acid homeostasis. In addition, we demonstrated that the
different levels of expression of PPAR-related genes were
correlated with sorafenib resistance, and were not attributable to
somatic gene mutations. The rate of occurrence of somatic
mutations in resistance-related genes was almost zero. It has
also been demonstrated that TFs such as RXRB and NR1H3 can
bind to the promoter regions of their target genes (NR1H3, SCD).
We also verified that the methylation level of the SCD promoter
hardly affected its binding with NR1H3. Finally, we proposed the
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FIGURE 7 | Development and validation of the mRNAsi cutoff value in five HCC cohorts. (A) In the TCGA-HCC cohort, patients with high stemlike indices (mRNAsi > 0.55)
suffered from worse survival outcomes, compared to those in the low-mRNAsi group with log-rank test P =0.00039. (B, C) The mRNAsi cutoff value was further verified using
the ICGC-JP cohort and 3 GEO cohorts, and the mRNAsi-based cutoff was a significant hazard factor for HCC patients with log-rank test p<0.0001 and p = 0.016. (D, E, F).
The hazard ratios of mRNAsi were shown using a forest plot in the training and validation cohorts.
July 2022 | Volume 12 | Article 912694

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. Stemness Analysis in Sorafenib-Resistant HCC
hypothesis that key genes cascades result in sorafenib resistance,
based on literature reports and gene regulatory networks. The
PPAR signaling pathway is activated in samples with obvious
stemness feature (higher stemness indices). Four genes, RXRB,
NR1H3, CYP8B1 and SCD, were involved in PPAR signaling
pathway (57) act as sorafenib-resistant related genes. It is known
to RXRB induce the transcription of NR1H3 (54). And the
transcription of SCD was induced by the TF NR1H3 (55). The
CYP8B1, as a catalyze enzyme, induced lipogenesis, whose
overexpression increased SCD expression (68, 69). NR1H3 as TF
and CYP8B1 as catalyzing enzyme induce SCD expression. Finally,
increased expression of SCD results in greater content of MUFA
and lower SFA : MUFA ratio, causing an imbalance in fatty acid
homeostasis (50, 55). The imbalance in fatty acid homeostasis
subsequently increased and maintain the stemness of cancer cells
and further resulted in sorafenib resistance development (50, 70).

The prognosis of individual patients varies greatly due to high
levels of heterogeneity (62). Hence, we need to urgently develop
novel diagnostic or prognostic biomarkers that can predict multiple
HCC cohorts. Accumulating evidence demonstrates that mRNAsi
can predict the prognosis of other cancers (71, 72). Based on this,
we employed a trained one-class regression model, and scored the
mRNAsi for each of the HCC patients, by determining the
Spearman correlation between the weight vectors of the stemness
signature, mRNA expression data, and the mRNAsi threshold, to
predict a better or worse prognosis, and set it at 0.55. Survival
analysis was performed using data of patients with HCC from the
TCGA cohort and validated with data from the ICGC-JP cohort
and three GEO cohorts. K-M analysis demonstrated the effective
stratification of low- and high-risk patients according to different
results for overall survival, suggesting that the stemness index could
be used as a robust prognostic marker. Multivariate cox regression
analysis suggested that the prognostic capacity of the stemness
likeness was independent of other clinical data. In general, the
lower mRNAsi score represented a better survival prognosis, and
an mRNAsi value of 0.55 can be used as a cutoff for predicting the
prognosis of HCC patients, which was validated in both the TCGA
cohort and the four independent datasets.

However, several limitations were associated with our work,
and need to be optimized in the future. The validation of other
omics was different from that of the HCC cohort used to identify
mRNAsi-related subgroups.

In this study, we performed a systematic analysis of the
mRNAsi subgroups that were strongly correlated with the
response to sorafenib. Simultaneously, HCC stem-like indices
that were based on multiple independent cohorts were used to
validate the robust prognostic ability of mRNAsi. To our
knowledge, this is the first attempt to explore the potential
mechanisms of the development of sorafenib drug resistance by
assessing the tumor stemness likeness. Through an analysis of
differentially expressed pathways between two mRNAsi-related
Frontiers in Oncology | www.frontiersin.org 12
subgroups in sorafenib cohorts, we identified the PPAR signaling
pathway to be associated with sorafenib therapy. The key genes
RXRB, NR1H3, CYP8B1, and SCD were identified in the PPAR
signaling pathway, and their regulatory relationships were also
examined. They can be used as candidate targets for researching
drug resistance mechanisms. In particular, SCD has been
experimentally validated to be responsible for sorafenib
resistance (50, 66). We also derived the four-gene signature that
would enable us to predict the effectiveness of sorafenib therapy
and formulated a mechanistic hypothesis for the four PPAR-
related genes. Based on the results of our study, we thought that, in
addition to commonly reported pathways, PPAR-related activities
associated with fatty acid metabolism might also affect the
response to sorafenib treatment. Furthermore, based on a
combination of experimental evidence derived from previously
conducted research (50, 66), we suggested that the combined use
of SCD inhibitors and sorafenib may be a promising therapeutic
approach that could be used in the future.
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