
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Amr Amin,
The University of Chicago,
United States

REVIEWED BY

Rakesh Kumar,
Shri Mata Vaishno Devi University,
India
Alaaeldin Ahmed Hamza,
National Organization for Drug
Control and Research (NODCAR),
Egypt

*CORRESPONDENCE

Gloria S. Huang
Gloria.Huang@yale.edu

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 06 April 2022
ACCEPTED 15 July 2022

PUBLISHED 16 August 2022

CITATION

Gelissen JH and Huang GS (2022)
Intersections of endocrine pathways
and the epithelial mesenchymal
transition in endometrial cancer.
Front. Oncol. 12:914405.
doi: 10.3389/fonc.2022.914405

COPYRIGHT

© 2022 Gelissen and Huang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 16 August 2022

DOI 10.3389/fonc.2022.914405
Intersections of endocrine
pathways and the epithelial
mesenchymal transition in
endometrial cancer

Julia H. Gelissen and Gloria S. Huang*

Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University,
New Haven, CT, United States
The epithelial mesenchymal transition (EMT) is the process by which cancer

cells of epithelial origin, including endometrial cancer, acquire a mesenchymal

phenotype with enhanced migratory and invasive capacity, to facilitate

metastasis. The regulation of EMT is tissue-specific, and in endometrial

cancer, endocrine signaling pathways serve as critical regulators of EMT. The

intersections of endocrine signaling and EMT highlight potential avenues for

therapeutic intervention to target cancer metastasis with the aim of

reduced mortality.
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Introduction

Worldwide endometrial cancer (EC) incidence and mortality is rising. EC is the most

common gynecologic cancer in the United States, with an estimated 66,570 new cases in

2021. Though the overall prognosis for endometrial cancer is favorable with an 81.1% 5-

year relative survival rate, prognosis varies greatly by disease stage. Those with uterine-

confined malignancy have a 94.9% 5-year survival rate, while those with distant disease

have a 17.8% 5-year survival (1). These data underscore the impact of tumor metastasis

on endometrial cancer mortality.

The epithelial mesenchymal transition (EMT) is a process known to play an essential

role in normal human development and healing, as well as in cancer metastasis. Through

the EMT, cells lose their typical intercellular connections and exhibit increased motility,

invasiveness, and stem cell-like properties, including self-renewal, that facilitate

metastasis (2, 3). EMT has been categorized into three different types to describe its

role in physiologic and pathologic processes. Type I EMT contributes to key steps in

embryogenesis including gastrulation and neural crest formation, type II EMT is induced

in response to inflammation and contributes to wound healing, and type III EMT

describes the role of EMT in promoting cancer metastasis (4). This process is hallmarked
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by the loss of E-cadherin, a key component in cellular adherens

junctions, and an increase in mesenchymal cell markers,

including N-cadherin, vimentin, and fibronectin, and matrix

metalloproteinases (MMPs). The change from expression of

epithelial to mesenchymal markers is driven by upregulation

of certain transcription factors, including Zinc finger E-box

binding homeobox family proteins (ZEB1 and ZEB2), Snail

family proteins Snail1 (SNAIL) and Snail2 (SLUG), and Twist

family proteins Twist1 and Twist2 (4), which have been shown

to directly repress the expression of E-cadherin (5–9).

Additionally, the TGF-b, WNT, and PI3K signaling pathways

are all known to play an important role inducing EMT (10, 11).

The EMT phenotype in endometrial cancer is characterized

by the expression of EMT-associated transcription factors, loss

of epithelial cell markers and acquisition of mesenchymal cell

markers. Endometrial cancer EMT is associated with expression

of the EMT-associated transcription factors SNAIL, SLUG,

TWIST2, ZEB1 and ZEB2 (12) and decreased expression of E-

cadherin (13, 14). Moreover, EMT has been found to have

clinical and prognostic implications in endometrial cancer.

ZEB2, SNAIL, and SLUG expression have each been associated

with aggressive clinical characteristics, such as higher stage,

grade, non-endometrioid histology, deep myometrial invasion,

positive peritoneal cytology, lymph node involvement, and

distant metastases (12, 14) and SLUG expression is associated

with decreased 5-year survival (12). Reduced expression of E-

cadherin is associated with increased grade, stage, non-

endometrioid histology, deep myometrial invasion, and

positive peritoneal cytology in endometrial cancer (14), and

EMT status is a significant predictor of lower overall survival in

EC (14).

As a malignancy arising from a hormonally-responsive

reproductive organ, endometrial cancer is linked to multiple

endocrinological perturbations including unopposed estrogen,

obesity, insulin resistance and diabetes (15–18). Connections

between these pathways and the epithelial mesenchymal

transition in endometrial cancer underscore the complex and

interrelated processes that contribute to the development and

progression of endometrial cancer. Herein, we describe evidence

for endocrine regulation of the epithelial mesenchymal

transition of endometrial cancer, and remaining knowledge

gaps for future investigation.
Endocrine pathways in the EMT of
endometrial cancer

Sex hormones

The normal endometrium is a sex hormone responsive

tissue, and unopposed estrogen exposure is a recognized driver

of endometrial carcinogenesis (15). It may be unsurprising that
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there is ample evidence supporting the role of estrogen,

estrogen-related compounds, and progesterone in the EMT of

endometrial cancer.
Estrogen
Estrogen drives the physiologic growth and proliferation of

endometrial cells during the menstrual cycle. Unopposed

estrogen has been shown to cause endometrial hyperplasia and

pre-cancerous changes in animal models (19) and increase the

risk for invasive cancer in humans (15). In addition to being

implicated in the development of endometrial cancer, estrogen

stimulation has been shown to cause tumor growth, migration

and invasion in endometrial cancer cell lines (20–24) and higher

levels of circulating estrogen have been associated with

recurrence in endometrioid endometrial cancers (25). Evidence

further supporting estrogen’s role in the EMT of endometrial

cancer include the increased expression of the transcriptions

factors SNAIL, SLUG, and ZEB2 and mesenchymal markers N-

cadherin and Vimentin, the decreased expression of the

epithelial marker E-cadherin and activation of the PI3K and

ERK signaling pathways in endometrial cancer cell lines treated

with estradiol (20–22, 24, 26). Estrogen has also been shown to

contribute to EMT through the ubiquitin-proteasome pathway.

Estrogen upregulates UBE2C, a ubiquitin-conjugating enzyme,

likely through ERa signaling, leading to an EMT-phenotype

(increased cell proliferation, migration, and invasion; increased

vimentin and decreased E-cadherin) through downregulation of

the tumor suppressor p53 and its target p21 (21).

In addition to estrogen’s direct role on endometrial cancer

cells, the tumor microenvironment also regulates estrogen-

dependent EMT. Normal endometrial stromal cells can reduce

cell growth, induce apoptosis, inhibit estradiol-induced

migration and invasion, and reverse estradiol-induced

mesenchymal marker expression in endometrial cancer cell

lines (22). However, ERa+ macrophages in the tumor

microenvironment can have the opposite effect. Conditioned

medium from agonist-treated ERa+ M2 macrophages increased

endometrial cancer cell migration, invasion and irregular cell

morphology. It also increased N-cadherin, Vimentin, and

TWIST1 and decreased E-cadherin. These effects appear to be

mediated by the chemokine CCL18 activating the PI3K pathway.

Supporting their role in driving cancer metastasis, there was a

much higher percentage of ERa+ macrophages in advanced

stage tumor tissues vs early stage (27).

The orphan nuclear receptor estrogen related receptor alpha

(ERRa), which shares DNA sequence homology with ERa, also
has a role to play in EMT. Although ERRa does not bind

estrogens, it has been shown to engage in cross-talk with

estrogen signaling pathways (28) and, in animal studies, its

expression in the uterus is stimulated by estrogen as a

downstream target of ERa (29). There is evidence that ERRa
may mediate the signaling of TGFb in endometrial cancer
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associated stromal cells and TGFb’s subsequent activation of EMT

(30). It remains to be answered though if ERRa’s role in EMT

through TGFb is a downstream result of estrogen signaling.

Unlike type I endometrial cancer, type II endometrial

cancers have been thought to occur in the absence of

unopposed estrogen and classically display an aggressive

clinical phenotype. Type II endometrial cancers are also

hallmarked by a lack of estrogen and progesterone receptors.

Corresponding with this, ERa negativity has been associated

with non-endometrioid histology, grade 3 tumor, stage III/IV

disease, and worse survival in endometrial cancer (31). These

clinical characteristics may be secondary to activation of the

EMT in ERa negative cancers, as low mRNA expression of the

gene encoding ERa, ESR1, has been associated with high

expression of the EMT transcription factors SNAIL, SLUG,

TWIST1, ZEB1, and ZEB2. Alternatively, high expression of

ESR1 was significantly associated with E-cadherin, a-catenin,
and b-catenin mRNA expression. Furthermore, the same study

showed associations between ERa-negativity and activation

of Sonic Hedgehog, Wnt, TGF-b, and PI3K pathways (31).

These data argue for an estrogen-independent mechanism

of EMT activation in type II, ERa negative tumors. Other

studies, however, suggest that in ERa negative type II

endometrial cancer, estrogen continues to stimulate the

epithelial mesenchymal transition through the third estrogen

receptor, the G-protein coupled estrogen receptor (GPER). A

higher prevalence of GPER in the cytoplasm of type II vs type I

cell lines, as well in clinically type II vs type I endometrial cancer

tissues, has been seen. Estrogen stimulation of GPER has been

further shown to activate the ERK and PI3K pathways in

a matrix metalloproteinase (MMP) and EGFR dependent

fashion in vitro, and GPER antagonism has been shown to

block estrogen-stimulated tumor growth in vivo (20). Additional

support for the role of GPER in the EMT of endometrial cancer,

comes from studies investigating miR-195, a miRNA believed to

target GPER. In endometrial cancer cell lines, miR-195

decreased cell viability, migration and invasion, and increased

the expression of tissue inhibitor of metalloproteinase 2

(TIMP2), while decreasing MMP2 and MMP9. miR-195

further decreased phosphorylated PI3K and AKT (32). Taken

together, the above data suggest that estrogen plays an important

role in the epithelial mesenchymal transition of both type I and

type II endometrial cancers, and that loss of ERa and transition

to estrogen signaling through GPERmay be an important step in

EMT for type II cancers
Aromatase
Aromatase is the key enzyme responsible for the conversion

of androgens to estrogens. Aromatase is typically expressed in a

variety of tissues including the ovary, skin, brain, bone, placenta

and adipose tissue (33). Higher expression of aromatase has been

identified in endometrial cancer tissues, underscoring the
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importance of estrogens in the development and progression

of endometrial cancers as discussed above. Furthermore, obesity

is a significant risk factor for endometrial cancer. This may be

explained in part by the increased adipose tissue in these patients

and the idea that increased synthesis of extraovarian estrogens is

correlated with excess body weight (33). Additionally, elevated

plasma levels of testosterone and androstenedione, which are

converted to estradiol and estrone by aromatase, are associated

with increased risk of endometrial cancer (33).

Estrogen-like compounds and endocrine
disrupting chemicals

Similar to estrogen itself, a variety of estrogen-related

compounds have been implicated in the process of

endometrial cancer EMT. The selective estrogen receptor

modulators tamoxifen and raloxifene have both been shown

stimulate GPER-mediated PI3K and ERK signaling in

endometrial cancer cell lines (20). Tamoxifen, which is known

to cause endometrial cancer, has also been shown to contribute

to the EMT of endometrial cancer through its interaction with a

family of miRNA, miR-200s, that can inhibit TGFb-induced
EMT by repressing ZEB1/2 (26, 34). Tamoxifen may stimulate

EMT in an ERa dependent fashion by increasing c-Myc

promoter inhibit ion of miR-200s , leading to their

downregulation and thereby releasing ZEB2 from miR-200

repression (26).

Phytoestrogens, naturally occurring plant-derived

compounds that are structurally similar to estrogen also play a

role in EMT. Unlike other estrogen-related compounds, there is

evidence that, overall, phytoestrogens such as lignans and soy

isoflavones may decrease the risk of endometrial cancer (35).

The soy-derived phytoestrogen, genistein, has been shown to

reverse the epithelial mesenchymal transition in cells from

multiple cancer types and it has specifically been shown to

reverse estrogen induced EMT in ER-positive ovarian cancer

cells (36). Moreover, genistein has been shown to decrease cell

proliferation, decrease ERa mRNA expression, increase

progesterone receptor (PR) mRNA expression and decrease

phosphorylation of AKT in endometrial cancer cell lines (37).

Other studies, however, have shown genistein to increase

proliferation and cell cycle progression in endometrial cancer

cells (38) and activate ERK signaling through GPER in

endometrial cancer (20). Some data has suggested that these

disparate findings may be secondary to different effects of

genistein at varying concentrations (38). Regardless, further

investigation into the role of phytoestrogens in the EMT of EC

should be conducted.

Additionally, endocrine disrupting chemicals, natural and

synthetic compounds that interfere with the endocrine system by

altering the normal function of hormones and hormone

receptors, can contribute to the EMT of EC (39). The classic

endocrine disruptor bisphenol A (BPA) is known to interact

with ERa in a manner distinct from other known ER ligands
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including estradiol (40) and has been hypothesized to contribute

to a wide range of reproductive-related disorders. In endometrial

cancer, BPA been shown to induce EMT in vitro by increasing

cell growth, migration, invasion, mesenchymal cell morphology

and mesenchymal markers (41). Similarly, the common

herbicide glyphosphate has been shown in some studies to

induce ERa signaling in a ligand-independent manner (42)

and, in animal models, glyphosphate based herbicides have

been shown to induce endometrial hyperplasia and increase

endometrial sensitivity to estradiol (43), though glyphosphate’s

endocrine-disrupting properties are still debated. Glyphosphate

has been shown to induce EMT in endometrial cancer cell lines

by increasing cell migration, invasion, and expression of E-

cadherin in an estrogen receptor dependent fashion (23).

Additional endocrine disrupting chemicals, including

phthalates (chemicals often added to plastics and commonly

found in household goods, food and cosmetics), dioxins

(including 2,3,7,8-Tetrachlorodibenzo-p-dioxin [TCDD] –

persistent organic pollutants produced through natural and

industrial processes), and triclosan (5-chloro-2-(2,4-dichloro-

phenoxy)-phenol – an antimicrobial added to many common

hygiene products) have been shown to induce EMT in estrogen

dependent non-endometrial cancer cell lines (39). They may

therefore be relevant in the process of EMT in EC, though

further investigation is required to confirm this. It is clear from

these studies that the process of hormonally-mediated EMT in

endometrial cancer goes far beyond classic ERa signaling in

endometrial glandular cells, and that a variety of common

chemical, environmental and food-based inputs may be

contributing to endometrial cancer progression. and metastasis

in the modern day.
Progesterone
Progesterone plays an important regulatory role in

endometrial growth and differentiation throughout the

menstrual cycle and progestogens are often used in clinical

practice to treat abnormal uterine bleeding by thinning the

endometrial lining. Along with estrogen receptor positivity,

progesterone receptor positivity in endometrial cancer is

classically associated with type I cancers. Lack of progesterone

receptor in endometrial cancer is associated with poorer

prognostic factors, including high tumor grade, non-

endometrioid histology and deep myometrial invasion (44,

45). Furthermore, there is evidence that in the normal

menstrual cycle and in endometrial cancer, progesterone may

increase the expression of the WNT/b-catenin pathway

inhibitors DKK1 and FOXO1. It is hypothesized that some of

progesterone’s inhibitory effect on endometrial hyperplasia and

endometrial cancer may be mediated through its ability to

inhibit the WNT/b-catenin pathway (46). The progestogen

medroxyprogesterone acetate has also been shown to decrease

migration, invasion, and vimentin expression in endometrial
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cancer cells expressing progesterone receptor B or progesterone

receptors A and B, though not in those expressing progesterone

receptor A alone. In the same study, progesterone was shown to

downregulate a number of signaling pathways known to play an

important role in the EMT of endometrial cancer, including

PI3K, TGFb, IGF-1, and EGF (47). Progesterone’s protective role
in endometrial cancer may therefore be mediated through its

inhibition of EMT in type I EC tissues that retain the

progesterone receptor.
Metabolic disturbances

Obesity and its comorbid condition, diabetes, are significant

risk factors for the development of endometrial cancer. It is

thought that hyperglycemia, insulin resistance and subsequent

increased activity of the insulin/IGF pathway drive the risk of

endometrial cancer in this population (16).

Insulin and type-1 insulin like growth
factor receptor

Insulin and insulin like growth factors (IGFs) play an

important role in normal metabolism, and several studies have

linked aberrant insulin and IGF signaling to EC development

and progression. In endometrial hyperplasia and endometrial

cancer, the expression of insulin receptors A and B (IR-A and

IR-B) and type-1 insulin like growth factor receptor (IGF-1R) is

upregulated compared to normal endometrium (48). IGF-1R

overexpression and activation may contribute to endometrial

carcinogenesis by decreasing apoptosis through PI3K/AKT

pathway signaling (49). Studies of miR-424, a micro RNA that

targets and suppresses IGF-1R, show that it is decreased in

endometrial cancer cells. Expression of miR-424 is associated

with epithelial cellular morphology, increased expression of E-

cadherin and decreased expression of vimentin, while decreased

expression of miR-424 is associated with increased proliferation

and migration in endometrial cancer cells. Clinical data supports

this role for IGF-1R in EMT, as patients with lower expression of

miR-424 were more likely to have lymph node metastases and

higher stage disease (50). IGF-1R is also known to form a hybrid

receptor, IR-A/IGF-1R, with the insulin receptor, and this

hybrid receptor has been shown to activate the EMT in

endometrial cancer. Insulin and IGF-1 are each able to induce

the expression of EMT biomarkers in endometrial cancer cell

lines (51). Knockdown of IR-A or IGF-1R decreases cell

migration and invasion, increases apoptosis, and induces

epithelial-type biomarker expression (increased E-cadherin

and decreased MMP2, MMP9, N-cadherin, vimentin,

fibronectin) through PI3K and ERK signaling. Interestingly,

knockdown of both receptors produced these effects most

dramatically (51). Clinical data supports the importance of the

hybrid insulin and IGF-1 receptor as expression of its activated

form, pIGF-1R/pIR, is associated with recurrence in
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endometrioid endometrial cancers (25). In addition to IGF-1R’s

individual effect on endometrial cancer, the roles of IGF-1R and

sex hormone signaling in EMT are likely closely interwoven as

estrogen has been shown to stimulate rapid IGF-1R signaling

through ERa and IGF-1R may also activate ERa through ERK1/

2 (52). These data support an amplification of IGF-1R and ERa
signaling through their cross-activation of one another.

Interestingly, IGF-1R expression has been shown to be

increased in response to progesterone in normal endometrium

complicating the understanding of each one’s role in the EMT of

EC (48).

High glucose and diabetes
Impaired glucose metabolism and diabetes are risk factors

for the development of endometrial cancer (17), and diabetes

significantly increases the risk of death in patients with

endometrial cancer (53). In addition to the role of these

conditions in creating insulin resistance and increasing

signaling through the insulin and IGF-1R pathways, elevated

glucose levels themselves may contribute to the EMT of

endometrial through other, often interrelated, mechanisms.

Endometrial cancer cells exposed to high glucose conditions in

vitro show increased proliferation and EC tissues from patients

with diabetes exhibit mesenchymal biomarkers (decreased E-

cadherin and increased N-cadherin) (54). One mechanism

believed to cause these changes is activation of dynamin-

related protein 1 (Drp1), the key protein in mitochondrial

fission, in the setting of high glucose. Drp1 is increased in

endometrial cancer patients with diabetes, and high glucose

activates Drp1 in endometrial cancer to induce mitochondrial

dysfunction, cellular progression through the cell cycle,

increased migration and invasion, and expression of an EMT

phenotype (decreased E-cadherin; increased N-cadherin,

vimentin, and SNAIL) (54).

A unique form of post-translational protein modification, b-
N-acetylglucosaminylation (O-GlcNAcylation), may also

provide a link between high glucose states and EMT in

endometrial cancer. O-GlcNAcylation is the process of adding

N-acetylglucosamine, a glucose derivative and byproduct of the

hexosamine biosynthesis pathway, to Serine and Threonine

residues on proteins in a mechanism known to be responsive

to nutrient availability. Altered levels of O-GlcNAcylation have

been associated with several chronic conditions, including type

II diabetes. Importantly, in type II diabetes, increased O-

GlcNAcylation occurs in certain tissues, such as skeletal

muscle and endothelial cells, and may contribute to insulin

resistance (55, 56). Endometrial cancers have a high incidence

of mutations in the genes encoding the O-GlcNAc cycling

enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase

(OGA). Moreover, O-GlcNAcylation is upregulated in some

endometrial cancer cell lines and hyper-O-GlcNAcylation is

associated with increased migration, a mesenchymal
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morphology and increased expression of the EMT marker

N-cadherin. On the other hand, hypo-O-GlcNAcylation is

associated with decreased proliferation and decreased

expression of certain EMT-related genes, such as TGFB2.

Complicating a clear understanding of the role of O-

GlcNAcylation in the EMT of endometrial cancer, hyper-O-

GlcNAcylation is associated with increased E-cadherin and

decreased SNAIL expression, and O-GlcNAcylation status had

no impact on the expression of the EMT markers Vimentin,

SLUG, and ZEB1 (57). These findings highlight the need for

further investigation into the role of the metabolically responsive

O-GlcNAcylation process in the EMT of endometrial cancer.

A further mechanism by which high glucose states may

induce EMT in endometrial cancer is upregulation of the

insulin-controlled glucose transporter, GLUT4. Endometrial

cancer tissues have increased expression of GLUT4 compared

to the normal endometrium. Moreover, there is evidence that

high glucose states increase expression of the estrogen receptors

ERa and ERb, which act on GLUT4 to stimulate VEGF/VEGFR

mediated EMT by upregulating the EMT-associated genes

TWIST, SNAIL, and CTNNB1 (58). This mechanism is

particularly interesting as it shows the interplay between sex

hormone signaling and impaired glucose metabolism in

contributing to the EMT of endometrial cancer.

Metformin
Providing an additional level of support for the role of high

glucose, insulin resistance, and diabetes in the role of EMT in

endometrial cancer, the common diabetes treatment,

metformin, has been shown to inhibit the EMT process.

Tumor tissues from diabetic endometrial cancer patients on

metformin show increased expression of E-cadherin.

Additionally, in vitro studies reveal that metformin decreases

endometrial cancer cell migration and invasion and influences

epithelial marker expression with increased E-cadherin and

decreased N-cadherin, vimentin, and fibronectin (59, 60).

Furthermore, metformin downregulates the EMT transcription

factors TWIST1, SNAIL, and ZEB1 in some endometrial cell

lines (59). Some data suggests that metformin produces this

effect by downregulating the PI3K/AKT/MDM2 pathway (60)

and others have shown that metformin can inhibit 17b-estradiol
stimulated EMT through ERK1/2 (24). Metformin may

therefore provide yet another link between estrogen signaling

and insulin resistance in the EMT of endometrial cancer.
Discussion

While the associations of endocrine disorders including obesity,

insulin resistance, and diabetes with endometrial cancer have long

been recognized, the growing body of literature describing the role

of endocrine disorders in the epithelial mesenchymal transition of
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endometrial cancer support the ongoing role of these conditions in

the progression and metastasis of endometrial cancer even after

they may have contributed to its carcinogenesis. Moreover, the

interconnected actions of estrogen, insulin, IGF-1, and

hyperglycemia on the EMT of endometrial cancer may explain

the increased mortality rates seen in endometrial cancer patients

with obesity and diabetes (53, 61), as advanced stage is associated

with significant decreases in survival in endometrial cancer (1).

Though the above data provide compelling evidence for the

role of multiple related endocrine pathways in driving the

epithelial mesenchymal transition in endometrial cancer and

many provide possible explanations for noted clinical trends,

they are limited by the fact that the majority of studies have been

conducted in vitro using endometrial cancer cell lines. In vivo

studies using xenograft and transgenic models of endometrial

cancer are needed to validate the findings observed in cell lines.

Limited clinical data from applications of these endocrine

related EMT processes in endometrial cancer are mixed. For

example, randomized control trial data show that treatment with

metformin plus megestrol acetate for fertility sparing

management of atypical endometrial hyperplasia and

endometrial cancer may improve early complete response in

hyperplasia patients but does not improve response in

endometrial cancer patients (62). Conversely, diabetic

endometrial cancer patients taking metformin experience

improved survival (63). Data linking improved outcomes in

endometrial cancer with metformin treatment would support

the role of multiple endocrinological disturbances in the EMT of

endometrial cancer, as metformin has been shown to counteract

the effects of elevated estrogen levels, hyperglycemia and insulin

resistance as detailed above. Tumor tissue analysis, or analysis of

circulating tumor cells, with comparison of pre- and post-
Frontiers in Oncology 06
treatment clinical samples, is needed to determine whether

endocrine targeted therapy can modulate or reverse the EMT

phenotype. Future studies should be directed towards further in

vivo confirmation of these findings and clinical applications that

may alter the course of endocrine-mediated epithelial

mesenchymal transition in endometrial cancer.
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