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In recent years, with the breakthrough of CAR-T cells in the treatment of hematological
tumors, they are increasingly being used to treat solid tumors, including urologic
neoplasms. There are many relatively specific targets for urologic neoplasms, especially
prostate cancer. Besides, urologic neoplasms tend to progress more slowly than tumors
in other organs of the body, providing ample time for CAR-T cell application. Therefore,
CAR-T cells technology has inherent advantages in urologic neoplasms. CAR-T cells in
the treatment of urologic neoplasms have been extensively studied and preliminary
achievements have been made. However, no breakthrough has been made due to the
problems of targeting extra-tumor cytotoxicity and poor anti-tumor activity. we
systematacially summarized the research actuality of CAR-T cells in urologic
neoplasms, discussed the potential value and difficulties of the research. The
application of CAR-T cells in the treatment of urologic neoplasms requires improvement
of function through screening for better targets, modification of CAR structures, or in
combination with other antitumor approaches.
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INTRODUCTION

Urologic neoplasms mainly include prostate cancer, bladder cancer, kidney cancer, adrenal tumor,
penile tumor, testicular tumor and ureter tumor. According to GLOBOCAN in 2018, the incidence
and mortality of urologic neoplasms were 12.3% and 7.7%, respectively (1). At present, prostate
cancer, bladder cancer and kidney cancer are the most common urinary system tumors. The early
stage of tumor occurrence can be successfully treated by surgery or radiotherapy and chemotherapy,
but there is no radical treatment for advanced tumor (2–4). In the past decade, immunotherapy has
Abbreviations: CAR-T cells, chimeric antigen receptor T cells; PSCA, prostate stem cell antigen; PSMA, prostate specific
membrane antigen; EGFR, epidermal growth factor receptor; MHC, major histocompatibility complex; RCC, renal cell
carcinoma; mRCC, metastatic renal cell carcinoma; ICIs, immune checkpoint inhibitors; TKIs, tyrosine kinase inhibitors;
CAIX, carbonic anhydrase IX; OAV-decorin, decorin-carrying oncolytic adenovirus; ECM, extracellular matrix; PCa, prostate
cancer; mCRPC, metastatic castration resistant prostate cancer; PSA, prostate specific antigen; BC, bladder cancer; NMIBC,
non-muscle-invasive bladder cancer; MIBC, muscle-invasive bladder cancer; MBC, metastatic bladder cancer
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emerged as a new direction in the treatment of advanced urologic
neoplasms (5–7). Since urologic neoplasms are usually slow-
growing compared to the other systemic tumors, there is a time
window for treatment, which provides conditions for the
selection of appropriate immunotherapy. In addition, tumor-
associated antigens such as prostate stem cell antigen (PSCA),
prostate specific membrane antigen (PSMA) and epidermal
growth factor receptor (EGFR) are expressed in urologic
neoplasms. Therefore, the choice of CAR-T cells for urologic
neoplasms has an innate advantage.

CAR-T cells technology is a superior immunotherapy for
cancer that delivers antitumor effects by providing genetically
modified T cells that precisely target tumor-associated antigens
(8). CAR-T cells represent a major advance in the field of tumor
immunotherapy with their success in treating B-cell-derived
lymphoma and leucocythemia (9). Since then, CAR-T cells
have become increasingly popular in the treatment of solid
tumors. Since then, the study of CAR-T cells in solid tumor
therapy has gradually become a hotspot. However, there is
considerable heterogeneity between solid and hematologic
tumors. First, it is difficult to find tumor-specific targets in
solid tumors such as CD19 of hematological tumor cells, and
only tumor-associated antigens can be applied, which might led
to the emergence of CAR-T cells targeting extratumoral
cytotoxicity. Secondly, the drug has a good diffusion effect in
the blood system, and it is easy for the drug to contact the tumor
cells. Nevertheless, solid tumors have a dense stromal
component and an immunosuppressive microenvironment. It
is difficult for CAR-T cells to fully infiltrate tumor tissue and
contact with tumor cells. Even if CAR-T cells are infiltrated into
tumor tissue, and they have to overcome the problem of
immunosuppression to exert tumor killing function (10). To
overcome these challenges, structural optimization and target
screening of CAR-T cells are under investigation.

Urologic neoplasms, like other solid tumors, have been widely
used in immunotherapy in recent years, and some progress has
been made. Although CAR-T cells offer an innovative approach for
the treatment of patients with advanced urinary tumors, no product
has been successfully introduced into the clinic. A large number of
researchers have attempted to overcome this dilemma by
optimizing target selection, modifying CAR-T structure,
improving tumor immune microenvironment, and combining
other molecular targeted therapies. This review will systematically
introduce the research progress and potential value of CAR-T cells
in urinary system tumors, and discuss the difficulties faced, in order
to provide new ideas for the treatment of urinary system tumors.
CAR-T CELLS TECHNOLOGY

CAR-T cells are regarded as the representative of adoptive
immunotherapy. The greatest advantage is that they can bind
directly to the surface of cancer cells without major
histocompatibility complex (MHC) restriction and induce tumor
cell death (11). In recent years, CAR-T cells have exhibited
Frontiers in Oncology | www.frontiersin.org 2
impressive therapeutic effect in the treatment of B cell
malignancies (12). As a result, researchers have focused on
CAR-T cells technology in the application of solid tumors,
including urologic neoplasms. CAR-T cells consist of three
major components: an extracellular domain (SCFV fragment)
that recognizes an antigen of tumor, a transmembrane domain
(CD8), and an intracellular domain (costimulatory molecules) that
mediates activation of T lymphocytes (13) (Figure 1).When CAR-
T cells enter tumor tissue during tumor therapy, SCFV fragments
specifically bind to homologous antigens on the surface of tumor
cells. The activation signal then passes through the
transmembrane domain to the intracellular costimulatory
domain, and then activates T cells by activating the
costimulatory molecule to finally kill the tumor cells.
Generation-to-generation CAR-T cells are optimized for T cell
proliferation and tumor killing by increasing intracellular
costimulatory molecules. The CD3z costimulation domain was
the only intracellular domain of the first generation CAR-T cells.
The second generation of CAR-T cells significantly enhanced
activation of T cells by adding a costimulatory molecule (CD28
or 4-1BB) over the first generation (14). It was found that CD28
activated T cells had a strong instantaneous mortality, while 4-1BB
activated T cells had better anti-tumor persistence (15).The
intracellular portion of third-generation CAR-T cells contains
two costimulatory molecules(CD28 and 4-1BB) in order to
enhance activation of T cells. With the development of genetic
engineering technology, the intracellular structure of CAR-T cells
changed dramatically, and four generations of CAR-T cells were
generated according to the structure (Figure 1).The fourth
generation CAR-T cells have increased intracellular co-expressed
cytokines (IL-7, IL-18, IL-21, CCL19, PH40, etc) base on the
second generation CAR-T cells, aiming to positively regulate
CAR-T cells (16). Generation 2 and 4 CAR-T cells have been
widely studied in solid tumors. 2 generation CAR-T cells showed
stable function and easy manipulation. 4 generation CAR-T cells
not only regulate the immunosuppressive microenvironment of
solid tumors, but also directly participate in positive regulation of
T cell activation and proliferation (17–19). Therefore, 4-
generation CAR-T cells are the key development direction of
solid tumors in the future.

T cells used for CAR-T cell therapy are usually taken from the
patient’s peripheral blood (20),and were first separated from the
obtained peripheral blood and then infected with lentiviruses
carrying CAR plasmids. Finally, CAR-T cells were expanded in
vitro and reinjected into patients. The production process of
CAR-T cells also raises many questions for clinical use. On the
one hand, due to organ function exhaustion in patients with
advanced tumor, peripheral blood immune cell activity will be
inhibited, which will affect the activity of CAR-T cells produced.
In addition, the economic cost of CAR-T cell customization is
expensive, which is difficult to bear for the majority of patient
population. In order to reduce the cost of producing CAR-T cells
and increase their convenience, researches are also underway on
universal CAR-T cells, which will make this technology available
to a wider patient population (21).
July 2022 | Volume 12 | Article 915171
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CAR-T CELLS FOR UROLOGIC
NEOPLASMS

Ten years ago, tumor immunotherapy has been widely used in
preclinical research and treatment of urinary system tumors,
including cytokines and tumor vaccines. Since then, immune
checkpoint inhibitors have also shown some efficacy in the
treatment of urologic neoplasms. However, a large number of
clinical studies have found that these treatments do not
significantly improve patient prognosis. In recent years, with
the breakthrough of CAR-T cells in the treatment of
hematological tumors (13, 22), CAR-T cells technology has
been gradually applied in the research of solid tumors,
including urologic neoplasms. CAR-T cells also provides a new
approach for the treatment of urologic neoplasms such as kidney
cancer, prostate cancer, bladder cancer and so on. Many
preclinical and clinical trials have been conducted for CAR-T
cells in urologic neoplasms (Tables 1, 2), and a portion of clinical
trials are ongoingin in the hope of achieving satisfactory results.

As shown in Table 1, targets selected of preclinical studies for
CAR-T cells in the treatment of urologic neoplasms mainly
include CAIX, PSMA, PSCA, and other generic targets of solid
tumors. The structure of CAR is mainly the second generation,
and the selected costimulatory molecules are mainly CD28 and
4-1BB. Relatively few third- generation and fourth-generation
CAR-T cells have been used to treat urologic neoplasms.
Frontiers in Oncology | www.frontiersin.org 3
Renal Cell Carcinoma
Worldwide, renal cell carcinoma (RCC) is the 9th most common
malignancy in men and the 14th most common malignancy in
women. After more than 20 years of increasing incidence, the
incidence of RCC worldwide has shown signs of stabilizing or
even declining in recent years. However, in the United States, the
incidence of RCC continues to increase, mainly for early-stage
tumors, and the overall mortality rate for RCC is stabilizing (34).
For decades, the only effective treatment for RCC was surgery, as
RCC was largely resistant to cytotoxic chemotherapy and
insensitive to radiation, which makes the search for new
antitumor therapies a priority. Based on the in-depth research
on tumor immunity, immunotherapy has become a promising
alternative method (35, 36).

Cytokines (IL-2 and IFN-a) as nonspecific immunotherapy
have long been the standard treatment for metastatic renal cell
carcinoma (mRCC). However, most studies of IL-2 and IFN-a as
adjuvant immunotherapy in recent years have shown negative
results (37–39). Furthermore, the immune checkpoint inhibitors
(ICIs) has shown more favorable efficacy and safety in RCC than
second-line chemotherapy (40). Over the past decade, the
treatment of patients with mRCC has changed substantially,
with pre-combination therapies based on immunotherapy
replacing targeted therapies. However, the study also found the
importance of ICIs in combination with other anti-tumor
therapies. A network meta-analysis conducted by Fahad Quhal
FIGURE 1 | Schematic diagram of the construction of 1st to 4th generation CAR-T cells. When CAR-T cells enter tumor tissue during tumor therapy, SCFV fragments
specifically bind to homologous antigens on the surface of tumor cells. The activation signal then passes through the transmembrane domain to the intracellular costimulatory
domain, and then activates T cells by activating the costimulatory molecule to finally kill the tumor cells. SCFV fragment (extracellular domain), CD8 (transmembrane domain) and
CD3z (intracellular domain) are the basic structures of CAR T cells. Generation-to-generation CAR-T cells are optimized for T cell proliferation and tumor killing by increasing
intracellular costimulatory molecules. The CD3z costimulation domain was the only intracellular domain of the first generation CAR-T cells. The second generation of CAR-T cells
significantly enhanced their cytotoxicity by adding a costimulatory molecule (CD28 or 4-1BB) over the first generation. The intracellular domain of third-generation CAR-T cells
contains two costimulatory molecules in order to enhance activation of T cells. The fourth generation CAR-T cells have increased intracellular co-expressed cytokines in addition
to the second generation CAR-T cells, and co-expressed cytokines mainly positively regulate the proliferation and differentiation of CAR T cells and recruit peripheral immune
cells to better kill tumor cells.
July 2022 | Volume 12 | Article 915171
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et al. (41) showed that the combination of ICIs and tyrosine
kinase inhibitors (TKIs) provided better PFS, ORR and OS than
the ICIs alone. More recently, data from the ICIs combined anti-
tumor trial also confirmed the survival benefit of ICIs combined
with pembrolizumab in the treatment of mRCC. These
combination therapies are recommended as first-line treatment
for advanced renal cancer by the Updated 2021 Guidelines of the
European Association of Urology (42). Immunotherapy in
combination with other therapies has been approved for the
treatment of kidney cancer, and more studies are needed to
evaluate their efficacy and safety to guide selection of the best
first-line treatment.
Frontiers in Oncology | www.frontiersin.org 4
The achievement of CAR-T cells in hematologic oncology has
prompted the application of CAR-T cells in RCC (43). To date,
numerous studies have been conducted on the association of
CAR-T cells in the treatment of RCC. Eloah Rabello Suarez et al.
(23) exploited a targeted carbonic anhydrase IX (CAIX) CAR-T
cells. In a humanized mouse model of mRCC, tumor growth and
mass were significantly reduced after treatment with CAX-CAR-
T cells. Furthermore, Jun-Ich Mori et al. (25) constructed c-Met-
targeted CAR-T cells and validated the antitumor efficacy of c-
Met-CAR-T cells in situ mouse models derived from clinical
renal papillary cell carcinoma tissues. The c-Met-CAR-T cells
have been demonstrated to infiltrate tumor tissues and inhibit
TABLE 1 | Preclinical studies of CAR-T cells in urologic neoplasms.

Tumour Targeted antigen Structure of CAR Reference

Renal Carcinoma CAIX fourth–generation (PD-L1 antibodies) Eloah Rabello Suarez et al, 2016 (23)
Renal Carcinoma CAIX second –generation(4-1BB) Huizhong Li et al, 2020 (24)
Renal Carcinoma c-MET third –generation(CD28/4-1BB) Jun-ich Mori et al, 2021 (25)
Prostate Carcinoma PSMA second –generation(4-1BB) Christopher C. Kloss et al, 2018 (26)
Prostate Carcinoma PSCA second –generation(4-1BB) Saul J. Priceman et al, 2018 (27)
Prostate Carcinoma PSMA second –generation(CD28) Jamal Alzubi et al, 2020 (28)
Prostate Carcinoma PSMA fourth –generation (IL-23) Dawei Wang et al, 2020 (29)
Prostate Carcinoma B7-H3 second –generation(CD28) Yida Zhang et al, 2021 (30)
Bladder Cancer PD1 second –generation(CD28) Geoffrey Parriott et al, 2020 (31)
Bladder Cancer MUC1 second –generation(CD28) Lei Yu et al, 2021 (32)
Bladder Cancer EGFR second –generation(CD28) Camilla M. Grunewald et al, 2021 (33)
Ju
TABLE 2 | Clinical trials of CAR-T cells in urologic neoplasms.

Conditions Targeted
antigen

Phase Number Enrolled
(n)

NCT Number Locations Status

Renal
Carcinoma

AXL/ROR2 I/II 66 NCT03393936 Shanghai Public Health Clinical Center
, Shanghai, China

Active, not
recruiting

Renal
Carcinoma

VEGFR2 I/II 24 NCT01218867 National Institutes of Health Clinical Center, Maryland, United
States

Terminated

Renal
Carcinoma

c -MET I/II 73 NCT03638206 The First Affiliated Hospital of Zhengzhou University
Zhengzhou, Henan, China

Recruiting

Prostate
Carcinoma

PSCA I 33 NCT03873805 City of Hope Medical Center
Duarte, California, United States

Recruiting

Prostate
Carcinoma

PSMA I 40 NCT04249947 City of Hope Comprehensive Cancer Center Duarte, California,
United States

Recruiting

Prostate
Carcinoma

PSMA I 18 NCT04768608 The First Affiliated Hospital, Zhejiang University
Hangzhou, Zhejiang, China

Not yet
recruiting

Prostate
Carcinoma

PSMA I 50 NCT04227275 Moffitt Cancer Center
Tampa, Florida, United States

Active, not
recruiting

Prostate
Carcinoma

PSCA I/II 151 NCT02744287 Moffitt Cancer Center Tampa, Florida, United States Recruiting

Prostate
Carcinoma

EpCAM I/II 60 NCT03013712 IEC of Chengdu Medical College
Chendu, China

Unknown

Prostate
Carcinoma

NKG2DL I 10 NCT04107142 Landmark Medical Centre
Johor Bahru, Johor, Malaysia

Not yet recruiting

Prostate
Carcinoma

PSMA I 18 NCT03089203 University of Pennsylvania
Philadelphia, Pennsylvania, United States

Active, not
recruiting

Bladder Cancer PSMA I/II 20 NCT03185468 Shenzhen Second People Hospital
Shenzhen, Gongdong, China

Recruiting

Bladder Cancer ROR2 I 18 NCT03960060 Shanghai Zhongshan Hospital
Shanghai, Shanghai, China

Active, not
recruiting

Bladder Cancer HER2 I 45 NCT03740256 Baylor St. Luke’s Medical Center
Houston, Texas, United States

Recruiting

Bladder Cancer HER2 I 18 NCT04660929 Abramson Cancer Center Philadelphia, Pennsylvania, United
States

Recruiting
ly 2022 | Volume 12
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tumor growth. CD70 has also been found to be highly expressed
in RCC and limited in normal tissue, making it an attractive
target for CAR-T immunogenic solid tumors (44). Recently, Siler
H Panowski et al. (45) constructed CAR-T cells targeting CD70
single-chain antibodies. CD70-CAR- T cells showed strong
antitumor activity against RCC cell lines and patient-derived
xenograft mouse models. These studies indicate the potential
value of CD70-CAR-T cells in treating RCC, and a phase I
clinical trial of CD70-CAR-T cells in treating metastatic renal cell
carcinoma is ongoing.

CAR-T cells in combination with other anti-tumor methods
are also a focus of research. To enhance CAR-T cells antitumor
activity, Huizhong Li et al. (24) combined CAX-CAR-T cells and
sunitinib showed significant synergistic effect in the mRCC
mouse xenotransplantation model. The combination group
exhibited greater proliferation and tumor killing than mice
treated alone. This combination approach may provide
meaningful insights into CAR-T cell therapy for urologic
neoplasms. Jun-Ich Mori et al. (25) also evaluated the anti-
RCC efficacy of c-MET-CAR-T cells in combination with
axitinib, and found that axitinib synergically enhanced the
anti-tumor efficacy of CAR-T cells. It suggests that CAR-T
cells combined with targeted drugs may also be a way to treat
solid tumors in the future. In addition, Chen Zhang et al. (46)
studied the binding of a decorin-carrying oncolytic adenovirus
(OAV-decorin) to CAIX-CAR-T to perform antitumor activity
against renal cancer cells. Oav-decorin in combination with
CAIX-CAR significantly reduced tumor load, altered
extracellular matrix (ECM) composition by inhibiting collagen
fiber distribution, reduced TGF-b expression, enhanced IFN-a
secretion, and generated more CAR-T cells. The combined
treatment model also prolonged the survival of the mice. These
data also confirmed the role of oncolytic adenovirus and CAIX-
CAR-T cells against solid tumors.

In 2016, the National Institutes of Health clinical Center in
Maryland published a clinical study of VEGFR2-targeted CAR T
cells in the treatment of metastatic kidney cancer
(NCT01218867). A total of 24 patients were enrolled, of whom
5 (20.83%) had severe adverse reactions and 1 (4.17%) died. Five
years of follow-up showed that 1 patient had partial response, 1
patient had stable disease, and the rest had tumor progression. In
this study, researchers also divided the patients into groups
according to different doses of combined IL-2. The 5 patients
with severe complications were all in the high-dose IL-2 group,
while no serious complications were found in the low-dose IL-2
group. The efficacy of VEGFR2-CAR-T cells in mRCC was not
satisfactory. This study demonstrates that VEGFR2-CAR T cells
are not satisfactory in the treatment of mRCC, but the side effects
are acceptable.

Nevertheless, Lamers et al. (47) implemented a phase I/II trial
of targeting CAIX CAR-T cells(first generation) to investigate the
safety and efficacy of these cells in the treatment of mRCC.
Unfortunately, due to the expression of the target antigen in
intrahepatic bile duct epithelium, resulting in targeted out-of-
tumor cytotoxicity, some patients have discontinued treatment
due to detection of liver damage. This study suggests that the
Frontiers in Oncology | www.frontiersin.org 5
selection of tumor-associated antigens for CAR-T cells therapy
in solid tumors is particularly important, and that normal tissue
cytotoxicity to the selected target antigens must not cause major
organ damage in patients. It also indicates that there is still a long
way to go for CAR-T cells therapy in solid tumors, especially in
the process of step-by-step target selection.

Fortunately, there are a number of clinical studies underway.
There are currently two ongoing CAR-T cells studies
(NCT03393936, NCT03638206) in China for the treatment of
metastatic renal cancer (Table 2), with AXL,ROR2 and c-MET as
the target, respectively. The objective was to assess the safety and
efficacy of CAR-T cells in the treatment of mRCC.

Prostate Carcinoma
Worldwide, prostate cancer (PCa) is the second most common
cancer in men and the fifth deadliest cancer in men (48). Over
the past 20 years, great advances in surgery, radiotherapy and
hormone therapy for PCa have significantly reduced mortality
from the disease. However, metastatic castration resistant
prostate cancer (mCRPC) is still very difficult to cure.
Although docetaxel, abiraterone acetate, and radiotherapy have
been shown to enhance patient outcomes in combination with
standard hormone therapy, studies have shown that this subset
of patients is rarely cured and has severe side effects (49, 50).

It is urgent to develop new therapeutic modalities for mCRPC
patients. Given the success of immunotherapy in the treatment
of many malignant tumors in recent years, immunotherapy of
mCRPC is being widely explored. Over the past decade,
researchers have made great efforts to explore this therapeutic
area. Tumor vaccines have been widely used in preclinical and
clinical studies of mCRPC, mainly including DC vaccines (51,
52), viral vector vaccines (53, 54) and DNA/mRNA vaccines (55,
56). Clinical studies have shown that some vaccines alone can
prolong overall survival, while others require a combination of
other therapies to slow tumor progression. In addition, ICIs are
widely used in the treatment of mCRPC. In mCRPC patients,
pembrolizumab was found to have antitumor activity and a
reasonable safety profile as a standard monotherapy. However,
Graff et al. (57) found that the effective rate of anti-PD-1
treatment for mCRPC was less than 30%. Therefore, the use of
ICIs in mCRPC is still limited by their low clinical immune
response rate (58–60). Since then, researchers have begun to
investigate the efficacy of CAR-T cells for mCRPC and hope that
CAR-T cell therapy will lead to a breakthrough in the treatment
of mCRPC.

There are many tumor specific antigens in PCa tissues, such
as prostate specific antigen (PSA), PSMA and PSCA. PSMA is a
type II transmembrane glycoprotein expressed in the membrane
of prostatic epithelium. PSMA was highly expressed in prostate
tissue and solid tumor blood vessels, but hardly expressed in
normal tissues such as intestine, liver and kidney (61). PSCA is a
tumor-associated antigen found in PCa cells (62). PSCA is
expressed on the membrane of the prostate gland and can only
be detected there. The expression rate of PSCA in PCa tissue was
much higher than that in normal prostate tissue (63). In
addition, PSCA expression was not detected in other normal
July 2022 | Volume 12 | Article 915171
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tissues (64). PSCA has also become an important target for
targeted therapy of PCa. These studies suggest that PCa is a
favorable tumor for CAR-T cells therapy (65).

Many studies have been conducted in recent years due to the
inherent advantages of CAR-T cells technology in PCa. In 2008,
researchers constructed targeting PSMA first generation CAR-T
cells first time in a clinical trial (NCT00664196) of five patients.
Only two patients achieved a clinical partial response, with PSA
reductions of 50% and 70%, respectively. No toxicity against
PSMA was observed. It was also found that low plasma doses of
IL2 did not support antitumor activity under optimal CAR T cell
implantation (66). The efficacy of the first generation CAR-T
cells was found to be poor, mainly due to poor persistence of
CAR-T cells.

To further optimize the efficacy of CAR-T cells, Qiangzhong
Ma et al. constructed second generation PSMA-CAR-T cells
containing CD28 stimulating molecule, it showed stronger anti-
tumor response in mouse models (67). In a related clinical study
(NCT01140373), 2 of 4 patients were stable and 2 patients were
advanced. The results of this study showed that the second-
generation CAR-T cells were well tolerated and significantly
improved the efficacy. In addition, to select better costimulatory
molecules, Saul J. Priceman et al. (27) constructed targeting
PSCA CAR-T cells, using different costimulatory molecules
(CD28 and 4-1BB), and compared the sensitivity of the two
intracellular costimulatory molecules to tumor antigen
expression. PSCA-CAR-T cells exhibit potent in vivo
antitumor activity. Compared with CAR-T cells containing
CD28, CAR-T cells containing 4-1BB showed better T cell
persistence and disease control because they expressed higher
tumor antigen intensity. These result show that CAR-T cells
targeting PSMA and PSCA are well tolerated in the treatment of
PCa and may have good efficacy. These studies suggest that
CAR-T cells targeting PSMA and PSCA, accompanied by
structural optimization, may have good efficacy in the
treatment of PCa.

More recently, Vivek Narayan et al. (68) reported the results
of a phase I clinical trial (NCT03089203) of PSMA CAR-T cells
against castrated PCa. Five of the 13 patients developed grade 2
cytokine release syndrome, and three other patients achieved a
30% PSA reduction. Therefore, the study also showed that
clinical use of targeted PSMA-CAR-T cells is feasible and
generally safe. However, the antitumor activity of CAR-T cells
in PCa still needs to be enhanced. Dawei Wang et al. (29)
constructed IL23-PSMA-CAR-T cells. IL23-PSMA-CAR-T cells
exhibited significantly more proliferation and cytokine secretion
in vitro and also exhibited faster tumor clearance and weight gain
in vivo than conventional CAR-T cells. CAR-T cells that co-
express cytokines are a potential approach to enhance their
antitumor activity in the treatment of PCa.

Furthermore, CAR-T cells were used in combination with
chemotherapy to enhance tumor killing activity. Jamal Alzubi
et al. (28) designed of CAR-T cells targeting PSMA. In vivo, local
injection of PSMA-CAR-T cells eradicated xenograft PCa in
mice. In addition, systemic intravenous CAR-T cells combined
with low-dose docetaxel chemotherapy significantly inhibited
Frontiers in Oncology | www.frontiersin.org 6
tumor growth, whereas docetaxel alone or CAR-T cells did not.
Studies have demonstrated that the combination of PSMA-CAR-
T cells with chemotherapy is a promising immunotherapy
pathway for the clinical treatment of mCRPC.

Radiation therapy is an vital treatment for PCa, and PCa stem
cells (PCSCs) have the ability to resist radiation. Recently, Yida
Zhang et al. (30) found that radiotherapy up-regulated the
expression of PCSCs and immune checkpoint B7-H3 in each
PCa cell line. They constructed CAR -T cells targeting B7-H3
and validated their antitumor activity in vivo and in vitro. The
results exhibited that B7-H3-CAR-T cells were more cytotoxic to
PCSCs than PCa cells. In immunodeficient mice, radiotherapy
combined with B7-H3-CAR-T cells was more effective than
radiotherapy or CAR-T cells alone. This study demonstrates
the importance of using CAR-T technology to target antigens
produced or increased during tumor therapy. This suggests that
CAR-T cells technology has great potential in combination with
other antitumor technologies.

There are a number of ongoing trials involving CAR-T cells
for PCa (Table 2), both in China and the United States. The
selection of targets focused on PSMA, PSCA, EpCAM and
NKG2DL. The objective of the clinical study was to evaluate
the safety and efficacy of different gene-editing CAR-T cell
technologies in the treatment of mCRPC. Most clinical studies
are in the process of being recruited and are expected to
be effective.

Bladder Cancer
Bladder cancer (BC) is the 10th most common cancer worldwide.
BC has about 430,000 new cases diagnosed each year (69). Smoking
and sex are known risk factors for BC (70). According to the clinical
TNM classification of malignant tumors, there are three types of BC:
non-muscle-invasive BC (NMIBC), muscle-invasive BC (MIBC)
and metastatic BC(MBC) (70). More than 70% of the new BC
patients were diagnosed with NMIBC, with the remainder
diagnosed with MIBC or MBC. Generally speaking, the 5-year
survival rate for NMIBC is as high as nearly 90%, but the 5-year
survival rate for MIBC drops sharply to no more than 50% or even
less than 50%, and less than 15% for MBC (71, 72). Therefore,
different types of urothelial carcinoma are treated differently.
NMIBC can be treated by tranurethral bladder tumor resection,
after which intravesical BCG or adjuvant chemotherapy can be
selected (73). The preferred regimens for MIBC are radical resection
and cisplatin based neoadjuvant chemotherapy (74). Intravenous
chemotherapy is considered the best treatment option for MBC
patients. Although surgery, radiation, chemotherapy, and targeted
therapies have made some progress in the treatment of BC over the
past 30 years, the prognosis for MBC patients remains poor (75).

Immunotherapy has been used to treat BC for the last 10 years.
Such as BCG vaccine (76) and ICIs (77, 78). Intravesical BCG
therapy is now standard practice for NMIBC, including carcinoma
in situ and high-grade papillary neoplasms (79). ICIs were used in
BC include Atezolizumab (80, 81), Avelumab (82), Durvalumab
(83, 84) Nivolumab (85)and Pembrolizumab (86). At present,
these drugs are mainly used for second-line treatment when
chemotherapy is ineffective. However, only about 20 percent of
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patients show an immune response in clinical trials. In addition, it
has also been reported that ICIs can cause serious adverse events,
with at least 10% of patients experiencing serious adverse events
(87). As a result, only a small number of people have benefited
clinically from this approach.With the rapid development of tumor
immunotherapy, adoptive immunotherapy and other
immunotherapy methods have been developed in the treatment
of BC.

CAR-T cells as an adoptive immunotherapy approach require
tumor target antigens. Tumor associated antigens are expressed
on the surface of tumor cells and represent potential therapeutic
targets, BC cells are rich in tumor-associated target antigens. In
addition, several studies have found that PSMA expression is
observably higher in BC than in healthy urothelium (88, 89).
Such as HER2, MUC1, EGFR as tumor targets of pan-cancer, are
also highly expressed in BC tissues and can be used as a
therapeutic target of BC (90, 91). In conclusion, CAR-T cells
technology for BC treatment does not lack tumor-
associated antigen.

CAR-T cell technology has undergone extensive preclinical
and clinical studies in the treatment of urothelial carcinoma.
Geoffrey Parriott et al. (31)developed targeting PD1 CAR-T cells
that recognizes PD1 receptor ligand expressed in a variety of solid
cancers. The results showed that PD1-CAR-T cells lysed tumor
cells and resulted in long-term tumor-free survival in mice.
Recently, Lei Yu et al. (32)constructed targeting MUC1 CAR-T
cells, and verified the immunotherapeutic response in vitro by
using BC. Specific cytotoxicity occurred only in MUC1 positive
organs such as BC. The success of this study verified the feasibility
of using MUC1-CAR-T cells in the clinical treatment of BC.

In order to enhance the antitumor activity of CAR-T cells,
some researchers also combined decitabine with EGFR-targeting
CAR-T cells to conduct anti-bladder tumor studies, and the
study found that the combination can enhance the tumor-
specific killing of BC (33). Therefore, CAR-T cells combined
with DNA methylation specific inhibitors is also a method to
enhance the anti-solid tumor function, and its efficacy needs to
be confirmed by further clinical studies. Understanding the
determinants of CAR-T cell recognition of tumors is important
to improve CAR- T cell function. Greco, B et al. (92) found that a
variety of cancers expressed extracellular N-glycan, and its
abundance was negatively correlated with CAR-T cell killing
activity. Further studies showed that N-glycan protects tumors
from CAR-T cells by interfering with appropriate immune
synapse formation, reducing transcriptional activation,
cytokine production, and cytotoxicity. To overcome this
obstacle, researchers took advantage of the high metabolic
requirements of tumors to safely inhibit N-glycan synthesis. In
xenograft mouse models of pancreatic and BC, such treatment
disrupted n-glycan coverage on tumor cells, leading to enhanced
CAR-T cell activity. These studies indicate that exploring the
mechanism of tumor regulating the response intensity of CAR-T
cells is also an important direction to achieve breakthroughs in
the treatment of solid tumors.

Currently, clinical studies of CAR-T cells for BC are ongoing
(Table 2). These clinical programs are being funded in China
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and the United States. The target selection includes HER2,
PSMA, and ROR2. The objective of the clinical study is to
evaluate the safety and efficacy of gene editing car-T cells with
different targets in the treatment of MBC. However, due to the
small number of clinical studies on bladder cancer, few studies
have published results.
POTENTIAL VALUE AND DILEMMA OF
CAR-T TECHNOLOGY IN
UROLOGIC NEOPLASMS

Tumor associated antigens play an vital role in the application of
CAR-T cells technology in cancer therapy, and urologic
neoplasms have a relatively high number of specific targets
compared to other organ tumors in the body. AIX, PMSA, and
PSCA-targeted CAR T cells have demonstrated tumor-killing
activity in several preclinical studies, and clinical studies have
demonstrated that PMSA-CAR-T cells can be tolerated in
clinical use and have good antitumor activity (66).. Secondly,
many studies have confirmed that tumor-associated target
antigens commonly expressed in solid tumors are expressed in
urologic neoplasms, including MUC1, EGFR, VEGFR2, EpCAM,
C-Met, NKG2DL, MUC1, etc. Therefore, the use of CAR-T cells
in urologic neoplasms has an advantage over other systemic
tumors in the selection of target antigens.

The clinical application of CAR-T cell technology requires the
collection of peripheral blood monocytes from patients, and the
selected T cells need to be transfected with Lentiviruses carrying
CAR plasmids, and finally applied to patients. This process takes
a certain amount of time, and urologic neoplasms develop
relatively slowly in systemic tumors, providing ample time for
CAR-T cells to be used. Due to the pathogenesis characteristics
of urologic neoplasms, multiple treatments can be performed
with CAR-T with different targets. In addition, most preclinical
studies of CAR-T cells have found that local administration is
superior to intravenous administration, which may be due to
limited tumor tissue infiltration and enrichment capacity of
CAR-T cells. However, it is feasible to use local drugs in the
treatment of urologic neoplasms.

It is well known that the progression of urologic neoplasmsis
relatively slow and the prognosis is relatively good in all major
systemic tumors. As a result, the development of complementary
therapies for advanced tumors has been slow, and there have
been relatively few studies of CAR-T in urologic neoplasms. As
shown in Table 2, current studies mainly focus on PCa, while
there are few studies on kidney cancer and bladder cancer. At
present, the number of clinical studies on CAR-T in solid tumors
such as digestive tumors and gliomas is larger than in urologic
neoplasms. Published studies of CAR-T in the treatment of
urologic neoplasms face the same problems as other solid
tumors. For example, Lamers et al. (47) conducted the I/II
clinical trial of CAIX-targeted CAR-T therapy for metastatic
renal cancer, which was terminated due to abnormal liver
function in most patients. In addition, Vivek Narayan et al.
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(68) reported a phase 1 trial of PMSA-CAR-T cell therapy for
PCa (NCT03089203), in which 1 of 13 patients developed grade
4 CRS with sepsis and died, and only 3 patients achieved a 30%
PSA reduction. Therefore, the current problems faced by CAR-T
cells in the treatment of urologic neoplasms are mainly the poor
anti-tumor activity and targeted extratumoral cytotoxicity.
Therefore, in future studies, the selection of target antigens
should be further optimized to alleviate the problem of
targeting extratumoral cytotoxicity, and then the structure of
CAR-T should be optimized to enhance the tumor killing activity
of CAR-T on the basis of avoiding cytokine syndrome.
DISCUSSION

CAR-T cell therapy has been extensively studied in the urinary
tumor, most of which are preclinical studies. After all, a large
number of clinical studies are needed to verify the efficacy and
clinical complications of CAR T cells before they can be used in
the clinic. Therefore, more clinical studies of CAR-T cells in
urologic neoplasms are needed in the future. Furthermore,
although there are many tumor-associated targets for
urological CAR-T cells, published studies have demonstrated a
lack of specificity. Targeting extratumoral cytotoxicity has been a
major challenge in solid tumor therapy using tumor-associated
antigens to construct CAR-T cells. Tumor- associated antigens
should be optimized to select targets with high expression in
tumor tissues and low expression in other non-important organs,
so as to effectively kill tumor cells without causing serious
complications to patients.

The immunosuppressive tumor microenvironment has been
identified as one of the biggest obstacles to the successful
treatment of urologic neoplasms with CAR-T cells. Gene-
editing of CAR-T cells with positive immunomodulator and
immunosuppressor antibodies is a strategy to overcome this
obstacle. Keishi Adachi et al. (17) designed gene-editing IL-7 and
CCL19 CAR-T cells (IL-7/CCL19-CAR-T cells). Because these
immunomodulatory factors are critical for the maintenance of T
cell regions in lymphatic organs, they may be involved in the
regulation of tumor immunosuppression microenvironments.
IL-7/CCL19-CAR-T cells exerted superior antitumor activity in
vivo compared to conventional CAR-T cells. Recently,
Xingcheng Xiong et al. (93) also designed gene-editing IL-7
and PH20 CAR-T cells(IL-7/PH20-CAR-T cells). Coexpressed
PH20 can effectively degrades the extracellular matrix and
enhances the tumor-infiltrating function of T cells. Studies
have shown that IL-7/PH20-CAR-T cells significantly enhance
their antitumor activity in multiple solid tumors. These
techniques can be used to enhance the efficacy of CAR-T cell
technology against urologic neoplasms.

In addition, CAR-T cells combined with molecularly targeted
drugs are a promising way to treat urologic neoplasms in the
future. For example, Huizhong Li et al. (24) Combined treatment
with AIX-CAR-T and Sunitinib have demonstrated synergistic
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efficacy in mRCC mouse xenograft model. It was found that
sunitinib not only up-regulated the expression of CAIX in tumor
cells, but also reduced the myeloid suppressor cells in the tumor
microenvironment. Jun-Ich Mori Et al. (25) also combined c-
Met-CAR-T cells with axitinib, which once again demonstrated
that molecular targeted drugs can synergically enhance the
antitumor efficacy of CAR-T cells. Preclinical trials using CAR-
T cells in combination with chemotherapy and radiation for PCa
have shown significant mutually reinforcing effects (28, 30).
These findings suggest that CAR-T cells technology in
combination with other antitumor technologies has great
potential in the treatment of urologic neoplasms.
CONCLUSIONS

In conclusion, numerous studies have demonstrated the
potential value of CAR-T cells in urologic neoplasms.
However, due to immunosuppressive microenvironment and
physical barriers in tumor tissue, CAR-T cells still have poor
invasion and persistence in urologic neoplasms. In addition,
targeting extratumoral cytotoxicity is also an important issue in
the application of CAR-T in urologic neoplasms. Therefore,
relevant studies need to further optimize the selection of
targets, and CAR-T cells may be more capable of killing
urologic neoplasms through gene-editing cytokines, combined
molecular targeting agents, and chemotherapy. It is believed that
with the further study of tumor immune mechanism, CAR-T
cells will achieve satisfactory results in the treatment of urinary
system tumors.
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