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Introduction: The aim of this work was to determine the feasibility of using a deep
learning approach to predict occult lymph node metastasis (OLM) based on preoperative
FDG-PET/CT images in patients with clinical node-negative (cN0) lung adenocarcinoma.

Materials and Methods: Dataset 1 (for training and internal validation) included 376
consecutive patients with cN0 lung adenocarcinoma from our hospital between May 2012
and May 2021. Dataset 2 (for prospective test) used 58 consecutive patients with cN0
lung adenocarcinoma from June 2021 to February 2022 at the same center. Three deep
learning models: PET alone, CT alone, and combined model, were developed for the
prediction of OLM. The performance of the models was evaluated on internal validation
and prospective test in terms of accuracy, sensitivity, specificity, and areas under the
receiver operating characteristic curve (AUCs).

Results: The combined model incorporating PET and CT showed the best performance,
achieved an AUC of 0.81 [95% confidence interval (CI): 0.61, 1.00] in the prediction of
OLM in internal validation set (n = 60) and an AUC of 0.87 (95% CI: 0.75, 0.99) in the
prospective test set (n = 58). The model achieved 87.50% sensitivity, 80.00% specificity,
and 81.00% accuracy in the internal validation set and achieved 75.00% sensitivity,
88.46% specificity, and 86.60% accuracy in the prospective test set.

Conclusion: This study presented a deep learning approach to enable the prediction of
occult nodal involvement based on the PET/CT images before surgery in cN0 lung
adenocarcinoma, which would help clinicians select patients who would be suitable for
sublobar resection.

Keywords: positron emission tomography/computed tomography (PET/CT), convolutional neural network, lung
adenocarcinoma, sublobar resection, lymph node status
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INTRODUCTION

Lung cancer is one of the most common malignancies and the
leading cause of death from cancer worldwide (1). Lung
adenocarcinoma (LUAD) is the most common histologic
subtype of lung cancer (2). Currently, lobectomy with systemic
nodal dissection is the standard treatment for patients with early-
stage non–small cell lung cancer (NSCLC) (3), and recently,
limited surgery (wedge resection or segmentectomy) has also
been performed to preserve healthy lung tissue (4–6). Accurate
staging to confirm node-negative (N0) status is required for
limited surgery. If N0 status is unreliable, then lobectomy with
systemic nodal dissection rather than limited surgery is
mandatory. 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG PET/CT) is a
valuable imaging modality for evaluation of lymph node (LN)
or distant metastasis of lung cancers. Although PET/CT is more
sensitive to assess LN status than traditional examinations, occult
LNmetastasis (OLM) still occurs at a high rate (14%–21%) (7–9).
The definition for OLM was that clinical N0 (cN0) staged by
PET/CT was pathologically confirmed LN metastasis (LNM)
after surgery. Thus, there is a strong need to develop reliable
non-invasive methods to identify patients with OLM from cN0
patients staged by PET/CT.

In recent years, radiomics has received increasing attention,
and it is a technique for high-throughput extraction of
quantitative features from medical images (10, 11). Indeed,
many studies have exhibited that quantitative radiomic image
features of the primary tumor could be used as non-invasive
biomarkers to predict LNM and were good predictive
performance (12–14). For OLM of LUAD, Zhong et al. (15)
reported that the radiomics signature of the primary tumor based
on CT scans had a significant predictive value. Our previous
research (16) found that a PET-based radiomics model had
achieved success in the prediction of OLM in patients with
LUAD. However, traditional radiomic methods are based on
four time-consuming and complex steps (tumor segmentation,
feature extraction, feature selection, and modeling). Moreover,
observer-dependent differences may cause poor repeatability in
case of manual segmentation.

Deep learning is a new and especially promising approach
that automatically learns powerful feature representations from
images, text, or sound and has been shown to sometimes surpass
human-level performance in task-specific applications (17–19).
Compared with the conventional radiomic methods, the deep
learning method simplifies the analysis process and avoids
subjective bias because it does not require VOI definition or
segmentation. More recently, the deep learning method using
convolutional neural network (CNN) has been widely applied to
analyze medical images and has been effective in diseases
detection and classification (20–22). For classifying LN, Zhao
et al. (23) developed a cross-modal deep learning system based
on CT images to accurately predict LN metastasis in stage T1
LUADs. Tau et al. (24) reported that using a CNN to analyze
PET images can yield a reasonably good prediction of nodal
metastasis in patients with NSCLC. In view of the fact that
previous studies predicted LN metastasis using deep learning, we
Frontiers in Oncology | www.frontiersin.org 2
hypothesized that deep learning based on PET/CT images might
play an important role in predicting OLM.

Hence, the purpose of this study was to evaluate the capability
of deep learning analysis based on a two-dimensional (2D) CNN
architecture for the prediction of OLM through the use of
preoperative FDG-PET/CT images of cN0 LUAD.
MATERIALS AND METHODS

Patients
A total of 434 patients (193 men and 241 women) with cN0
LUAD who had pretreatment FDG PET/CT and underwent
surgical resection with the systematic LN dissection from May
2012 to February 2022 were enrolled in this study at The First
Affiliated Hospital of Wenzhou Medical University. Among
these patients, 343 (79.0%) were pN0 after surgery and
pathological examination. In other words, the prevalence of
OLM with PET/CT was 21.0% in LUAD, which is basically
consistent with previous studies (7–9). The criteria for cN0 on
PET/CT was all LNs’ short-axis diameter of less than 10 mm
without FDG uptake higher than the surrounding background
(25). The interval between PET/CT scan and surgery was shorter
than 3 weeks in all patients. The exclusion criteria for patients
were as follows: (I) history of other malignancy; (II) distant
metastasis ; (III) multiple lesions; (IV) neoadjuvant
chemotherapy/radiotherapy; (V) images with poor quality due
to the leakage of 18F-FDG at the injection site, low signal-to-
noise ratio, respiratory artifacts, and other movement artifacts.
Staging was performed according to the eighth edition of the
Union for International Cancer Control TNM classification.

Dataset 1 included 376 consecutive patients from our
Hospital between May 2012 and May 2021. Dataset 2 used 58
consecutive patients from June 2021 to February 2022 at the
same center. Sixty patients from dataset 1 were randomly
allocated to the internal validation dataset, and the remaining
316 patients were assigned to the training set. Dataset 2 was
taken as an independent set for the prospective test. The
prospective test is a more powerful method for evaluating the
model performance than random splitting of a single set or
cross-validation because it allows for non-random variation
between sets (26). A flowchart of patient selection is shown
in Figure 1.

This study was approved by the Institutional Review Board of
our hospital. Informed consent from the retrospective patients
was waived, and written informed consent was provided for
patients in prospective test set.
PET/CT Acquisition
An integrated PET/CT scanner (GEMINI TF 64; Philips, The
Netherlands) was used for all patients. At least 6-h fasting and
serum glucose levels below 110 ml/dl were required before being
injected with 18F-FDG (3.7 MBq/kg). Sixty minutes after
intravenous injection, the body was scanned in the supine
position. A low-dose unenhanced CT scan from skull base to
the middle thighs was obtained with the following parameters:
July 2022 | Volume 12 | Article 915871
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120 kV, 80 mA, pitch of 0.829, and reconstruction thickness and
interval of 5.0 mm. After CT completion, PET images were
acquired by using the 3D model with the following parameters:
field of view of 576 mm, a matrix of 144 × 144, slice thickness and
interval of 5.0 mm, and an emission scan time of each bed
position of 1.5 min. PET images were iteratively reconstructed by
the ordered subset expectation maximization algorithm, using
CT image for attenuation correction.

Image Selection and Processing
FDG uptake at the primary tumor site was identified on PET
images with reference to the CT part of PET-CT. Reconstruction
in the sagittal and coronal planes was done from the axial images.
Slices with the largest tumor area were selected in axial, coronal,
and sagittal planes of PET and CT images. To reduce the
computational expense and improve model’s accuracy, all
selected images were cropped to contain only the entire chest
as much as possible. Then, the images were converted from the
Digital Imaging and Communications in Medicine to Joint
Photographic Experts Group format pictures. Subsequently, we
resized the images to 299 × 299 pixels and normalized the pixel
values to a range of 0 to 1.

There was a higher frequency of OLM negative (OLMN). To
overcome the imbalance problem between the two groups
(positive or negative), we applied three times oversampling for
positive samples and two times oversampling for negative
samples to ensure the ratio of the two groups near 1:1.
Furthermore, image augmentation, including image rotation
and flipping for total of four times, was performed on the
training dataset.

CNN Model Architecture
Respective model (PET or CT): The deep CNN model used was
the Inception V3 architecture in this study (27). Transfer
learning was applied using weights pretrained on the ImageNet
dataset. We arranged three channels (299 × 299 × 3 pixels) in the
input layer. Three 2D slices (axial, coronal, and sagittal) were
used as input to the CNN network rather than 3D volume data
Frontiers in Oncology | www.frontiersin.org 3
because 2D-based analysis enabled us to reduce GPU memory
usage and limit the overfitting. The generated features from the
Inception V3 were flattened into a 1D feature vector after the
average pooling layer. In the end, six fully connected layers and a
sigmoid layer were connected to enable the classification of
OLMN and OLM positive (OLMP). To avoid overfitting,
dropouts were used. The architecture of the CNN is shown
in Figure 2A.

Combined model (PET + CT): For the construction of
complex model, PET and CT were first respectively run to the
last full connect layer, then combined them together, and finally
connected a sigmoid layer (1 nodes) for classification. Schematic
overview of the combined model is shown in Figure 2B.

All the above analyses were implemented in the Keras library
in Python, using TensorFlow as backend (Python 2.7, Keras
2.6.0, TensorFlow 2.6.0). Adam with a learning rate of 0.000012
and a batch size of 32 was used for parameters optimization. The
number of epochs of training was set to 100.

Model Performance
For assessing the performance of prediction models, the receiver
operating characteristic (ROC) curves were displayed in the
training, internal validation, and prospective test sets,
respectively. The performance metrics such as accuracy,
sensitivity, specificity, and the area under the curve (AUC)
were calculated. Fivefold cross-validation was used to verify the
generalization ability.

Statistical Analysis
The statistical analyses were implemented by using IBM SPSS
(version 25.0) and Python (version 2.7). Categorical data were
analyzed with the chi-square test and the Fisher’s exact test.
Numerical data were analyzed with the unpaired t-test, Mann–
Whitney U-test, ANOVA, and Kruskal–Wallis test. For missing
data, mode imputation was used for categorical variables, and
mean imputation was used for continuous variables. P-values
less than 0.05 indicated a statistically significant difference.
FIGURE 1 | The flowchart of the patient selection.
July 2022 | Volume 12 | Article 915871
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RESULTS

Baseline Information
The baseline patient characteristics are shown in Table 1. The
sample sizes of the training, internal validation, and prospective
test sets were 316, 60, and 58, respectively. No statistical
differences, including age (p = 0.663), gender (p =0.820),
smoking history (p = 0.418), tumor location (p = 0.522),
radiologic lesion type (p= 0.244), tumor SUVmax (p = 0.261),
carcinoembryonic antigen (CEA) (p = 0.250), and predominant
subtype (p = 0.088), among the three sets were observed except
for pathologic tumor size (p = 0.011) in Table 1.

Comparison of Clinicopathologic Data
Between OLMN and OLMP Groups
A comparison of clinicopathologic data between OLMN and
OLMP groups in the three sets is presented in Table 2. OLMP
was identified in 91 of all 434 patients (20.9%). The training set of
316 patients included 75 OLMP (23.7%) and 241 OLMN
(76.3%). The internal validation set of 60 patients included 8
OLMP (13.3%) and 52 OLMN (86.7%). The prospective test set
of 58 patients included 8 OLMP (13.8%) and 50 OLMN (86.2%).
Detailed information about the distribution of N stages for
OLMP cases of three datasets is shown in Table 2. In addition,
similar tendencies were observed for pathologic tumor size, CEA,
and tumor SUVmax, respectively, in the three sets, although not
always statistically significant.

Performance of Deep Learning Models
The deep learning models demonstrated good predictive
performance for OLM with the use of the primary lung cancer
images of internal validation set, with AUCs of 0.74 [95%
Frontiers in Oncology | www.frontiersin.org 4
confidence interval (CI): 0.58, 0.90) for the PET model, 0.79 (95%
CI: 0.58, 1.00) for the CT model, and 0.81 (95% CI: 0.61, 1.00) for
the complex model. For prospective test set, the AUCs were 0.73
(95% CI: 0.51, 0.95) for the PETmodel, 0.79 (95% CI: 0.59, 0.98) for
the CT model, and 0.87 (95% CI: 0.75, 0.99) for the complex model
(Figure 3). The discriminatory ability of the complex model
displayed the highest in the validation and test sets.

For internal validation set, the sensitivities of PET, CT, and
combined models were 75.00%, 75.00%, and 87.50%,
respectively; the specificities of PET, CT, and combined models
were 63.46%, 88.46%, and 80.00%, respectively; and the
accuracies of PET, CT, and combined models were 65.00%,
86.67%, and 81.00%, respectively (Table 3).

For prospective test set, the sensitivities of PET, CT, and
combined models were 87.50%, 75.00%, and 75.00%,
respectively; the specificities of PET, CT, and combined models
were 62.00%, 80.00% and 88.46%, respectively; and the
accuracies of PET, CT, and combined models were
65.52%,79.31% and 86.60%, respectively (Table 3).

The training curves of PET and CT are provided in Figure 4.
The validation losses of PET and CT basically reached the
minimum at 40~45 epochs, and then losses of training set and
validation set estranged after 40 epochs. Therefore, we stopped
training at the 40th epoch because no further improvement can be
gained in the validation loss. The slowly decrease of validation losses
suggests that the models have no overfitting before 45 epochs.
DISCUSSION

Recently, the therapeutic effect of limited surgery in patients with
early-stage NSCLC without LNM has been proved to be
A

B

FIGURE 2 | The architecture of the CNN (A). Schematic overview of the combined model (PET + CT) (B). Avg pooling, average pooling; FC layer, fully connected
layer; OLMN, occult lymph node metastasis negative; OLMP, occult lymph node metastasis positive.
July 2022 | Volume 12 | Article 915871
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significant, and limited surgery has more available lung tissue
and lower perioperative mortality than standard treatment (28–
30). Hence, there is an increasing need for accurately predicting
OLM of cN0 LUAD before surgery in a non-invasive way.

Deep learning, which takes raw image pixels and
corresponding class labels from image data as inputs and
automatically learns representative information, has recently
attracted much attention due to its excellent performance in
image recognition tasks (17). In this study, we developed three
deep learning models based on FDG PET/CT images for
preoperative prediction of OLM in patients with cN0 LUAD.
Our results presented that the complex model combining 18F-
FDG PET and low-dose CT showed better diagnostic
performances in distinguishing patients with OLMN and
OLMP than either PET or CT alone.

Some studies demonstrated that CNN-based image analysis
has been effectively applied in predicting LN status of lung
cancer. For example, Zhong et al. (31) showed that a deep
learning signature based on CT images could accurately
predict occult N2 disease in patients with clinical stage I
NSCLC. However, it is already known that PET/CT is more
accurate than CT for direct assessment of LN status. Thus,
confirming N0 status by CT is not enough. Tau et al. (32)
demonstrated that using a CNN to analyze segmented primary
tumors with PET in patients with pretreatment NSCLC can yield
moderately high accuracy for designation of N category, but the
use of segmented tumors as input data for the CNN was time-
consuming and might affect the results. Moreover, most recent
Frontiers in Oncology | www.frontiersin.org 5
studies using deep learning (including the two studies discussed
above) only performed single-modality analyses because
integrating multimodal data is vulnerable to overfitting and
poor generalization (22, 33). Wang et al. (34) mixed image
patches of both modalities (PET and CT) into the same
network, and the result showed that the performance of CNN
was not significantly different from the best classical methods
and human doctors for the classification of mediastinal LNM in
patients with NSCLC. Such mixed setting may affect the final
result because two different patches contained different types of
diagnostic information. In this study, we processed the PET and
CT patches with respective subnetworks and combined the
results of the two different subnetworks at the output layers.
For the internal validation set, the AUCs of the CNN in
predicting nodal metastasis were as follows: 18F-FDG PET
alone, 0.74; CT alone, 0.79; and 18F-FDG PET/CT, 0.81. For
the prospective test set, the AUCs were as follows: 18F-FDG PET
alone, 0.73; CT alone, 0.79; and 18F-FDG PET/CT, 0.87. Our
results showed that the combined method, which makes full use
of PET functional information and CT anatomic information,
showed significantly great diagnostic performances in predicting
OLM of LUAD.

A 2D CNN to discriminate between OLMN and OLMP in
cN0 LUAD was successfully trained, validated, and tested in this
study. Previous studies proposed that 3D CNN–based CT image
analysis was used for classification in patients with lung cancer
(23, 35). However, the increased complexity comes at a high
computational cost. Another factor to consider is whether adding
TABLE 1 | Baseline characteristics of datasets.

Characteristics Training Set Internal Validation Set Prospective Test Set P-Value
(n = 316) (n = 60) (n = 58)

Age (years) * 62.29 ± 9.73 63.17 ± 9.44 63.36 ± 11.83 0.663
Sex 0.820
Female 178 (56.3) 33 (55.0) 30 (51.7)
Male 138 (43.7) 27 (45.0) 28 (48.3)
Smoking history 0.418
Ever smoker 78 (24.7) 16 (26.7) 10 (17.2)
Never smoker 238 (75.3) 44 (73.3) 48 (82.8)
Tumor location 0.522
RUL 97 (30.7) 14 (23.4) 19 (32.8)
RML 20 (6.3) 6 (10.0) 8 (13.8)
RLL 70 (22.2) 11 (18.3) 10 (17.2)
LUL 81 (25.6) 18 (30.0) 14 (24.1)
LLL 48 (15.2) 11 (18.3) 7 (12.1)
Radiologic lesion type 0.244
Pure solid 288 (91.1) 53 (88.3) 49 (84.5)
Subsolid 28 (8.9) 7 (11.7) 9 (15.5)
Tumor SUVmax* 5.62 ± 3.59 4.63 ± 2.43 5.70 ± 4.34 0.261
CEA, ng/ml* 7.76 ± 33.89 4.06 ± 2.73 6.75 ± 11.82 0.25
Pathologic tumor size* 23.31 ± 10.36 19.87 ± 8.83 23.64 ± 9.93 0.011
Predominant subtype 0.088
Acinar 232 (73.4) 41 (68.3) 42 (72.4)
Papillary 34 (10.8) 6 (10.0) 9 (15.6)
Lepidic 25 (7.9) 4 (6.7) 0 (0)
Solid 13 (4.1) 4 (6.7) 6 (10.3)
Micropapillary 1 (0.3) 1 (1.6) 0 (0)
Colloid 11 (3.5) 4 (6.7) 1 (1.7)
July 2022 | Volume 12 | Articl
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; CEA, carcinoembryonic antigen.
*Data are means ± standard deviations.
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these interslice features would improve classification
performance. Lee et al. (36) reported that a 2D CNN slice-
based approach had better performance than 3D-CNN case-
based approach for detecting intrapelvic tumor recurrence and
Frontiers in Oncology | www.frontiersin.org 6
metastases. The study of Vries et al. (21) also showed that the
sagittal 2D CNN already performed with very high accuracy for
discriminating between Aß-negative and -positive PET scans in
patients with subjective cognitive decline. Therefore, we
July 2022 | Volume 12 | Article 915871
TABLE 2 | Comparison of clinical features between OLMN and OLMP groups in the three sets.

Characteristics Training Set Internal Validation Set Prospective Test Set

(OLMN = 241; OLMP = 75) (OLMN = 52; OLMP = 8) (OLMN = 50; OLMP = 8)

OLMN OLMP P OLMN OLMP P OLMN OLMP P

Age (years) * 63.03 ± 9.46 59.91 ± 10.24 0.015 63.29 ± 9.44 62.38 ± 10.01 0.801 63.22 ± 11.70 64.25 ± 13.48 0.822
Sex 0.125 0.939 0.299
Female 130 (53.9) 48 (64.0) 28 (53.8) 5 (62.5) 24 (48.0) 6 (75.0)
Male 111 (46.1) 27 (36.0) 24 (46.2) 3 (37.5) 26 (52.0) 2 (25.0)
Smoking history 0.004 1 0.375
Ever smoker 69 (28.6) 9 (12.0) 14 (26.9) 2 (25.0) 10 (20.0) 0 (0)
Never smoker 172 (71.4) 66 (88.0) 38 (73.1) 6 (75.0) 40 (80.0) 8 (100)
Tumor location 0.650 0.736 0.597
RUL 76 (31.5) 21 (28.0) 13 (25.0) 1 (12.5) 16 (32.0) 3 (37.5)
RML 14 (5.8) 6 (8.0) 6 (11.5) 0 (0) 8 (16.0) 0 (0)
RLL 52 (21.6) 18 (24.0) 10 (19.2) 1 (12.5) 8 (16.0) 2 (25.0)
LUL 65 (27.0) 16 (21.3) 14 (26.9) 4 (50.0) 11 (22.0) 3 (37.5)
LLL 34 (14.1) 14 (18.7) 9 (17.4) 2 (25.0) 7 (14.0) 0 (0)
Radiologic lesion type 0.031 0.608 0.436
Pure solid 215 (89.2) 73 (97.3) 45 (86.5) 8 (100) 41 (82.0) 8 (100)
Subsolid 26 (10.8) 2 (2.7) 7 (13.5) 0 (0) 9 (18.0) 0 (0)
Tumor SUVmax* 4.96 ± 3.24 7.74 ± 3.85 < 0.001 4.45 ± 2.40 5.82 ± 2.42 0.064 5.22 ± 4.36 8.64 ± 2.95 0.002
CEA, ng/mL* 5.62 ± 9.15 15.24 ± 67.42 0.029 3.11 ± 2.19 4.5 ± 2.46 0.046 4.64 ± 2.88 19.18 ± 29.52 0.311
Pathologic tumor size* 22.18 ± 9.62 26.93 ± 11.78 < 0.001 19.23 ± 8.82 24.00 ± 8.25 0.056 21.24 ± 7.19 38.63 ± 11.94 < 0.001
Predominant subtype 0.318 0.399 0.629
Acinar 171 (71.0) 61 (81.3) 36 (69.2) 5 (62.5) 37 (74.0) 5 (62.5)
Papillary 26 (10.8) 8 (10.7) 5 (9.6) 1 (12.5) 7 (14.0) 2 (25.0)
Lepidic 23 (9.5) 2 (2.6) 4 (7.7) 0 (0) 0 (0) 0 (0)
Solid 10 (4.1) 3 (4.0) 2 (3.9) 2 (25.0) 5 (10.0) 1 (12.5)
Micropapillary 1 (0.4) 0 (0) 1 (1.9) 0 (0) 0 (0) 0 (0)
Colloid 10 (4.2) 1 (1.4) 4 (7.7) 0 (0) 1 (2.0) 0 (0)
pN (8th ed.)
N1a (single N1) 31 (41.3) 3 (37.5) 3 (37.5)
N1b (multiple N1) 6 (8.0) 0 (0) 0 (0)
N2a (single N2) 17 (22.7) 2 (25.0) 0 (0)
N2b (multiple N2) 21 (28.0) 3 (37.5) 5 (62.5)
OLMN, occult lymph node metastasis negative; OLMP, occult lymph node metastasis positive; RUL, right upper lobe; RML,
right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; CEA, carcinoembryonic antigen.
*Data are means ± standard deviations.
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves of three deep learning models in the (A) internal validation set and the (B) prospective test set.
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hypothesized that patients without a very large number of cases
may be more applicable to 2D CNN architectures.

For clinical features, statistical analysis showed a significant
difference in pathologic tumor size, CEA, and tumor SUVmax in
the training set, which is consistent with our previous findings
(16, 37). However, these clinical features were not all statistically
significant in our validation and test sets, which may imply that
the clinical utility of these features is limited.

There are several limitations to our current study. First, this
was a single-center study with a relatively small sample size.
Further improvement with multicenter and large-sample studies
must be achieved before clinical use. Second, patients with
multiple lesions were excluded because it is difficult to
determine which lesion would cause OLM and should be input
in the model. Therefore, predicting OLM of multifocal lung
cancer needs to be further verified. Third, although statistical
analysis of clinical data was performed, we did not integrate these
Frontiers in Oncology | www.frontiersin.org 7
clinical features into the deep learning model. Therefore, clinical
parameters as another modality combined DL model should be
studied in the future. Fourth, we did not use PET/CT fusion
images because PET scan is difficult to rigidly match with CT
scan in spatial location due to cardiac and respiratory motion
artifacts. Last, limitation also obviously includes the opaque
black box nature of the deep learning technology.
CONCLUSIONS

We constructed a deep learning model that can successfully
incorporate PET and CT images into a 2D CNN architecture to
accurately predict OLM in patients with cN0 LUAD. Moreover,
the deep learning model demonstrated a good predictive
performance. This model may help to determine the patients
who are eligible for limited resection.
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TABLE 3 | Performance of the three deep learning models.

PET CT Combined

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Internal Validation
Set

75.00% 63.46% 65.00% 75.00% 88.46% 86.67% 87.50% 80.00% 81.00%

Prospective Test
Set

87.50% 62.00% 65.52% 75.00% 80.00% 79.31% 75.00% 88.46% 86.60%
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FIGURE 4 | Training curves of PET and CT models. We stopped training at
the 40th epoch because no further improvement can be gained in the
validation loss.
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