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It has long been evident that physical exercise reduces the risk of cancer and

improves treatment efficacy in tumor patients, particularly in lung cancer (LC).

Several molecular mechanisms have been reported, but the mechanisms

related to microRNAs (miRNAs) are not well understood. MiRNAs modulated

various basic biological processes by negatively regulating gene expression and

can be transmitted between cells as signaling molecules. Recent studies have

shown that miRNAs are actively released into the circulation during exercise,

and are deeply involved in cancer pathology. Hence, the role of exercise

intervention in LC treatment may be further understood by identifying

miRNAs associated with LC and physical activity. Here, miRNAs expression

datasets related to LC and exercise were collected to screen altered miRNAs.

Further bioinformatic approaches were performed to analyze the value of the

selected miRNAs. The results identified 42marker miRNAs in LC, of which three

core-miRNAs (has-miR-195, has-miR-26b, and has-miR-126) were co-

regulated by exercise and cancer, mainly involved in cell cycle and immunity.

Our study supports the idea that using exercise intervention as adjuvant therapy

for LC patients. These core-miRNAs, which are down-regulated in cancer but

elevated by exercise, may act as suppressors in LC and serve as non-invasive

biomarkers for cancer prevention.

KEYWORDS

microRNA, lung cancer, physical exercise, bioinformatics, prognosis
Introduction

Lung cancer (LC) is a heterogeneous disease, including small cell lung cancer and

non-small cell lung cancer (NSCLC). NSCLC comprises 85% of new LC cases and

contains two major histological types, lung adenocarcinoma (LUAD) and lung squamous

cell carcinoma (LUSC), of which LUAD is the most common subtype (1, 2). Albeit the

advancement in therapeutic methods and detection tools, LC was still the leading cause of
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cancer-related death, with an estimated that LC patients will rise

to ten million by 2030 (3). Long-term morbidity and serious

complications not only bring pain and suffering to patients but

also impose a huge social and economic burden on society.

Currently, except the standard treatments such as

chemotherapy, radiotherapy, surgical resection and recently

immunotherapy, several adjuvant therapies have been applied

in LC patients to enhance the efficacy of treatments and improve

quality of life (4–6). Adjuvant therapies mainly include nutrition

optimization, dietary customization, and exercise therapy (7, 8).

For patients with metabolic disorders, hormonal imbalance,

diabetes mellitus, unhealthy lifestyle, aging, adjuvant therapies

have been shown beneficial in reducing cancer risk and

improving patient prognosis (9–11). Among these adjuvant

therapies, exercise interventions have shown to be associated

with inhibiting deterioration and decreasing mortality in

multiple cancers, especially lung cancer (12–16).

Physical exercise could provide numerous benefits for cancer

patients, such as strengthening lung function, improving

metabolism, enhancing immunity, relieving pain and

depressive symptoms (15, 17). And several studies have shown

that exercise intervention can reduce the symptoms of dyspnea,

coughing, anxiety and suppress tumor growth in LC (18–21).

But the torture of tumors and the pain of treatment cause

adverse physical and psychological effects on LC patients,

leading to higher psychological distress, resulting in a

reduction of physical activity, and forming a vicious cycle (22–

24). Therefore, exercise interventions become more necessary

for LC patients and are frequently applied in coordination with

other treatments. Recently studies have also shown that regular

exercise for LC patients could improve cardiorespiratory fitness,

reduce pulmonary complications and shorten postoperative

hospitalization (25–28).

All this evidence prompted researchers to study the effects of

physical exercise on LC. Earlier studies showed that exercise can

modulate epigenetic modifications, namely DNA methylation

and post-translational histone modification, which in turn

intervene in metabolism, biosynthesis and development, as

well as redox signaling, DNA repairing, and aging (29–32).

While recent researches indicate that non-coding RNA,

especially the circulating miRNA, is closely associated with

physical exercise (33). Circulating miRNAs responsive to

exercise in brain, muscle, kidney and lung, serve as

physiological mediators of exercise-induced adaptation (34).

MiRNAs in cancer exosomes transfer to target cells for

communication, act as initiators for pre-metastatic niche

formation (35–37). Therefore, it is necessary to study physical

exercise and LC-regulated miRNAs to assess the therapeutic

potential of exercise intervention. However, convincing data on

this topic is still insufficient. In this study, we collected miRNA

expression datasets from Gene Expression Omnibus (GEO)

database and screened out three core-miRNAs that were

regulated by exercise and associated with cancer pathology.
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Further bioinformatics analysis found that these core-miRNAs

were associated with a better prognosis of LC.
Materials and methods

Data collection and processing

The miRNA and mRNA expression profiles of LC and

exerc ise were obta ined from Nat ional Center for

Biotechnology Information (NCBI) Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The

search terms we used included “lung cancer”, “exercise” and

“Homo sapiens”. Discarded datasets obtained from animals, cell

lines, or other without normal control. And the corresponding

pan-cancer expression profiles and clinical data were obtained

from The Cancer Genome Alters (TCGA) database (https://

portal.gdc.cancer.gov/). Tables S1 and S2 show the information

from our collected datasets. The differential genes were analyzed

using the GEO2R online tool (https://www.ncbi.nlm.nih.gov/

geo/geo2r/), which was based on R language.
Prediction of potential target genes
of miRNA

The target genes of miRNA were predicted using ENCORI

(https://starbase.sysu.edu.cn/index.php), which is an open-

source platform for studying the miRNA-mRNA interaction

through seven algorithms (PITA, TNA22, miRmap, microT,

miRanda, PicTar, TargetScan). The screened miRNAs were

typed into this platform, and targeted mRNAs produced by at

least four prediction algorithms were considered. To validate

these predictions, the candidate target genes were compared

with the differential genes in five LC datasets. And the miRNA-

mRNA network was visualized by Cytoscape 3.9.1.
Functional enrichment analysis

Various tools were used to analyze the function of our

selected miRNAs and mRNAs. Including miRNA Enrichment

Analysis and Annotation tool (miEAA, https://ccb-compute2.cs.

uni-saarland.de/mieaa2/), RNALocate (https://www.rna-society.

org/rnalocate/), KEGG Orthology Based Annotation System

(KOBAS 3.0, http://kobas.cbi.pku.edu.cn/home.do), DAVID

Bioinformatics Resources (https://david.ncifcrf.gov/home.jsp),

and LinkedOmics (http://www.linkedomics.org/login.php). The

miEAA was used for functional enrichment analysis of miRNA

sets. Subcellular localization analysis of miRNAs was performed

by RNALocate. For the genes, KOBAS and DAVID were used to

perform GO categories, KEGG pathway, and Reactome pathway

analysis. The LinkedOmics dataset was used for GSEA function
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enrichment analysis of gene sets in lung cancer. R drawing

package ggplot2 was utilized for making bubble chart, bar graph

and heatmap.
Exploration of signatures associated
with cancer

Gene expression and cancer pathway activity in LUAD and

LUSC were analyzed by a web-based platform for Gene Set

Cancer Analysis (GSCALite, http://bioinfo.life.hust.edu.cn/web/

GSCALite/). Tumor-infiltrating immune cells analysis was

performed by TIMER (http://cistrome.dfci.harvard.edu/

TIMER/). Survival analysis based on the expression status of

mRNA/miRNA was performed by GEPIA 2.0 (http://gepia.

cancer-pku.cn/) or R statistical package software survminer

(version 0.4.9) and survival (version 3.2-10). Correlations

between the gene sets of interest and functional states were

performed by Cancer Single-cell state Atlas (CancerSEA, http://

biocc.hrbmu.edu.cn/CancerSEA/). Tumor stromal score was

analyzed by R statistical package software estimate (version

2.0.0), which was based on the gene expression profiles

retrieved from TCGA. Tumor stemness scores were calculated

by one-class logistic regression algorithm, and Spearman

correlation analysis based on mRNA (RNAss) and DNA-

methylation (DNAss) datas of TCGA pan-cancer samples were

downloaded from Xena browser (https://xenabrowser.net/

datapages/).
Statistical analysis

The log2FC values of miRNAs/mRNAs were normalized by

GEO2R. For LC datasets, miRNAs with p-value < 0.05 were

selected. For mRNAs and exercise datasets, p-value < 0.01 were

selected. The Kaplan–Meier method was used to generate overall

survival curves, and log-rank p-value < 0.05 were selected. The

association between gene expression, stromal score and stemness

score was tested with Spearman correlation.
Result

Identification of LC-associated miRNAs

The miRNA expression profiles related to LC were obtained

from GEO DataSets. Excluding the datasets obtained from

circulating fluids, or samples without normal control, or

animal models, or in vitro, we selected 15 datasets of LC

(Table S1). These datasets were used to comprehensively

evaluate the LC-associated miRNAs. Differentially expressed
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miRNAs between tumor and normal were analyzed by

GEO2R. Considering the different sample collection methods

among datasets and the complex pathological features of

patients, a stringent screening strategy may omit important

miRNAs, so we adopted a relatively loose threshold (p < 0.05)

(38–40). As a result, a total of 42 dysregulated miRNAs were

found in at least nine out of fifteen selected datasets. Of these

miRNAs, 25 were down-regulated and 17 were up-regulated in

tumor samples compared to normal (Figure 1A). All of the

down-regulated miRNAs were identified as circulating miRNAs

by RNALocate database, of which 23 were mainly located in

microvesicles. And the up-regulated miRNAs were primarily

localized in cytoplasm (Figure 1B). In addition, excluding the

overlapping parts, we predicted 2204 target genes of down-

regulated miRNAs and 1510 target genes of up-regulated

miRNAs using ENCORI database (Figure 1C, Table S3).
Functional enrichment analysis of LC-
associated miRNA target genes

To further corroborate the target prediction results of LC-

associated miRNAs, we separately merged the up-and down-

regulated differential genes (p < 0.01) from five LC datasets

containing normal controls (Figure 2A, Table S2), and compared

them with the prediction results. Considering the anti-

correlation between miRNA and its targets, we further

screened 133 target genes of down-regulated miRNAs and 99

target genes of up-regulated miRNAs (Figure 2B, Table S4).

Gene ontology (GO), Reactome and KEGG pathway analysis

were performed to identify the cellular processes associated with

target genes of LC-associated miRNAs. The results showed that

plenty of cellular processes were modulated by these genes

(Figure 2C). For target genes of down-regulated miRNA,

“Metabolism” and “Cell Cycle” in Reactome, “Metabolic

pathways” in KEGG, and “Mitochondrial transport” in GO

were the highest enrichment. For target genes of up-regulated

miRNA, “Immune System” in Reactome, “Pathways in cancer”

in KEGG, and “prostaglandin receptor activity” in GO were the

highest enrichment. All of these processes were known to be

associated with the development and progression of cancer.

Ranked these genes according to the average value of Log2FC

in five LC datasets, and subjected to Gene Set Enrichment

Analysis (GSEA) according to cancer hallmark gene sets. It

was found that “cell cycle progression” and “TNFA signaling

via NFkB” were the most enriched terms (Figure 2D). And

functional states of single-cell analyzed by CancerSEA also

showed that “CellCycle” and “Metastasis” were the most

relevant terms (Figure 2E). Overall, these target genes of

selected miRNAs have closely linked with LC development,

especially the target genes of which down-regulated miRNAs

are significantly associated with the cell cycle.
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Interaction analysis of exercise- and LC-
associated miRNAs

The positive effects of healthy physical activity on LC

prevention and prognosis have been characterized. However,

the understanding of the underlying mechanisms is still limited.

It was hypothesized that exercise-induced modulation of

circulating miRNA may be associated with LC development.

To corroborate this hypothesis, a differential analysis between

circulating miRNAs after and before exercise was performed

(Figure 3A). The differential miRNAs (p<0.01) were annotated

by miEAA. It was found that up-regulated circulating miRNAs

were negatively correlated with age, while the down-regulated

were positively correlated with age (Figure 3B). And gene set

enrichment analysis revealed that these circulating miRNAs

were associated with LC-driven gene. The up-regulated

circulating miRNAs were enriched in LC down-regulated gene

sets, while the down-regulated were enriched in LC up-regulated

gene sets (Figure 3C). These results suggested that exercise may

have anti-aging effects and benefit the health of LC patients

through miRNA modulation. Hence, we compared the

functional annotation results of exercise-down-regulated

miRNAs and LC-up-regulated miRNAs, as well as exercise-up-

regulated miRNAs and LC-down-regulated miRNAs
Frontiers in Oncology 04
(Figure 3D). Found that many important cancer-related

pathways (such as “Central carbon metabolism in cancer”,

“PL-L1 expression and PD-1 checkpoint” and “RIG-I-like

receptor signaling pathway”, as well as “VEGF signaling

pathway”, “Toll-like receptor signaling pathway” and “Cysteine

and methionine metabolism”) were intervened by the exercise-

regulated miRNAs, especially the immune- and metabolism-

related pathways (Figure 3D). Therefore, these results suggest

that exercise interventions may be a valuable strategy to prevent

or limit LC risk.
Co-target genes of exercise- and LC-
associated miRNAs affected immune
infiltration and cell cycle

Considering the positive role of exercise, we obtained co-

target genes by comparing the targets of exercise and LC-

associated miRNAs. 55 of 133 (41.3%) up-regulated co-target

genes and 36 of 99 (36.4%) down-regulated co-target genes in LC

were inversely regulated by exercise-associated miRNAs

(Figure 4A). The expression of these genes was further verified

in The Cancer Genome Atlas (TCGA) LUAD/LUSC cohort, and

52 up-regulated and 29 down-regulated co-target genes in LC
A

B

C

FIGURE 1

Differentially expressed miRNAs in LC. (A) Differentially expressed miRNAs (p < 0.05) in tumor compared to normal in at least nine out of fifteen
LC datasets. The number represents the value of log2FC determined by GEO2R analysis, and the red/green scale boxes represent the up- or
down-regulated miRNAs. (B) Subcellular localization of the selected miRNAs was obtained by RNALocate. (C) Target genes of the up- and
down-regulated miRNAs were predicted by ENCORI. The overlapping parts were deleted from the predicted gene lists and only considered the
two flanking genes.
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were validated (Figure 4B). Then, we explored the correlation of

the validated co-target genes with immune infiltration by

TIMER database. The down-regulated genes in LC (exercise-

induced genes) showed significant positive correlations of six

immune cell types (B cell, CD8+ T cell, CD4+ T cell,

Macrophage, Neutrophil and Dendritic cell) (Figure 4C). We

also assessed the correlation of these genes with four

immunosuppressive cells (Macrophage M2, T cell regulatory,

Cancer-associated fibroblast, and Myeloid-derived suppressor

cells) which were known to promote T cell exclusion. It was

found that exercise-induced genes were negatively correlated

with Myeloid-derived suppressor cells (MDSC), while the up-

regulated genes in LC (exercise-suppressed genes) were

positively correlated with MDSC, especially in LUAD

(Figure 4D). Since aberrant cell cycle activity is a feature of

many cancers (41), cell cycle annotation analysis was performed

by GSCALite. We found that almost all the exercise-suppressed

genes were involved in LC cell cycle activation, whereas the

exercise-induced genes do the opposite (Figure 4E). These

results demonstrated that exercise may modulate immune

infiltration and inhibit cancer cell proliferation by regulating

target genes of LC-associated miRNA.
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Core-miRNAs regulated by exercise and
LC are associated with patient prognosis

We explored the association of co-target genes with LC

prognosis (Figure S1A). Results showed that LUAD was more

susceptible to the co-target genes, especially the 52 genes

suppressed by exercise. And these genes were significantly

associated with poor prognosis of LUAD (log-rank p = 0.0011,

hazard ratio = 1.6), while weakly associated with LUSC (Figure

S1A). Pathway analysis found that these genes were mainly

related to cell metabolism (Table S5). We also constructed a

miRNA-mRNA network (Figure S1B), showed that there were

three core-miRNAs (hsa-miR-195-5p, hsa-miR-26b-5p and hsa-

miR-126-3p) were co-regulated by exercise and LC (Figure S1B).

Of these genes, 29 (56%) were modulated by core-miRNAs and

were associated with high hazard ratios across multiple LC

datasets (Figure S1C). By detecting the TCGA lung cancer

cohort, core-miRNAs expression was higher in paired normal

tissues and associated with a better prognosis (Figure 5A).

Among core-miRNAs targe genes, eleven hub-genes

expressions were significantly associated with LUAD prognosis

(log-rank p < 0.05), and overexpression indicated poor prognosis
A

B

D
E

C

FIGURE 2

Functional enrichment of target genes of miRNAs. (A) Up- and down-regulated genes (p < 0.01) in tumors compared to normal were obtained
by GEO2R analysis, and the overlapping parts of the five LC datasets were selected as candidate target genes of miRNAs. (B) Comparing the
miRNA target genes list predicted by ENCORI with the merged dysregulated genes list of five LC datasets, the overlapping parts were
considered to be the targets of miRNAs. (C) The GO (green), Reactome (blue) and KEGG pathway (red) enrichment analysis of miRNA target
genes was performed by KOBAS 3.0. The size of the knots represents the number of enriched genes. (D) The target genes were ranked by the
mean of log2FC in the five LC datasets, and were annotated by Gene Set Enrichment Analysis (GSEA) according to Hallmark gene sets of cancer.
(E) Functional states of target genes in LC were analyzed by CancerSEA, and the red/green scale boxes represent up- or down-regulation.
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(Figure 5A). The binding sites of core-miRNAs were shown

(Figure 5B), and the expression of hub-genes were inversely

correlated with core-miRNAs in nearly all TCGA cancer types

(Figure 5C). Combing GSEA enrichment results from KEGG,

Reactome and Wikipathway databases, shown that hub-genes

were positively correlated with cell replication pathway (such as

“DNA replication” in KEGG and Wikipathway, “Nucleosomes

at the centromere” in Reactome), and inversely correlated with

many immune relevant terms (Figure 5D). These results

suggested that core-miRNAs were associated with exercise

intervention in LC progression, and the oncogenic role of

these miRNAs may be achieved through regulating cell

replication and immunity signaling.
Expression and function of hub-genes in
pan-cancer

Utilizing the pan-cancer atlas project of TCGA, we

comprehensively analyzed the expression and function of hub-

genes regulated by core-miRNA at pan-cancer level through
Frontiers in Oncology 06
high-throughput gene expression data and clinical information.

The expression of hub-genes was shown (Figure 6A), and the

correlation coefficient between every two of them was calculated

(Figure 6B). Most of the coefficients are positive, suggesting that

these genes have synergistic effects. Further research has shown

that the expression of most hub-genes was negatively correlated

with the stromal score calculated by ESTIMATE algorithm,

suggesting that tumors with high hub-genes expression

contained lower immune cells and higher cancer cells

(Figure 6C). While stemness score (RNAss and DNAss) was

positively correlated with most hub-genes, especially RNAss,

suggesting that higher hub-genes expression is associated with

stronger activity of cancer stem cells and tumorigenesis

(Figure 6C). Survival curve analysis was performed

(Figure 6D), shown that high expression of hub-genes was

linked to poor prognosis in pan-cancer, especially in LUAD,

SARC, THCA, ACC, PAAD, MESO, LICH, LAML, KIRP,

HNSC and BRCA (log-rank p < 0.05). In addition, these three

core-miRNAs were up-regulated in plasma after 8 weeks of

training (A1), returned to basal state (B2) after 8 weeks off, and

up-regulated again after retraining (A2) (Figure 6E). Overall,
A B

D

C

FIGURE 3

Interaction analysis of exercise/LC-associated miRNAs. (A) Volcano plots draw the regulated circulating miRNAs in plasma after exercise in a
dataset of GSE133910. (B) Age-dependent genes were annotated by miEAA, and each knot represents an age-related differentially expressed
miRNA (p < 0.01) in the exercise dataset. (C) The circulating miRNAs were ranked by the value of log2FC, and disease correlation analysis was
performed by GSEA. The enriched(red) or depleted(green) subcategory was shown based on the running sum. (D) Pathway prediction analysis of
exercise-regulated miRNAs (p < 0.01) and screened LC miRNAs was performed by miEAA. The overlapping regions (yellow) represent the co-
intervention part.
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these results indicated that regular physical exercise may

associate with cancer prevention and reflect a better prognosis.
Discussion

It has been demonstrated that lifestyle plays important role

in maintaining health and preventing disease. Regular physical

exercise is a flexible, inexpensive, and most important, effective

way to keep healthy. It has been used as an adjuvant therapeutic

strategy for much of chronic disease treatment, such as obesity,

diabetes, osteoporosis and angiocardiopathy (42, 43). In cancers,

growing studies have shown that physical exercise is associated

with lower cancer risk. For athletes, the overall cancer incidence

was low, LC risk decreased most (44, 45). 2.5 to 5 hours of
Frontiers in Oncology 07
moderate-intensity physical activity per week for adults was

recommended by US Physical Activity Guidelines Advisory

Committee, which has been shown to be beneficial for cancer

prevention (46). Compared with sedentary lifestyle, physical

activity individuals’ LC risk significantly decreased (12–15, 47).

And physical inactivity in LC is often associated with poor

prognosis and increased recurrence risk (13, 48). Despite

extensive studies conducted on exercise interventions, the

underlying mechanisms have not been elucidated yet.

Recently, miRNAs have emerged as biomarkers, since

numerous mature miRNAs enter the circulation via

extracellular vesicles during various diseases (49). For cancer

cel ls , circulating miRNAs are required to regulate

microenvironments, initiate metastasis and suppress immune

responses, and serve as diagnostic/prognostic markers (37, 50).
A

B

D

E

C

FIGURE 4

Functional analysis of co-target genes. (A, B) Based on the revers analysis function of RNCORI, 41.3% up-regulated and 36.4% down-regulated
target genes of LC-associated miRNA (A) could be inversely regulated by exercise-associated miRNAs (green). And these co-target genes (B) were
verified by the mRNA expression module of GCSALite based on TCGA expression data (LUAD and LUSC). (C, D) The correlations between co-target
genes and infiltration of six immune cell types (C) and four immunosuppressive cell types (D) in LUAD and LUSC were shown. Every bar in (C)
represents a co-target gene. The correlations were depicted by purity-corrected partial Spearman’s rho values (Partial_Cor) through TIMER 2.0. (E)
The activity of co-target genes in cancer-related cell cycle pathway was defined and presented by the pathway activity module of GCSALite.
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Previous studies have also shown that exercise could modulate

circulating miRNAs by regulating the release of extracellular

vesicles (33, 51). Therefore, it is valuable to use circulating

miRNA as an entry point for understanding the interaction

between exercise and LC.

MiRNAs associate with argonaute proteins to form a

miRNA-induced silencing complex (RISC). RISC inhibits the

translation of genes into proteins by directly binding the

complementary sequences located in the untranslated regions

of mRNA. For cancers, miRNAs could silence tumor

suppressors or stimulate oncogene expression to interfere with

cancer progression (35, 36, 50, 52). While, several studies have

demonstrated that global miRNA expression was usually

reduced in cancers since some miRNAs act as negative

regulators of genes to block carcinogenesis, and tumors need

to unlock these control genes to obtain the ability of sustaining

proliferative and avoiding immune destruction (53, 54). In this

context, the integrated analysis of fifteen different miRNA

expression profiling datasets was performed and identified a

set of 42 dysregulated miRNAs in LC, including 25 down-

regulated (Figure 1). And plenty of cellular processes were
Frontiers in Oncology 08
found to be intervened by these dysregulated miRNAs via

combining the predicted targets of miRNAs with the

differential expressed gene in LC RNAseq datasets (Figure 2).

Cell cycle and metabolism were mainly associated with down-

regulated miRNAs, immunity and inflammation were associated

with up-regulated miRNAs. Additionally, some of these

miRNAs have already been detected as circulating miRNAs in

plasma of cancer patients and proposed as potential biomarkers

for various cancer types, such as has-mir-195 (55), has-mir-26b

(56), has-mir-126 (57), hsa-mir-29c (58), hsa-mir-125a (59),

hsa-mir-223 (60), has-mir-210 (61) and has-mir-141 (62).

Circulating miRNAs, attached to proteins or loaded in

extracellular vesicles, are present in various body fluids. It can

be actively secreted into the extracellular space as signaling

molecules by cells under external stimulation (63). Recent

studies have shown that exercise of different intensities and

durations can induce a massive release of extracellular vesicles

into the circulation to modulate individual biological processes

(33, 51). However, the ability of physical exercise to modulate

miRNAs relevant to LC prevention has not been well

investigated yet. In the present study, we proposed integrated
A

B

D

C

FIGURE 5

Binding site of core-miRNAs and their effects. (A) The expression of core-miRNAs in paired LC samples in TCGA was shown, and the effects of
miRNA/mRNA on the overall survival of LUAD patients were calculated by Kaplan-Meier method. (B) The binding sites of miRNAs were shown.
(C) Heatmap shown the expression correlation Coefficient-R of miRNA-mRNA calculated by ENCORI across pan-cancer. (D) The functional
enrichment analysis of core-miRNA target genes in LUAD was performed by GSEA through the LinkCompare module of LinkedOmics.
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analysis of exercise-regulated circulating miRNAs with 42

miRNAs we screened in LC datasets (Figure 3). This approach

revealed that some biological processes of cancer development

tend to be relocked by exercise intervention via promoting the

secretion of circulating miRNAs, such as VEGF signaling

pathway, toll-like receptor, cysteine and methionine

metabolism, and IL-17 pathway. Conversely, the functions of

exercise-downregulated miRNAs were complex and may be

involved in cancer defense via cytosolic DNA-sensing

pathway. The DNA-sensing mechanism is the molecular basis

to produce immune response (64). Further analysis also found

six immune cells were positively associated with exercise

intervention (Figure 4C). With miRNA target prediction, we

found that most target genes of LC-associated miRNAs can be

regulated by exercise. The genes silenced by exercise up-

regulated miRNAs were associated with cell cycle activation

and promoted tumor infiltration of MDSC in LUAD. While for
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the down-regulated miRNAs in exercise, the effect was opposite

(Figure 4). These analyses confirmed that exercise is strongly

involved in LC pathology, especially in cell cycle and immune

infiltration pathways.

During the above process, we identified three core-miRNAs

(has-miR-195, has-miR-26b and has-miR-126), which were

repressed in LC but elevated by exercise. These core-miRNAs

circulating in plasma were also found to be increased in different

acute or chronic training projects, including cycling, swimming

and marathon running (65–71). In a weight-loss trial, the

expression of core-miRNAs was much higher in the slimming

success cohort (72). And plenty of evidence has confirmed that

these miRNAs were able to transmit between cells (73). Our

results showed that core-miRNAs and their targets have a strong

involvement in DNA replication, immune system and prognosis

of patients in LC (Figure 5). And several studies have already

highlighted their anticancer effect. For example, the increased
A B D

E

C

FIGURE 6

Correlation of hub-genes with cancer pathology and prognosis. (A) Boxplot shown the expression of hub-genes across pan-cancer in TCGA. (B)
Correlation plot based on Spearman test shown the relationship of hub-genes expression across pan-cancer. (C) Correlation matrix plots shown
the association between hub-genes expression and stromal scores (based on ESTIMATE algorithm), as well as cancer stemness scores (RNAss:
based on RNA expression, DNAss: based on DNA methylation). The size of the dots represents the value of Spearman test, and the red/blue dots
indicate a positive/negative correlation. (D) Kaplan-Meier plots of hub-genes showed differential overall survival outcomes (p <0.05) across pan-
cancer. (E) The expression of core-miRNAs in an exercise dataset (GSE133910). At four time points (B1, A1, B2 and A2) plasma samples were
collected. Volunteers completed eight weeks of training, followed by a wash-out phase (eight weeks), and another eight weeks of training
analogous to the first phase.
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level of has-miR-195 is associated with inhibition of

proliferation and angiogenesis, and enhances T cell activation

in several cancer types including LC (74–76). Similarly, has-

miR-26b has a strong involvement in cell cycle transition,

apoptosis induction, and improve chemosensitivity (77–79).

Furthermore, has-miR-126 expression also could reduce tumor

growth, inhibit metastasis, and contribute to enhancing cisplatin

cytotoxicity (80–82). For the targets of the core-miRNAs, we

identified eleven hub-genes associated with overall survival, all of

which high expression indicated poor prognoses. Therefore,

these core-miRNAs we identified may play critical roles in

exercise intervention against LC progression. Additionally, we

analyzed the correlation between hub-genes expression and

tumor stem cell score across 33 cancer types. The results

showed that high expression of hub-genes in pan-cancer,

including LC, represented lower stromal cell content and

higher stem cell characteristics (Figure 6). Suggesting these

hub-genes play a role in maintaining cancer stem cells and act

as tumor promoters. High express levels of these hub-genes also

represent a high risk in pan-cancer, especially in LUAD, SARC,

THCA, ACC, PAAD, MESO, LICH, LAML, KIRP, HNSC

and BRCA.

In conclusion, the above bioinformatics analysis we

performed allows us to identify specific miRNAs to predict the

risk of LC, and imply the connection between physical exercise

and cancer prevention. Regular exercise can alter circulating

miRNAs in plasma, which act as signaling molecules transmitted

between cells and may regulate tumor physiology and delay the

progression of cancer by modulating cell cycle and immune

system. Supports the idea of prescribing physical exercise as

adjuvant therapy for LC patients, especially for those who are

sedentary, depressed and anxious. Of note, after a period of

cessation of exercise, the elevated miRNAs returned to their base

state and increased again after resumption. This reminds us that

the benefits of physical exercise require unremitting efforts to

manifest, and the same should be true for any other

adjuvant therapies.
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