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Introduction: A variety of biomarkers are considered for diagnosis (e.g., b2-
microgobulin, albumin, or LDH) and prognosis [e.g., cytogenetic aberrations detected
by fluorescence in situ hybridization (FISH)] of multiple myeloma (MM). More recently,
clonal evolution has been established as key. Little is known on the clinical implications of
clonal evolution.

Methods: We performed in-depth analyses of 25 patients with newly diagnosed MM with
respect to detailed clinical information analyzing blood samples collected at several time points
during follow-up (median follow-up: 3.26 years since first diagnosis). We split our cohort into
two subgroups: with and without new FISH clones developing in the course of disease.

Results: Each subgroup showed a characteristic chromosomal profile. Forty-three
percent of patients had evidence of appearing new clones. The patients with new
clones showed an increased number of translocations affecting chromosomes 14 (78%
vs. 33%; p = 0.0805) and 11, and alterations in chromosome 4 (amplifications and
translocations). New clones, on the contrary, were characterized by alterations affecting
chromosome 17. Subsequent to the development of the new clone, 6 out of 9 patients
experienced disease progression compared to 3 out of 12 for patients without new
clones. Duration of the therapy applied for the longest time was significantly shorter within
the group of patients developing new clones (median: 273 vs. 406.5 days; p = 0.0465).

Discussion: We demonstrated that the development of new clones, carrying large-scale
alterations, was associated with inferior disease course and shorter response to therapy,
possibly affecting progression-free survival and overall survival as well. Further studies
evaluating larger cohorts are necessary for the validation of our results.
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1 INTRODUCTION

Multiple myeloma (MM) is a hematologic malignancy
characterized by monoclonal expansion of plasma cells in the
bone marrow (1). Clinical presentation is very heterogeneous,
ranging from a rather indolent course to clinically aggressive
plasma cell leukemia.

The diagnostic criteria of MM have expanded in recent years
and now include biomarkers for disease malignancy such as bone
marrow plasma cell count, free light chain ratio, and number of
focal lesions on MRI, in addition to the well-established CRAB
criteria (2).

The prognostic significance of cytogenetic aberrations is well
described; t(4;14), t(14;16), and del(17p) are included in Revised
International Staging System (R-ISS) risk stratification (3, 4). A
change in the mutational profile or clonal composition between
two or more time points is referred to as clonal evolution (5, 6).
Models describing clonal evolution can be categorized as linear,
branched, punctuated, or neutral (7).

The molecular basics of clonal evolution in MM have been
studied and reviewed in depth (5, 8–10). It has been observed
that the complexity of the MM tumor genome increased over
time (11) and that cytogenetic heterogeneity is of prognostic
significance in newly diagnosed MM patients treated with
bortezomib (12). However, more information on clinical
implications of clonal evolution is needed.

We hypothesize that patients with MM, characterized by new
clones emerging after first diagnosis, show poor prognosis
compared to patients without new clones. We define a new clone
as a gain of aberrations and, thus, increased heterogeneity of a
tumor. The gain can affect both healthy cells, leading to branched
clonal evolution with independent clones, or clones already present
at first diagnosis, leading to a derivative of these clones. To explore
our hypothesis, we analyzed a set of 25 patients with MM, split into
two subgroups: with or without new clones. For these patients, we
correlated clinical data on progression, chromosomal profiles, blood
parameters, and therapies, based on blood samples collected at
several time points during follow-up.
2 METHODS

2.1 Study Population
A cohort of 25 patients with MM and comparable therapies
applied, treated at the University Hospital Münster, was
analyzed. All data were collected and analyzed in accordance
with relevant ethical guidelines and principles of the Declaration
of Helsinki. The ethical review boards of the University of
Münster and the Ärztekammer Westfalen-Lippe approved this
study (2018-452-f-S). All patients gave their written informed
consent. Detailed information on every patient is provided in
Supplementary Table 1; a summary of the study population’s
main characteristics is provided in Supplementary Table 2.

Data were collected between December 2014 and March 2021.
All patients were monitored starting with first diagnosis of MM
(exceptions: for UPN09, information on laboratory parameters and
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therapies applied was available at diagnosis of a plasmocytoma, 2
years prior to diagnosis of MM; for UPN16, information on
laboratory parameters was available 4 months prior to first
diagnosis of MM). Median time of follow-up after first diagnosis
of MM was 3.62 years (IQR = 2.01–5.00 years). Forty percent of
patients were female. At first diagnosis, patients were in median 58
years old (IQR = 53–64 years). Nine out of 25 patients received
autologous stem cell transplantation (SCT). Five overall survival
(OS) events occurred during follow-up (see Section 2.4 Statistical
Methods for the definition of OS). Since this was the primary
endpoint of the study, data on cytogenetic aberrations were available
for all patients at several time points. Analyses on blood samples of
the patients were performed between 2014 and 2021 at the Institute
of Human Genetics Münster. A median of 3 samples per patient
was analyzed during follow-up (range: 1–11 analyses during follow-
up). Additionally, information on therapy and laboratory
parameters (k and l light chains measured in serum), lactate
dehydrogenase (LDH), and gradient of monoclonal protein (M-
gradient) was available for every patient at several time points
during follow-up. A visual summary of available data is provided in
Supplementary Figure 1, detailed information on laboratory
parameters is provided in Supplementary Figures 2–4.

Based on clonal evolution, we split up our cohort into two
subgroups: For subgroup 1, no new clones were detected in the
course of disease (patients UPN05 to 16) based on cytogenetic
findings using the fluorescence in situ hybridization (FISH)
approach. All clones were already present at first analysis with
FISH. For subgroup 2, at least one completely new clone was
developed in the course of the disease, which was not detected at
any previous time point (patients UPN17 to 25); i.e., a gain of
aberrations occurred. Four patients (UPN01 to 04) were
excluded from subgroup analysis, because they had no follow-
up FISH samples available.

2.2 Fluorescence In Situ Hybridization
Analysis
FISH was performed as described previously (13, 14). Briefly,
CD138-purified plasma cells were analyzed. The following
commercial available probes from Cytocell (Cytocell,
Cambridge, UK), MetaSystems (MetaSystems Probe GmbH,
Altlußheim, Germany), CytoTest (CytoTest, Rockville, USA),
and Abbott Molecular (Abbott, Green Oaks, USA) were used:
Cytocell CKS1B/CDKN2C (P18) Amplification/Deletion Probe
(1p32.3, 1q21); Cytocell D13S319 Plus Deletion Probe (13q14.2,
13qter); MetaSystems XL TP53/NF1 Deletion Probe (17p13.1,
17q11.2); MetaSystems XL Iso(17q) Deletion Probe (17p13,
17q22); MetaSystems XL MYC BA Break Apart Probe (8q24);
MetaSystems XL E2A Break Apart Probe (19q13); CytoTest
NSD1/TERT FISH Probe Kit (5q35, 5p15); Abbott Molecular
LSI ATM/CEP11 11 FISH Probe (11cen, 11q22); Cytocell probes
for centromeric regions (D3Z1, D7Z1, D9Z3, D15Z4);
Cytocell IGH/FGFR3 Plus Translocation, Dual Fusion (4p16.3,
14q32.33); Cytocell IGH/MAF Translocation, Dual Fusion
(14q32, 16q23); Cytocell IGH/MAFB Translocation, Dual
Fusion (14q32, 20q12); Cytocell IGH/MYEOV Translocation,
Dual Fusion (11q13, 14q32); and Cytocell IGH Plus Breakapart
July 2022 | Volume 12 | Article 919278

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sandmann et al. Clonal Evolution in Multiple Myeloma
Probe (14q32.33). At least 100 interphase nuclei were analyzed
for each probe (exception: UPN15 at time point 1: 81 nuclei, time
point 2: 56 nuclei). Cutoff levels for all probes were ~5%. Read
out was done by human genetics experts in Münster.

2.3 Clonal Evolution
For every patient, data on present and absent chromosomal
aberrations were available for 1 to 11 time points. As alterations
were determined using FISH, the number of cells affected by
alteration divided by the total number of evaluated cells
corresponds to the cancer cell fraction (CCF). Clonal evolution
was manually reconstructed based on CCF (15). To reconstruct
clonal evolution also in the presence of a few time points, we
applied an approach estimating the clonal development between
measured time points (16). Detailed information on detected
alterations, CCFs, and assigned clusters is available in
Supplementary Table 3.

2.4 Statistical Methods
Plots visualizing clonal evolution were generated using R 4.1.2
(17) and R package “fishplot” (18). Complex plots were
developed, combining fishplots with diagrams visualizing
therapy information and laboratory parameters over time. In
case clonal evolution could not be reconstructed uniquely based
on available data, all possible versions were reported. Plots for
every patient are available as Supplementary Figures 5–29.

Analysis of progression-free survival (PFS) and OS was
performed using R 4.1.2 (17). For PFS, we analyzed the time
between first diagnosis and first progression. Additionally, we
considered the time between last FISH (subgroup 1)/FISH
detecting the new clone (subgroup 2) and next progression.
For OS, we analyzed the time between first diagnosis and death
of a patient. Kaplan–Meier curves were calculated using R 4.1.2
(17) and R packages “survival” (19) and “survminer” (20).
3 RESULTS

In this study, we analyzed clonal evolution in patients with MM,
aiming at identifying differences with respect to disease
progression, distinct chromosomal profiles, laboratory
parameters, and response to therapy.

3.1 Disease Progression
Figure 1A provides an overview of follow-up, time points of
performed FISH, and progression data.

For 8 out of 12 patients (67%) in subgroup 1 (without new
clone), disease progression could be observed. Similarly, 6 out of
9 patients (67%) in subgroup 2 (with new clone) experienced
progression in the course of follow-up. Investigating whether
disease progression takes place earlier in subgroup 2, we analyzed
PFS (time between first diagnosis and first progression).
However, no significant results could be obtained (Figure 1B;
p = 0.6).

Two out of 12 patients (17%) in subgroup 1 died within our
observation period. In contrast, 3 out of 9 patients (33%)
Frontiers in Oncology | www.frontiersin.org 3
deceased in subgroup 2. Analysis of OS (time between first
diagnosis and death of a patient) did not indicate significant
differences between both subgroups (Figure 1C; p = 0.51).

Additionally, we consider PFS in relation to analysis of
chromosomal alterations. The time span between last FISH
(subgroup 1) or detection of the new clone (subgroup 2), and
the next subsequent progression (Figure 1D) is evaluated. Four
out of 12 patients in subgroup 1 (patients UPN05, 06, 10, and 12)
and 3 out of 9 in subgroup 2 (patients UPN18, 20, and 22) never
experienced any progression within time of follow-up.
Additionally, 5 out of the remaining 8 patients in subgroup 1
did not experience any further disease progression subsequent to
last FISH. Analysis of PFS did not reveal any significant
differences between both subgroups (p = 0.45). Subsequent to
the development of the new clone, 6 out of 9 patients experienced
disease progression compared to 3 out of 12 for patients without
new clones.

3.2 Chromosomal Profiles
Patients with MM can be characterized by specific chromosomal
profiles: Translocations involving chromosome 14 [especially t
(4;14)], gains and amplifications affecting chromosomal region
1q21, as well as deletion of 17p are indicators for adverse
prognosis (3, 4, 9, 10, 12).

Figure 2A visualizes the chromosomal profiles of all
patients considered in this study for the whole time of follow-
up (for detailed information on cytogenetic aberrations detected by
FISH, seeSupplementaryTable 3; for detailed informationon clonal
evolution of each patient, see Supplementary Figures 5–29).
As expected, a majority of patients featured translocations affecting
chromosome 14 (12 out of 25; 48%), amplifications
affecting chromosome 1 (14 out of 25; 56%), and/or deletions
affecting chromosome 17 (9 out of 25; 36%). Additionally, 14 out
of 25 patients (56%) showed deletions in chromosome 13. For 10
out of 25 patients (40%), alterations affecting chromosome 11
(translocations and amplifications) were detected.

Comparing subgroups 1 and 2, considerable differences could
be observed. While only 33% of all patients in subgroup 1 (4 out
of 12) were characterized by translocation of chromosome 14, it
was 78% in subgroup 2 (7 out of 9; p = 0.0805). With respect to
all alterations affecting chromosome 14, a relation of 67% vs.
100% could be observed (8 out of 12 vs. 9 out of 9; p = 0.1038).
Further major differences affected translocation of chromosome
11 (17% vs. 44%; 2 out of 12 vs. 4 out of 9) and changes in
chromosome 4 (17% vs. 44%; 2 out of 12 vs. 4 out of 9).

Within subgroup 2, further differences could be observed
comparing alterations detected by the first FISH and alterations
characterizing the newly developed clones. Figure 2B visualizes
all cytogenetic aberrations characterizing the new clones. In
Figure 2C, a summary on chromosome level is provided.

It appeared striking that only 1 out of 9 patients in subgroup 2
had an initial alteration in chromosome 17. The ratio increased
to 5 out of 9 when considering newly developed clones. Similarly,
4 out of 9 patients acquired alterations in chromosome 1. By
contrast, only 1 out of 9 patients (UPN21) acquired an additional
alteration in chromosome 14 in the course of clonal evolution.
However, this patient already had a rearrangement in
July 2022 | Volume 12 | Article 919278
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chromosome 14 at first diagnosis. Furthermore, no new
alterations are acquired in chromosomes 4 (alterations detected
at first diagnosis in 44%; 4 out of 9), 3, 5, 8, and 18 (11% each; 1
out of 9).

3.3 Laboratory Parameters
For all patients, information on the presence of k and l light
chains in serum, increased LDH activity, and gradient of
monoclonal protein (M-gradient) was available, measured at
several time points in the course of disease. Figure 3 visualizes
the development of laboratory parameters in the two subgroups.
Color indicates the time point at which measurements were
conducted. For patients without new clones, we compared values
measured prior to and after last FISH. For patients with new
Frontiers in Oncology | www.frontiersin.org 4
clones, we compared values measured prior to and after the
development of the new clone.

For k and l light chains, no correlation between the values
measured and the time point at which they were measured could
be observed. This observation is true for both subgroups (for
details, see Supplementary Figure 2).

LDH serum levels measured in subgroup 1 were
heterogeneously distributed. The highest as well as the lowest
values were scattered over the time of follow-up, independent of
therapy. In contrast, correlation with respect to time point could
be observed for subgroup 2. In 8 out of 9 cases, the highest values
of LDH activity were measured subsequent to the development
of the new clones. However, detailed evaluation of the results
revealed that values did not show a continuous increase. Instead,
B C D

A

FIGURE 1 | (A) Time of follow-up for patients with 1 time point of aberration analysis (patients UPN01 to 04), patients with >1 time point of aberration analysis and
no new clone emerging in the course of disease (patients UPN05 to 16; subgroup 1), and patients with >1 time point of aberration analysis and a new clone
emerging in the course of disease (patients UPN17 to 25; subgroup 2). (B) Progression-free survival (first progression after first diagnosis) comparing subgroup 1 vs.
subgroup 2. (C) Overall survival comparing subgroup 1 vs. subgroup 2. (D) Progression-free survival in relation to chromosomal alterations comparing subgroup 1
(next progression subsequent to last FISH) vs. subgroup 2 (next progression subsequent to detection of the new clone).
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peaks were usually observed within 1 year after development of
the new clone. Subsequently, LDH activity decreased again until
the end of follow-up (Supplementary Figure 3). Significant
correlation to therapies applied could not be observed.

For M-gradient, no certain pattern was associated prior to the
development of myeloma or upon the development of a new
clone (for details, see Supplementary Figure 4). Patient UPN09
(subgroup 1) is an exception from this observation. A significant
Frontiers in Oncology | www.frontiersin.org 5
increase in M-gradient can be observed (pUPN09 = 0.0065). The
patient died within less than 4 years after the first diagnosis.
3.4 Response to Therapy
For treatment of MM, a variety of therapies are available. In the
course of disease progression, time to therapy failure is known to
decrease (21).
B

C

A

FIGURE 2 | Molecular characterization of the cohort; amplifications (dark yellow), deletions (red), translocations (light blue), and rearrangements (dark green)
according to FISH probes. Light colors (yellow and red) indicate likely interpretation of the observed FISH results. (A) Overview of all alterations detected.
(B) Alterations characterizing the new clones observed in patients UPN17 to 25. (C) Proportion of patients with altered chromosomes: without the new clone (dark
yellow), with the new clone before (light blue), and after (dark blue) detection of the new clone.
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Figure 4 provides an overview of therapies applied in
subgroups 1 and 2 (for detailed information on therapy for
every patient, see Supplementary Figures 5–29). In general,
patients in both subgroups received comparable therapies.
However, while patients in subgroup 1 were characterized by
many therapies being applied for a long time (Figure 4A),
switches in therapy after a short time could be observed for
Frontiers in Oncology | www.frontiersin.org 6
subgroup 2 (Figure 4B). While all patients received at least one
therapy for ≥100 days, 83% (10 out of 12) received at least one
therapy for ≥200 days in subgroup 1 vs. 55% (5 out of 9) in
subgroup 2 (75% vs. 33% for therapies received for ≥300 days).

We compared both subgroups with respect to the top 5
therapies applied for the longest time (Figure 4C). Only
marginal differences could be observed for therapies 2 to 5.
B

C

A

FIGURE 3 | Differences in measured laboratory parameters. For patients in subgroup 1, laboratory parameters measured before (light blue) and after (blue/green)
last FISH. For patients in subgroup 2, laboratory parameters measured before (light blue) and after (yellow) detection of the new clone. (A) k and l light chains
measured in serum. (B) LDH activity. (C) Gradient of monoclonal protein (M-gradient).
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However, for the therapy applied for the longest time, subgroups
showed major differences. Analysis of our data by Mann–
Whitney U test revealed a significant difference between both
subgroups: For patients with new clones, duration of the longest
therapeutic regimes was significantly shorter compared to
patients without new clones (p = 0.0465; median subgroup 1:
Frontiers in Oncology | www.frontiersin.org 7
406.5 days, range: 150–1,764 days; median subgroup 2: 273 days,
range: 152–434 days).

Detailed information on the duration of therapies applied
during and after development of the new clones for patients in
subgroup 2 is provided in Figures 4D, E. For two patients,
UPN19 and 20, the new clone was developed in between two
B

C

A

D E

FIGURE 4 | Duration of therapies applied in the course of disease for patients in subgroups 1 and 2. (A) Long-term vs. short-term therapies for patients in subgroup
1 (patients UPN05 to 16). (B) Long-term vs. short-term therapies for patients in subgroup 2 (patients UPN17 to 25). (C) Therapies with the longest duration
comparing subgroup 1 vs. subgroup 2. (D) Duration of therapies for subgroup 2, applied during development of the new clone. (E) Duration of the first therapy
applied after development of the new clone.
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therapeutic regimes. Five patients in subgroup 2 received SCT,
with four out of 5 right after the development of the new clone.
Immediate change in therapy after the development of the new
clone was observed for 3 patients (UPN17, 21, and 23), of whom
two died within less than 50 days.
4 DISCUSSION

Clonal evolution and—as a result—increasing clonal
heterogeneity have been studied widely in MM (22–27). It can
be observed not only during the disease course as an adaptation
to different treatments, but also at the same time point of the
disease stage with different clones being present at different
locations of the body (e.g., in focal lesions and the iliac crest;
28). Even within a compartment, such as the bone marrow, the
expression pattern of plasma cells can differ depending on their
position (29). Adding further complexity is the fact that the
patient’s treatment course can be especially heterogeneous
regarding the sequence of therapeutic regimes the patient
received. Finally, clonal evolution can be observed on a rather
large scale such as chromosomal alterations or smaller scale with
mutations or small range deletions or amplifications.

In all cases, clonal evolution contributes to the fact that the
disease course of MM is characterized by a shorter PFS from one
line of therapy to the other (21). It remains to be defined how
different clonal branches and different sites of the body at
different time points might be best detected, classified, and
accordingly treated. Yet, in clinical routine, performing whole-
genome sequencing or biopsies from different sites is not feasible
right now. Additionally, identifying these sites, e.g., by PET-CT
or MRI, is equally difficult.

In this study, we performed an in-depth analysis of patients
with MM. Our analyses focused on clinical differences in patients
with and without new clones developing in the course of disease.
Clones were characterized by larger-scale alterations, which
could be detected by FISH—a method very widely established
and rather affordable in an outpatient setting. Integration of data
from a variety of sources—disease progression, chromosomal
profiles, laboratory parameters, and applied therapies—provided
us with the unique option to study the interplay of diverse
features characterizing patients with MM. The limiting factors
are that we focused on large-scale alterations, clones might have
been missed due to limited sensitivity of FISH (30), and the
disease course and treatment sequences are quite heterogeneous.
Additionally, our patient cohort is rather small. Dividing our
cohort into two subgroups—with and without new clones—
further limits the statistical power of our results.

With these limitations in mind, we could make the following
observations: In our cohort, new large-scale chromosomal
aberrations developed quite frequently (9/21 patients—43%).
Clones emerging with chromosomal aberrations frequently
featured alteration of chromosomes 1 and 17 (44% each; 77%
in total). Both chromosomes have been described to play a role in
myeloma progression, with del(17p) affecting the function of
Frontiers in Oncology | www.frontiersin.org 8
TP53 with its known negative factor influencing the course of
hematological malignancies (31). In addition, chromosome 1
alterations have been shown to be associated with an inferior
disease course leading to the amplification of genes such as BCL9,
MCL1, CKS1B, and ANP32E. These genes are either implicated
in the inhibition of apoptosis, enhancement of cell cycle, or
epigenetic modification (9, 10, 12, 25, 32–34).

With all the limitations due to the small size of our cohort and
thus limited statistical power, emergence of a large-scale genomic
alteration negatively influenced length of response of therapy
and potentially PFS and OS, although both did not reach
significance. It also led to an overall shorter PFS to each line
subsequent to the emergence of a new clone. This observation is
in line with previously reported results on clonal evolution
negatively influencing prognosis (35). We evaluated whether
emergence of a new clone could be correlated with laboratory
findings. LDH activity reached higher peaks after clonal
evolution, although the specific courses were quite
heterogeneous, reflecting that the disease might initially
respond to therapy, but then again relapse.

Altogether, we can show that large-scale genomic clonal
evolution is associated with an inferior disease course with
shorter response duration to subsequent new lines, possibly
shorter PFS and OS. It affects, at a high degree, chromosomes
1 and 17, which confer a negative prognosis already at initial
diagnosis. These results warrant additional studies with larger
groups treated more homogeneously for confirmation. For these
groups, collection of detailed information on progression, blood
parameters, and response to therapy during follow-up is required
in addition to analysis of genomic alterations. The number of
patients analyzed is a limitation of our study. Our goal was to use
an approach to follow clonal evolution, which is widely used in a
clinical setting. We screened, in our database, more than 600
patients and only found these patients, for whom we have
consecutive FISH data combined with a variety of clinical data.
The strength of our study is that we can connect clonal status
with standard laboratory parameters and clinical outcome. Most
clinical trials focus on the specific setting with follow-up to the
next line of treatment, but long-term data over the course of
different courses are not easily available. What we show is “real-
world data” regarding frequency of large-scale genomic
alterations and that clonal evolution is, as not surprising, really
heterogeneous with regard to its association with different
clinical parameters. Yet, the search for clonal large-scale
genomic alterations can actually be achieved also in an
outpatient setting. It would then require discussion with the
patient, in which additional therapeutic steps might be required
to counteract the effect of such variation.
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