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Preclinical models of
radiation-induced cardiac
toxicity: Potential mechanisms
and biomarkers

Alexandra D. Dreyfuss, Anastasia Velalopoulou,
Harris Avgousti , Brett I. Bell and Ioannis I. Verginadis*

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
Radiation therapy (RT) is an important modality in cancer treatment with >50%

of cancer patients undergoing RT for curative or palliative intent. In patients

with breast, lung, and esophageal cancer, as well as mediastinal malignancies,

incidental RT dose to heart or vascular structures has been linked to the

development of Radiation-Induced Heart Disease (RIHD) which manifests as

ischemic heart disease, cardiomyopathy, cardiac dysfunction, and heart failure.

Despite the remarkable progress in the delivery of radiotherapy treatment, off-

target cardiac toxicities are unavoidable. One of the best-studied pathological

consequences of incidental exposure of the heart to RT is collagen deposition

and fibrosis, leading to the development of radiation-induced myocardial

fibrosis (RIMF). However, the pathogenesis of RIMF is still largely unknown.

Moreover, there are no available clinical approaches to reverse RIMF once it

occurs and it continues to impair the quality of life of long-term cancer

survivors. Hence, there is an increasing need for more clinically relevant

preclinical models to elucidate the molecular and cellular mechanisms

involved in the development of RIMF. This review offers an insight into the

existing preclinical models to study RIHD and the suggested mechanisms of

RIMF, as well as available multi-modality treatments and outcomes. Moreover,

we summarize the valuable detection methods of RIHD/RIMF, and the clinical

use of sensitive radiographic and circulating biomarkers.
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Introduction

Current approaches to oncologic care rely heavily on

multidisciplinary therapies delivered concurrently, sequentially,

or in a response-adapted stepwise fashion. This strategy along

with the use of novel therapies have contributed to significant

increases in treatment response rates and long-term survival of

cancer patients, leading to a population of cancer survivors of

approximately 17 million in the United States alone, and 19.3

million new cancer diagnoses in 2020 worldwide (1, 2).

However, as cancer patients are overcoming their diagnoses at

increasingly convincing rates, they are also presenting clinicians

with a new set of challenges involving the management of

morbid and quality-of-life-limiting sequelae of their

treatments. In particular, treatment-related cardiovascular

mortality has become a major contributor to the global burden

of cardiovascular disease, motivating a paradigm shift in the way

we approach cardiovascular screening, risk stratification,

diagnosis, treatment, and surveillance in cancer patients.

Cancer therapy-induced cardiovascular toxicity can manifest

as a variety of clinical pathologies. The European Society of

Cardiology guidelines have broadly categorized cardiotoxicity

into several disease groups, including cardiomyopathy,

myocarditis, pericardial disease, arrhythmias, myocardial

ischemia, hypertension, vascular events, and valvular disease

(3). The large spectrum of cardiovascular pathologies that have

been observed is in part due to the large number of cardiotoxic

agents increasingly used in oncologic care, including

chemotherapies such as anthracyclines, targeted therapies such

as tyrosine kinase inhibitors, immunotherapies such as immune

checkpoint inhibitors, hormone therapies, and thoracic

radiotherapy. This clinical heterogeneity is also dependent on

multiple patient-specific factors, including age at therapy, sex,

baseline cardiovascular risk, and overall health comorbidities

(4). Moreover, throughout their disease course, many patients

are increasingly receiving more than one cardiotoxic agent,

further complicating the underlying disease mechanisms

involved in causative pathophysiology.

Radiation therapy is one treatment modality with dose-

dependent cardiotoxic potential (5–7). Radiation exploits a

therapeutic index between normal tissue and tumor cells,

causing differential cell death due to DNA damage and

associated free radical formation, immune cell infiltration, and

cytokine production. Despite vast improvements in radiation

technologies and treatment delivery, such as Intensity-

Modulated Radiotherapy (IMRT), Stereotactic Body

Radiotherapy (SBRT) and proton therapy, incidental dose

delivery to the heart is still a limiting factor in thoracic

radiation therapy (8, 9). A recent large retrospective study

reported that compared with non-irradiated patients, chest

radiation therapy patients have a 2% higher absolute risk of

cardiac morbidity and death at 5 years, and a 23% increased
Frontiers in Oncology 02
absolute risk at 20 years post-treatment (10). Furthermore,

several large studies have demonstrated significant

cardiovascular consequences of radiation therapy in breast

cancer, lung cancer, and mediastinal lymphoma patient

populations (10–13).

While recent research has provided significant insight, there

remains a critical knowledge gap in pathophysiologic

mechanisms of cardiovascular toxicity and optimal strategies

for risk stratification, monitoring, and treating patients with

cardiovascular dysfunction. This review describes the

mechanisms by which thoracic radiation can cause therapy-

induced myocardial fibrosis and discusses innovative preclinical

models for studying such pathophysiology. We include an

overview of the current landscape of radiographic and plasma

biomarkers for therapy-induced toxicity, the beneficial effects

and risks of multi-modality treatments and end with a

discussion of future directions for the field.
Preclinical models to study RIHD

Preclinical animal models of mice, rats, rabbits, dogs, pigs,

and non-human primates have long been used in studies of

RIHD (14–21). Favorable characteristics such as the low

maintenance and housing costs, reduced gestational times and

lifespan, as well as the convenience for genetic modifications and

selections have rendered the rodents an excellent model to

perform mechanistic studies.

Many manifestations of RIHD have been successfully

modeled in rodents yielding a wealth of information regarding

the molecular pathways that participate in the development of the

radiation-induced cardiotoxicity (22–29). Several genetically

engineered rodent models developed to be prone to cardiac

pathologies, such as atherosclerosis, have been studied following

radiation delivery (30–36). For instance, it has been demonstrated

that inflammatory and thrombotic responses are accelerated post

ionizing irradiation on atherosclerosis-prone ApoE(-/-) mice but

not on wildtype C57BL/6J mice (32, 37, 38). Moreover,

endothelial-specific knock-out mouse models of p53 and p21

have contributed to the delineation of the role of endothelial

cells in cardiac damage post-radiation (39, 40). Therefore, it is of

high importance the selection of the right rodent genetic

background to study any aspect of RIHD (41). In addition, Cre-

loxP technology has offered the opportunity to create more

pronounced or rapidly developed phenotypes of cardiac toxicity

(42–44). Cardiac radiotherapy has also benefitted from rodent

models of partial heart irradiation which aid in the identification

of molecular signaling pathways regulating the RIHD milieu (42,

45–47). However, rodent models pose some limitations such as

their phylogenetic distance from humans, and their physiological

responses to treatment schemes (48–50), thus there is an obvious

need for larger animal models of RIHD.
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Rabbits were introduced as another animal model to study

the RIHD to avoid the limitations experienced by the rodent

models. Due to several commonalities in cardiac physiology with

humans (51–53), rabbits serve as an excellent model to study

heart failure, ischemic heart disease, and electrophysiological

phenomena caused by radiation and as an alternative choice to

larger animals (51–55). Nevertheless, there are marked

differences in the physical size of the rabbit heart, the heart

rates, and body weight, and these facts ought to be taken into

consideration especially in studies of arrhythmia as a side effect

of radiotherapy (53, 56). The extensive use of rabbits in cardiac

radiation research since 1968 (New Zealand white rabbits) (57)

has resulted in a plethora of available transgenic rabbit models of

cardiovascular disease and rabbit-specific antibodies, facilitating

their extended use (53, 58–60).

On the contrary, significantly fewer canine models have been

chosen in heart radiation studies (16, 61–64) despite the fact that

canine models present many similarities on both the organ and

cellular levels with humans. Moreover, it has been demonstrated

that canine coronary circulation presents similarities to ischemic

hearts of elderly people (65–67). This can be attributed to the

fact that more strict regulations and regional approval

procedures may apply to the use of dogs as well as to the very

expensive housing and maintenance. Furthermore, another

obvious obstacle is the human-canine bond developed by the

society which provokes criticism for the canine studies (68–70).

Manifestations of RIHD are significantly common between

pigs and non-human primates with humans (65–67) but these

species have also been used by only a few groups as they carry

significantly higher costs than other models (19–21, 71).

Although the choice of species, strain, and genotype needs

extra attention, other parameters that need to be carefully

chosen when designing studies to mimic a clinical scenario of

RIHD include the animal age, size, and gender, as they can

greatly influence the experimental findings (72, 73). Detailed

reporting of these variables will allow for unbiased comparisons

between studies.
Radiation-induced myocardial
fibrosis

Radiation-induced myocardial fibrosis (RIMF) is considered

the final stage of RIHD (74–78) and is characterized by the excess

collagen deposition in the damaged cardiac tissue (79–81);

nevertheless, the molecular mechanisms remain unclear. RIMF

increases the stiffness of the myocardium and decreases the

systolic and diastolic functions, leading to the development of a

myocardial electrical physiological disorder, arrhythmias,

deficient heart function, or death (81). The etiology of the

myocardial stiffness (23, 82, 83) lies in the increased presence of

cytoplasmic actin stress fibers, on myofibroblasts producing
Frontiers in Oncology 03
collagen (84, 85) and on an activated inflammatory milieu (86,

87). Diverse mechanisms link RIMF with downstream

pathologies, such as arrhythmia, cardiomyopathy, and

myocardial ischemia. Fibrosis affecting the heart’s conduction

system or cardiomyocyte conduction could interfere with the

transmission of electrophysiological signals, causing arrhythmias

like AV-nodal bradycardia or heart block (88). Similarly,

microvascular damage may result in ischemia affecting these

systems to cause these conduction abnormalities. Such

microvascular damage is also mechanistically linked to

cardiomyopathy following radiotherapy. The reduction of

capillaries supplying cardiomyocytes results in hypoxia and

death of myocardial tissue with progressive fibrosis. This

reduces ejection fraction and increases left ventricular end-

diastolic volume. One study of patients with left-sided breast

cancer associated Tc-99m sestamibi perfusion deficits with wall

motion abnormalities after radiation (89).

The induction of oxidative stress (OS) and the triggering of

an early pro-inflammatory environment by irradiation are

considered major factors contributing to the initiation and

development of RIMF. The inflammatory cascade is initiated

by the vascular injury and endothelial dysfunction at

approximately six hours post-irradiation (90, 91), which is

followed by neutrophil adherence to the endothelium and

migration to the damaged heart (92, 93). Various cytokines

and growth factors, including Transforming Growth Factor b
(TGF-b) (94–96), Tumor Necrosis Factor a (TNF-a) (97–99),
Interleukin-1 (IL-1) (100, 101), Interleukin-11 (IL-11) (102–

104), Connective Tissue Growth Factor (CTGF) (105), Platelet-

derived Growth Factors (PDGFs) (106, 107), Vascular

Endothelial Growth Factor (VEGF) and Fibroblast Growth

Factor (FGF) (108, 109) flood the damaged heart a few hours

after irradiation resulting in higher numbers of infiltrated

neutrophils and lymphocytes (110). Additionally, monocytes

differentiate into the M2 subtype of macrophages to start

secreting TGF-b. In turn, TGF-b differentiates the resident

fibroblasts and bone marrow progenitors (111) into

myofibroblasts and this event is considered a hallmark of

RIHD-related fibrosis (74, 112–114). Subsequently, activated

myofibroblasts intensify the synthesis of extracellular matrix

(ECM) which consists of a complex combination of collagens,

glycoproteins, proteoglycans and matricellular proteins (109,

115). The excessive synthesis of ECM is accompanied by the

increased expression of integrins, the tissue inhibitors of matrix

metalloproteinases (MMP) (109, 112, 115). Also, the decreased

cardiac contraction which has been associated with the

development of arrhythmias and mortality can be triggered by

the damage to the mechano-electric coupling of the

cardiomyocytes caused by the excess ECM. Moreover,

deprivation of oxygen and nutrients due to inflammation and

fibrosis can further aggravate the adverse cardiac remodeling

(116) and impair elasticity and distensibility, promoting ejection

fraction and cardiac failure (110). Besides the inflammatory
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pathways, the proto-oncogenes c-Jun and c-Myc may contribute

to the emergence of late fibrosis (74, 117). In addition to the

inflammatory signaling, DNA damage response, chronic

oxidative stress, chronic hypoxia, epigenetic regulation, and

telomere extension have also been inculpated in the radiation-

induced fibrosis and the related heart pathologies (74, 118).

Another potential mechanism is that the radiation-induced

DNA damage which cannot be efficiently repaired in the

cardiac tissue (119) can eventually upregulate BAX and

downregulate BCL2 in cardiomyocytes, contributing to

apoptosis and subsequent development of fibrosis (120, 121)

and the progression of the RIHD (39). The above-described

mechanisms of radiation-induced myocardial fibrosis are

depicted in Figure 1.
Detection methods for RIHD/RIMF
and biomarkers

The current paradigm for cardiovascular care of oncology

patients involves a number of steps once a cancer diagnosis is

established. Standard practice involves baseline cardiovascular

risk assessment based on medical and family history, age,

obesity, smoking, and diabetes, cardiotoxicity monitoring

during treatment, and long-term cardiovascular surveillance

most commonly with serial echocardiography. However,

cardiovascular disease is often diagnosed when damage is

irreversible and is typically treated in a non-targeted fashion

with routine cardioprotective medications such as beta-blockers

or statins (122, 123). The identification and use of sensitive

radiographic and circulating biomarkers to risk stratify or

diagnose cardiotoxicity before tissue damage becomes

irreversible is therefore an active area of research, with an

overarching goal of informing more targeted and effective

therapeutic intervention (Figure 2).
Echocardiography

2D transthoracic echocardiography has been the most

widely used imaging modality for screening baseline

cardiovascular risk and for diagnosing cardiac injury, largely

due to its widespread availability, non-invasiveness, cost-

effectiveness, and validation in diagnosing non-oncologic

cardiac disease. Clinicians have relied heavily on >10%

decreases in left ventricular ejection fraction (LVEF) to

diagnose myocardial dysfunction, and many clinical studies

and national guidel ines include LVEF changes by

echocardiography as a primary or secondary outcome measure

(124, 125). Still, 2D echocardiography-derived LVEF has its

limitations, including operator variability and nontrivial false-
Frontiers in Oncology 04
negative rates. The use of more advanced techniques such as 3D

echocardiography or ultrasound-based contrast agents has

therefore been proposed as appealing alternatives due to their

improved image acquisition.

Still, it is now widely accepted that measuring LVEF alone

does not typically provide a sufficient assessment of a patient’s

overall cardiac function. LVEF provides limited insight into

underlying pathophysiology, for example, in discerning whether

decreased LVEF is due to intrinsic myocardial injury or vascular

damage-causing ischemia. Additionally, even though recovery of
FIGURE 1

Proposed mechanisms of radiation-induced myocardial fibrosis
(RIMF). Ionizing radiation damages epithelial and endothelial
(shown here; red- and green-colored cells are damaged and
healthy cells, respectively) cells which in turn induce a
coordinated cellular response that also involves the secretion
of pro-fibrotic cytokines, such as Transforming Growth Factor
b (TGF-b). Moreover, the damaged endothelial cells secrete
inflammatory chemokines to recruit neutrophils and
macrophages to the injured sites, which in turn release pro-
fibrotic cytokines like Platelet-Derived Growth Factor (PDGF),
basic Fibroblast Growth Factor (FGF), TGF-b, etc., leading to a
chronic inflammatory environment. Additionally, radiation
causes perturbations of the cellular homeostasis by the
excessive production of reactive oxygen and nitrogen species
(ROS and RNS), which can also lead to the activation of TGF-b
through the dissociation of the Latency Associated Peptide
(LAP) from the active mature form of TGF-b. Another potential
mechanism is that the damaged vasculature and the
uncontrolled tissue remodeling can initiate the TGF-b signaling
pathway through the ROS/RNS imbalance or the up-regulation
of the expression of Hypoxia-Inducible Factor 1a (HIF-1a). The
activated TGF-b signaling pathway leads to the differentiation
and activation of the residual and migrated fibroblasts,
characterized by the increased secretion of extracellular matrix
(ECM) and collagen deposition.
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LVEF is possible if a diagnosis of the cardiac injury is made early

enough, decreases in LVEF are often only detectable once tissue

injury is irreparable. As such, LVEF measurements have been

increasingly analyzed in conjunction with additional radiographic

markers of cardiac mechanics, such as myocardial strain, torsion,

and vascular stiffness (126). The global longitudinal strain has

emerged as an attractive radiographic biomarker with higher

sensitivity in diagnosing subclinical cardiotoxicity, largely due to

the fact that changes in strain are usually seen prior to changes in

LVEF (127, 128). The ongoing SUCCOUR study is prospectively

investigating the initiation of cardioprotective medications

following a decrease in global longitudinal strain compared to a

decrease in LVEF (129). However, such biomarkers often require

more advanced imaging techniques such as speckle-tracking

echocardiography (130), which is not always routinely available,

and further validation in large studies will be required prior to

widespread implementation in the clinic.
Cardiac magnetic resonance imaging

Cardiacmagnetic resonance imaging (CMR) is a useful imaging

modality that has the potential to address some of the limitations of

echocardiography. For one, the high topographic resolution and
Frontiers in Oncology 05
reproducibility of CMR allows not only for sensitive diagnosis but

also aids in phenotyping underlying pathology while sparing

patients from repeated radiation exposure. Both T1 and T2

sequences that exploit differential water content and exchange of

healthy and diseased cardiac tissue have been widely validated in

non-oncologic populations. Changes in tissue structure are easily

detectable with increases in T1 and T2, particularly for edema,

inflammation, and fibrosis, all of which have been implicated in

cancer therapy-related cardiac disease.

CMR also offers a mild but real improvement in measuring

myocardial strain, and several studies have reported a decrease

in myocardial strain measurements after anthracyclines (131–

133). Following radiation therapy, several studies have reported

changes in LVEF and left ventricular mass on CMR just 6

months after treatment (134, 135). Several “tagging”

sequences, such as harmonic phase (HARP) or displacement

encoding (DENSE), have also demonstrated utility in measuring

myocardial movement during the cardiac cycle, which can detect

subclinical cardiotoxicity early. Nevertheless, CMR also has its

disadvantages, including high cost, long image-acquisition time,

and limited availability. Until these challenges can be addressed,

the use of CMR in cardio-oncologic populations will likely

remain limited to those in whom echocardiographic

assessments are of poor quality or inconclusive.
FIGURE 2

Radiation-induced cardiovascular toxicity can manifest as a variety of clinical pathologies. Although the implementation of technological
improvements to the radiotherapy (RT) treatment, has led to more precise targeting and has allowed modest increases in RT dose to the tumor,
incidental RT to the heart and development of RIHD is still unavoidable. Over the past decades, numerous methods have been developed for
cancer therapy-related cardiovascular disease screening and diagnosis, and more particularly for diagnosing radiation-induced injury. However,
cardiovascular disease is often diagnosed when damage is irreversible thus the identification and use of sensitive radiographic and circulating
biomarkers to risk stratify or diagnose cardiotoxicity are urgently needed. 2D STE, Two-Dimensional Speckle Tracking Echocardiography; CT,
Computed Tomography; CMR, Cardiac Magnetic Resonance imaging; SPECT, Single Photon Emission Computerized Echocardiography; PET,
Positron Emission Tomography; PlGF, Placenta Growth Factor; GDF-15, Growth Differentiation Factor-15; sFlt-1, soluble fms-like tyrosine kinase
receptor-1; gal-3, galectin-3; ANP, Atrial Natriuretic Peptide; BNP and NT-proBNP, Brain Natriuretic Peptide and its amino-terminal component;
IL-1, interleukin-1; IL-6, interleukin-6, TNF-a, Tumor Necrosis Factor-alpha; GPBB, Glycogen Phosphorylase isoenzyme BB; H-FABP, Heart-type
Fatty Acid-Binding Protein; CRP, C-Reactive Protein; MPO, Myeloperoxidase.
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Nuclear imaging

While echocardiography and CMR have been the most

frequently used imaging modalities for cancer therapy-related

cardiovascular disease screening and diagnosis, the role of

nuclear imaging has received increasing interest, particularly for

diagnosing radiation-induced injury. Recent research has

demonstrated that radiation-induced cardiovascular damage is

driven at least in large part by inflammatory cell activation and

plaque formation along with direct vascular cell damage. The

most basic consequence of these events is decreased coronary

circulation and myocardial perfusion deficits. Single-photon

emission computerized echocardiography (SPECT) with

99mTc-sestamibi or 99mTc-tetrofosmin is a widely recognized

imaging modality for the detection of myocardial perfusion

deficits secondary to myocardial fibrosis and/or endothelial cell

dysfunction. To date, multiple studies have investigated the use of

SPECT imaging in thoracic radiation patients and have found

convincing associations between perfusion deficits and volume

and location of the irradiated field, supporting a volume and dose-

dependent relationship between radiation and cardiovascular

damage (136–140). However, SPECT imaging is limited by its

relatively low spatial resolution and can therefore fail to reveal

microvascular dysfunction or perfusion deficits in less easily

detectable locations. Additionally, SPECT involves radiation

exposure and can be relatively time-consuming for patients due

to the long half-life of SPECT isotopes.

Positron emission tomography (PET) imaging for cardiac

disease is another imaging modality that has been increasingly

implemented, with the potential to identify a variety of distinct

cardiac pathologies depending on the radiotracer used (141,

142). For example, 18F-fluorodeoxyglucose (18F-FDG) is a well-

known marker of inflammation in the body, and in the case of

cardiac PET, 18F-FDG can identify inflammation in the cardiac

vasculature which often precedes atherosclerotic plaque

progression and rupture (143, 144). Patient preparation for

cardiac PET does involve a fasting period of 12-18 hours with

or without a diet low in carbohydrates for 12-24 hours to

suppress basal myocardial glucose update. Nevertheless, a

major advantage of FDG-PET imaging is its ability to detect

early metabolic changes in the myocardium that occur prior to

decreases in LVEF.

It is also worth mentioning a number of novel molecular

tracers that have become more widely available in clinical care in

recent years. For example, tracers such as Rubidium-82 and

[13N]Ammonia are particularly useful for measuring

myocardial blood flow in the microvasculature, offering higher

resolution than SPECT (145). Additionally, 99mTc-labeled

annexin V, a plasma protein that can detect cellular apoptosis

in unstable plaques, has already been used to reveal dose-

dependent cell death prior to changes in echocardiography

(146). Investigation in large cohorts is warranted and will be
Frontiers in Oncology 06
necessary to establish the role of these radiotracers in diagnosing

and monitoring subclinical cardiotoxicity in cancer patients.
Plasma biomarkers

Identifying and monitoring cardiovascular toxicity during

and after treatment with blood-based biomarkers is an attractive

clinical approach that can complement radiographic

assessments. Circulating biomarkers are typically reproducible

and easily obtainable measures that do not rely on operator skill.

Additionally, circulating biomarkers have the added benefit of

reflecting underlying disease pathophysiology. All biomarkers

that mentioned in this section and are related to radiation-

induced heart disease as well as the putative biomarkers of

cardiac toxicity associated with cancer treatment are

summarized in Tables 1 and 2, respectively.

Cardiac troponins and natriuretic peptides have been at the

center of cardiovascular disease diagnosis both in oncologic and

non-oncologic patient populations. Similar to well-known

markers of myocardial stress and heart failure, increases in

troponin and B-type natriuretic peptide (BNP) have been used

to signal cardiac injury at various stages in a patient’s cancer

treatment, including in baseline risk assessment, monitoring

during therapy, and surveillance after therapy (158, 159). To

date, multiple studies have evaluated increases in troponin and

BNP following cardiotoxic therapy administration with some

promising but mixed results (148–155, 160, 161). A recent meta-

analysis of 61 trials including 5691 cancer patients reported that

anticancer therapy was associated with increases in the levels of

troponin was in turn associated with a higher risk for cardiac

dysfunction (160). Nevertheless, mixed study results have

highlighted the need for more sensitive and specific

biochemical markers of cardiovascular damage (162).

Several novel circulating biomarkers that have been proposed

include markers of inflammation, oxidative stress, fibrosis,

angiogenesis, and vascular remodeling, including cytokines,

interleukins, myeloperoxidase, C-reactive protein, galectin-3,

placental growth factor, and growth differentiation factor-15

(Figure 2) (157, 163). For example, one study involving 54

women with human epidermal growth factor receptor 2

(HER2)-positive early-stage breast cancer treated with

trastuzumab showed that peak levels of high-sensitivity C-

reactive protein (hs-CRP) were detected after a median of 78

days before decreases in LVEF were observed (156). Moreover,

biomarkers analysis in a multicenter study of 78 patients with

breast cancer demonstrated early increases in myeloperoxidase

and Troponin I (TnI) levels following treatment with doxorubicin

and trastuzumab (155). Additionally, microRNAs which mediate

cardiac hypertrophy and fibrosis, and genome-wide association

studies represent relatively untapped resources in the field of

cardio-oncology (147, 164–167). Their role in diagnosing
frontiersin.org

https://doi.org/10.3389/fonc.2022.920867
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Summary of biomarkers studied in radiation-induced heart disease in humans.

Reference Tumor Treatment Mean Detection Time Post- Tn BNP NT
pro-
BNP

CKMB Gal-
3

MPO PIGF GDF-
15

c-
miRNA

Notes

n.d. – n.d. – – ↑ ↑ – – Changes in biomarkers were not associated
with echocardiographic evidence of
toxicity.

n.d. – n.d. – – ↑ ↑ – –

n.d. – n.d. – – n.d. n.d. – –

– – – – – – – – ↑ High pre-treatment miRNA signature
predicts toxicity.

– ↑ – – – – – – – BNP normalized to pre-treatment, but not
raw BNP, correlates with toxicity.

n.d. – n.d. – n.d. – – n.d. –

st- n.d. ↑ – – – – – – –

n.d. – ↑ – – – – – –

nt ↑ ↑ – – – – – – –

n.d. – n.d. n.d. – – – – –

– ↑ – – – – – – –

pro-BNP, N-terminal pro-BNP; CKMB, Creatine Kinase-MB; Gal-3, galectin-3; MPO, myeloperoxidase. PlGF, Placental growth factor. GDF-15,
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Type Heart RT
Dose

Treatment

(125) Lung Cancer Radiotherapy 8.4 Gy Median of 20 days post-RT

Lymphoma 6.8 Gy

Breast Cancer 1.3 Gy

(147) Lung Cancer Radiotherapy or
Chemoradiation

13.7 Gy Pre-treatment

(148) Breast Cancer Radiotherapy 2.39 Gy 1, 6, 12 months post-RT

(149) Breast Cancer Radiotherapy 9.4 Gy First treatment, mid-treatment
last treatment, and 6 months
post-RT
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26.5 Gy Last day of RT, 1-2 months po
RT
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end of treatment.

(154) Breast Cancer Chemoradiation – Median of 6.5 years post-
treatment

RT, Radiotherapy; n.d., no difference; -, not assessed; Tn, Troponin; BNP, B-type natriuretic peptide; NT
Growth/differentiation factor-15.
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TABLE 2 Summary of putative markers of cardiac toxicity associated with cancer treatment.

Reference Tumor Treatment Detection Time Post-
Treatment

Tn BNP NT
pro-
BNP

CKMB Gal-
3

MPO PIGF GDF-
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c-
miRNA

CRP s-
Flt1
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FABP

GPBB Notes

ths ↑ – n.d. – n.d. ↑ ↑ ↑ – ↑ ↑ – – Only TnI and MPO correlated
with cardiotoxicity risk.

th intervals – – – – – – – – – ↑ – – – Maximum CRP correlates with
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rs after 1st dose (H-
and after last dose

– ↑ – – – – – – – – – ↑ – Early H-FABP correlated with late
BNP and reduced ejection
fraction.

n.d. – – n.d. – – – – – – – n.d. ↑ GPBB increase correlated with LV
diastolic dysfunction.
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cardiovascular dysfunction remains to be determined in this

patient population.
Preclinical endpoints for RIHD

Preclinical studies benefit from many of the same techniques

used to assess cardiovascular dysfunction in patients, but

additionally see more frequent use of the gold standard for

detecting RIMF: histologic analysis of cardiac tissue.

Colorimetric stains, such as Masson’s trichrome (47) and

picrosirius red (168), have been used to detect and quantify

extracellular matrix components in preclinical models of RIHD.

Similarly, more advanced microscopy techniques like second-

harmonic generation (169) or atomic force microscopy (170)

have been used to assess fibrillar collagen structure and tissue

stiffness in other cardiovascular diseases. These techniques may

provide insight into the supramolecular assembly of collagen

and how it limits contractility in RIHD. The spatial dimension of

cardiac histology allows for the assessment of cell-cell

interactions, immune cell infiltration, and patterns of gene

expression. Especially with the advent of novel spatial

transcriptomic (171), tissue-based analysis can provide

additional insight into the genetic programs induced in and

around regions of RIMF.

Meanwhile, transthoracic echocardiography (TTE), CMR, or

nuclear medicine studies allows for functional analysis in mouse

models of RIHD. Small animal TTE platforms may be utilized to

assess LVEF, ventricular wall motion abnormalities, valvular

disease, and other pathologies in rodent RIHD studies (172),

while clinical ultrasound machines are sufficient for larger

animal studies. Cardiac MRI using high-resolution small

animal MRI scanners offer similar endpoints as TTE for use in

studies of RIHD (173). Similarly, Tc-99m-Sestamibi SPECT has

been utilized to detect perfusion deficits in studies of RIHD (47)

and myocardial infarction (174). Furthermore, animal models

excel in biomarker detection because serial blood sampling for

analysis of serum proteins may be correlated with imaging and/

or histologic findings in the same animal.
Synergistic cardiotoxicities with
chemoradiation or
radioimmunotherapy

Multiple studies have shown the clinical and therapeutic

implications of combining radiotherapy with established

chemotherapy and/or immunotherapy in the treatment of

solid tumors (175–177). However, these potent and intense

anti-tumor combined therapies have been associated with

considerable tissue toxicities, most notably cardiotoxicities,

which may adversely affect the quality associated with the
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improved outcome. These toxicities have been well

characterized and remain a focus area for improving the

therapeutic index of thoracic tumor treatment. Therefore,

oncologists and cardiologists are called to design a

multimodality treatment approach by integrating the latest

clinical findings in cardiotoxicity, to achieve the best overall

care for cancer patients undergoing chemoradiotherapy and/

or immunoradiotherapy.
Chemotherapy and radiation

The use of concurrent chemotherapy and radiotherapy

(cCRT) against a variety of solid tumors, such as esophageal,

breast, and non-small cell lung cancer (NSCLC) has been a

promising strategy for the synergistic enhancement of local and

distal tumor control, which in many cases has been translated

into survival benefits (178–182). Moreover, numerous

preclinical studies have also described that the combination of

chemotherapeutic agents with radiotherapy could be a

promising strategy for synergistic enhancement of treatment

efficacy (183, 184). However, this multi-modality treatment has

also been shown to increase risks for adverse cardiac events such

as ischemic heart disease, myocardial infarction, heart failure,

and cardiac dysfunction (185–187). These side effects can vary

among individuals and are often correlated with the cumulative

dose of the treatment.

In a retrospective analysis of a large cohort of older patients

with NSCLC, patients who received radiotherapy or

chemoradiotherapy treatment in the left lung had a

significantly increased risk of ischemic heart disease compared

to those who received either radiation-only (HR = 1.18, 95% CI

1.05–1.34) or chemoradiation (HR = 1.29, 95% CI 1.09–1.52)

treatment in the right lung (187). Similar findings have been

reported in other studies showing that radiotherapy to the left

chest has been linked to a higher risk of cardiac toxicity and

subsequent risk of developing chronic cardiac disorders

compared to the right chest radiotherapy (188–190).

Additionally, in another retrospective analysis of NSCLC

patients, there was an increased risk of major adverse cardiac

events (cardiac death, unstable angina, myocardial infarction,

heart failure hospitalization, or coronary bypass grafting) in

patients receiving thoracic chemoradiotherapy (adjusted hazard

ratio: 1.05/Gy) (191). Chemoradiotherapy is also an effective

treatment in the management of superficial esophageal cancer.

In a retrospective analysis of 80 patients with submucosal

invasive non-metastatic esophageal cancer treated with 5-

fluorouracil or cisplatin and 60 Gy in 30 fractions, 13 patients

developed severe cardiac events and the 5-year cumulative

cardiac event occurrence rate was 16.3% (192). In the same

study, they also showed that the level of the heart’s exposure to

radiation was a major prognostic factor for these occurrences.

Patients exposed to radiation with more than 280 mL of V5000
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cGy had a 16.8 times more likely chance of developing these

cardiac events than those who received a smaller volume (192).

In a prospective study of patients with non-metastatic

esophageal cancer, the authors showed that 30% of the

patients developed myocardial fibrosis and/or reversible

ischemia as early as 3 months following neoadjuvant

chemoradiation (193). Furthermore, several large-scale studies

have demonstrated similar findings that chemoradiotherapy

increases the risk of cardiotoxicity in lymphoma (194, 195)

and esophageal cancer treatment (196) as compared to

radiotherapy alone. The design of comprehensive treatment

strategies will allow patients to receive potentially curative

benefits from multi-modality treatments and minimize the

cardiac-related toxicities.
Immunotherapy and radiation

The discovery of the immune-checkpoint inhibitors

[(ipilimumab, an anti-cytotoxic T lymphocyte-associated protein

4 (CTLA-4) antibody, programmed death 1 (PD-1) and

programmed death-l igand 1 (PD-L1)] , has placed

immunotherapy to the front-line of cancer treatment, especially

for advanced NSCLC (197, 198). Furthermore, in some types of

cancer, immunotherapy has proven more effective (as a

monotherapy) than the standard care treatment. This success also

encouraged researchers to combine immunotherapy with other

conventional therapies, i.e., radiotherapy, to improve the

effectiveness. As in chemoradiotherapy, the combination of

immunotherapy with radiotherapy has shown synergistic effects

in both local and systemic tumor control (199–201), possibly due to

the synergistic immune activation. For instance, in a phase III

randomized-controlled, double-blinded trial with stage III non-

small-cell lung cancer patients undergoing chemoradiotherapy, the

addition of durvalumab (anti-PDL1 antibody) showed a significant

increase in progression-free survival (198). Interestingly, an

abscopal effect has also been reported post combined

radiotherapy with immune checkpoint inhibitors (202, 203).

Moreover, multiple preclinical studies have also demonstrated

synergistic effects of combined immunotherapy with radiotherapy

on treatment efficacy (202, 204–206). Although these studies

support the beneficial effects of immunoradiotherapy in tumor

control mainly through increased immune-mediated antitumor

activity, they also resulted in increased rates of cumulative

cardiotoxicity (207). In a preclinical study by Du et al., the

authors reported radiation-induced cardiac dysfunction and acute

fibrosis which was exacerbated by the concurrent treatment with

PD-1 blockade (208). In another in vivo study, the combination of

thoracic irradiation with anti-PD-1 antibody significantly decreased

the survival of the C57Bl/6 mice compared to radiation alone and

that was positively correlated with the T cell infiltration into the

lung and heart tissues (209).
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Although the clinical use of immune checkpoint inhibitors

in cancer treatment is exponentially increased in the last decade,

the pathology and treatment of the immune-related toxicities are

complex and still not well known. Therefore, more screening

procedures and extensive research on the pathophysiology of

cardiotoxicity are required. Additionally, the optimization of the

radiation treatment planning (dose, timing, etc.) and the

identification of sensitive biomarkers of cardiotoxicity will

give further access to the promising treatment strategy

of immunoradiotherapy.
Targeted therapies and radiation

Similar to immunotherapy, targeted therapies are now

commonly used in the comprehensive care of cancer patients

who also often receive chemotherapy or radiation. However,

there is little data regarding the combined impact of various

targeted therapies and radiotherapy on cardiotoxicity. A few

studies have assessed the combination of radiotherapy and

Trastuzumab, a monoclonal antibody used in the treatment of

HER2 receptor positive breast cancer. Three studies found no

increase in acute cardiotoxicity in breast cancer patients treated

with chemoradiotherapy and trastuzumab compared to

chemoradiation alone, suggesting this combination therapy is

clinically feasible (210–212). Yet, these studies are potentially

confounded by the cardiotoxicit ies associated with

anthracycline-containing chemotherapy regimens which

limits our understanding of the toxicities induced by the

combination of radiotherapy and trastuzumab. A clinical trial

which assessed left-sided radiotherapy with concurrent

trastuzumab compared to radiotherapy alone found a non-

significant increase in the incidence of LVEF dysfunction (7.8%

vs 4.1%, respectively), though treatment was generally well-

tolerated. They also noted that the sequencing of RT and

trastuzumab was an independent risk factor for the

development of cardiotoxicity (213). This suggests that

further study is warranted to understand the adverse effects

of this combination. More generally, potential additive or

synergistic toxicities of other targeted therapies used in

combination with radiotherapy (and the associated incidental

heart irradiation) should be investigated in the context of

RIHD due to the limited clinical datasets available. For

example, tyrosine kinase inhibitors, such as Osimertinib

which is used in lung cancer, or anti-angiogenic agents, like

bevacizumab, have been found to increase the risk of adverse

events in patients receiving thoracic radiotherapy (214, 215).

However, cardiotoxicity has not been specifically investigated

in these settings. This is an area where the use of well-

controlled preclinical models may prove useful, given how

many potential combinations exist between targeted

therapies and thoracic radiotherapy.
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Conclusions

Despite the advances in the delivery of thoracic radiation

therapy, radiation-induced heart disease constitutes a growing

clinical issue that severely compromises the quality of life of

cancer survivors treated with thoracic RT alone or in

combinat ion with genotoxic chemotherapy or/and

immunotherapy. Currently, as the multi-modality treatments

have been considered successful approaches for cancer therapy,

we need to reconsider the potential synergistic cardiac-related

adverse effects. Although there is considerable progress in

delineating the molecular and pathophysiological mechanisms

behind the RIHD, the underlying development of RIHD still

remains not thoroughly understood, therefore, new strategies

need to be developed that can ameliorate or even reverse the

course of RIHD. Therefore, there is an increasing need for more

clinically relevant preclinical models to identify biomarkers and

targetable mediators of RIHD which will lead to the

development of prognostic screening techniques and new

treatment options.
Methods

Methods: A literature review of publications describing the

preclinical models of RIHD/RIMF, the radiographic and

circulating biomarkers, synergistic heart toxicities seen in

radiotherapy combined with chemo/immunotherapy was

performed. Specific databases utilized included PubMed and

clinicaltrials.gov. Additionally, specific keywords have been used

such as “Radiation-Induced heart disease AND rodents”,

“Radiation-Induced heart disease AND rabbits”, “Radiation-

Induced heart disease AND canine”, “Radiation-Induced heart

disease AND pigs”, “Radiation-Induced heart disease AND non-

human primates”, “Radiation-Induced myocardial fibrosis AND

mechanisms AND rodents”, “Radiation-Induced myocardial

fibrosis AND factors”, “Radiation-Induced myocardial fibrosis

AND biomarkers”, “Radiation-Induced myocardial fibrosis

AND radiographic”, “Radiation-Induced heart disease AND
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preclinical endpoints”, “cardiac toxicity AND radiation AND

chemotherapy”, “cardiac toxicity AND radiation AND

immunotherapy”, and other closely related terms.
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