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Soft tissue sarcomas (STSs) are relatively rare heterogeneous solid tumors of the
mesenchymal origin. They account for approximately 1% of all malignant tumors in
adults and have more than 70 histological subtypes. Consequently, the rarity and
heterogeneity of STSs make their diagnosis and treatment very challenging.
Nanotechnology has attracted increasing attention from researchers due to the unique
physicochemical and biological properties of nanomaterials with potential medical
applications as nanoprobes, drug delivery systems, photosensitizers, radioenhancers,
antitumor agents, and their combinations for cancer diagnosis and treatment. This review
discusses the progress made in the use of nanotechnology for the diagnosis and
treatment of STSs and highlights future prospects of the STS multimodality therapy.

Keywords: soft tissue sarcoma, nanotechnology, cancer diagnosis, drug delivery, photodynamic therapy,
radiotherapy
INTRODUCTION

Soft tissue sarcomas (STSs) are rare and heterogeneous tumors representing only 1% of all adult
malignancies and encompassing more than 70 histological subtypes with variable clinical behavior
(1). It is estimated that in 2022, 13,190 new STS cases will be diagnosed in the USA, causing
approximately 5,130 deaths (2). These malignant mesenchymal tumors are important and often
overlooked causes of death in young patients. According to the American Cancer Society, the
average overall five-year STS survival rate is approximately 65% (2). Prognostic prediction accuracy
strongly depends on the tumor subtype, size, grade, stage, and response to treatment as well as
demographic factors. However, the lack of known risk factors and appropriate preoperative
preparation may delay STS diagnosis (3). Thus, referrals often originate from the results of the
so-called “whoops” procedures (4). Currently, histologic grade is recognized to be the most
important prognostic factor predictive of distant metastasis and disease-specific survival rate (5).
Abbreviation: STS(s), soft tissue sarcoma(s); MRI, magnetic resonance imaging; UPS, undifferentiated pleomorphic sarcoma;
TKIs, tyrosine kinase inhibitors; GISTs, gastrointestinal stromal tumors; TAPs, tumor-associated proteins; DDSs, drug delivery
systems; GLUTs, glucose transporters; LPR, lipid protamine-siRNA; ARMS, alveolar rhabdomyosarcoma; EPR, enhanced
permeability and retention; PTX, paclitaxel; PDT, photodynamic therapy; ROS, reactive oxygen speciesp; PS, photosensitizer;
IR, ionizing radiation.
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The traditional treatment of patients diagnosed with STS
includes surgical resection, radiotherapy, chemotherapy,
photodynamic therapy, and their combinations, which are
slowly evolving (6). Therefore, it is necessary to investigate
effective methods of improving the efficiency of STS diagnosis
and treatment.

Nanomaterial technology has attracted significant attention
from researchers over the years and tremendous progress has
been made in this field. The unique physical and functional
properties of nanomaterials make them potentially suitable for
the management of many diseases, including cancer (7).
Therefore, nanomaterials are widely used for cancer diagnosis,
monitoring, imaging, and treatment. For example, various
nanovehicles for the efficient delivery of drugs, such as
liposomes, micelles, dendrimers, quantum dots, and carbon
nanotubes, have been developed (8, 9). Additionally,
nanoparticles with certain sizes can convert light into heat,
which causes cellular damage during photothermal therapy.
Nanoparticles with high electron density and well-defined size
and shape are highly efficient at absorbing radiation and,
therefore, can be used as radioenhancers in radiotherapy (10).
Moreover, a direct antitumor effect was observed for certain
nanoparticles (11). Considerable progress has been made in the
application of nanotechnology for STS diagnosis and treatment.
This review describes the latest developments in the use of
nanomaterials for STS diagnosis and treatment, highlighting
the future prospects of STS multimodality therapy.
DIAGNOSIS AND SUBTYPES OF STSs

STSs tends to form as a large, painless, and unexplained mass
with a consistently increasing volume, which is the best
individual indicator of a high malignancy risk (12). Therefore,
patients suspected of having STS (especially those having
superficial lesions with sizes greater than 5 cm) should initially
undergo an ultrasound examination, which is cost-effective and
has a high negative predictive value for soft tissue lumps (13).
Magnetic resonance imaging (MRI) has a very high negative
predictive value in distinguishing lipomatous tumors (14) and is
helpful during surgical and radiotherapy planning. Contrast-
enhanced computed tomography is an alternative imaging
modality for patients with contraindications to MRI, which
plays an important role in the evaluation of lungs for
metastatic sarcomas. Moreover, core needle biopsy provides a
basis for definitive tissue diagnosis, which is critical for cases, in
which neoadjuvant therapy is administered (15). Molecular
genetic testing plays an increasingly important role in the
classification of STSs (16, 17). Therefore, proper sarcoma
diagnostics requires a multidisciplinary approach with the
participation of an expert team of pathologists, radiologists,
medical oncologists, molecular biologists, and surgical
oncologists (18).

Most STSs are classified according to their tissue origin and
differentiation characteristics. Some of them are named based on
their histological patterns (e.g., soft pulmonary alveolar sarcoma
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and epithelioid sarcoma). Unfortunately, STSs have over 70
histological subtypes (1, 19). Among those, the three most
common histologic subtypes of STSs in adults include
undifferentiated pleomorphic sarcoma (UPS), liposarcoma, and
leiomyosarcoma. Histological diagnosis should be based on the
2020 World Health Organization classification of soft tissues and
bone tumors (1). The grading system proposed by the French
Federation of Cancer Centers Sarcoma Group is most widely
used due to its high reproducibility and precise definitions (20,
21). Unlike other cancers, STSs have a high prognostic value
according to the American Joint Committee on Cancer TNM
staging system owing to the inclusion of histological grading. In
summary, the rarity and heterogeneity of STSs make its
diagnostic a very complex and difficult process.
MANAGEMENT OF STSs

Owing to the rarity and heterogeneity of STSs, patients with STSs
should be referred to specialized sarcoma centers for curing or
palliative care depending on the STS grade (18, 22). First, radical
surgical resection is the cornerstone of the treatment of primary
STSs. Notably, an adequate preoperative workup, including
advanced imaging studies and diagnostic biopsy, should be
performed to eliminate the risk of incomplete STS excision (3).
In other words, the key principles of surgery include oncological
radicality and function sparing. For extremity and truncal STSs,
at least 1–2 cm of the healthy tissue around the tumor must be
removed. Moreover, for the highly invasive histological subtypes
such as locally invasive myxofibrosarcoma, the resection margin
should be at least 3 cm (23). However, amputation is a better
choice when the tumor involves the major vessels and nerves in
the limbs. Fortunately, due to the progress in neoadjuvant
treatment, the rate of limb salvage is constantly increasing
(24). Resections were classified into R0 (with microscopically
negative margins), R1 (with microscopically positive margins),
and R2 (with macroscopically positive margins) according to the
results of postoperative pathological examination (25). However,
R0 resections are sometimes difficult to perform due to anatomic
constraints (i.e., retroperitoneal sarcomas, which represent
approximately 15% of all STSs). Thus, (neo)adjuvant therapies
should be considered to improve prognosis.

Most low-grade and well-edged STSs do not require adjuvant
radiotherapy, whereas for the moderate-to-high grade STSs,
adjuvant radiotherapy may improve the local control and
prognosis (26). Additionally, radiotherapy plays a significant role
in the palliative or definitive treatment of patients who cannot
undergo R0 resection. Although the effect of radiotherapy on limb
STSs is clear, the optimal radio-surgical strategy remains
controversial (27–30). However, with the recent advances in
radiation techniques, including the use of nanosized
radioenhancers (such as hafnium oxide nanoparticles, NBTXR3),
the cost/benefit ratio of radiotherapy has considerably decreased
(31, 32). Chemotherapy is the first option for metastatic and
locally advanced STSs, and the most commonly used drugs include
anthracyclines, gemcitabine, and taxanes (33). Nevertheless, the
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heterogeneity of various STS subtypes often results in different
responses to chemotherapeutic agents. Many studies were
performed to explore the role of adjuvant chemotherapy in STS
treatment, but their results were contradictory, and the benefits of
chemotherapy remained uncertain (34–37). Fortunately, advances
in nanosized drug delivery systems may overcome the main
drawbacks of traditional chemotherapy, including low efficacy
and toxicity. Over the years, significant progress has been made
in the field of targeted therapy for STSs (38, 39). Tyrosine kinase
inhibitors (TKIs), such as imatinib, sunitinib, and regorafenib,
were approved for the treatment of gastrointestinal stromal tumors
(GISTs) (40–43). Pazopanib, another TKI, was approved for the
treatment for non-GIST STSs (44). Olaratumab, a monoclonal
antibody, was approved for the treatment of STSs (45). However,
even the best formulation of neo-adjuvant therapies cannot replace
R0 resection (46).
NANOTECHNOLOGY AND STSs

Owing to the rarity and multiplicity of clinical behavior, STS
diagnosis is sometimes delayed, and the treatment of STSs
becomes a complex process; as a result, the prognosis is usually
dismal. Therefore, more efforts should be spent on exploring new
options for the diagnosis and treatment of STSs. Nanotechnology
has attracted scientific interest owing to its various advantages,
including desirable bioavailability, specialized structures, and
promising drug encapsulation efficiency. Moreover, significant
progress has been made in the field of nanomaterials, which
exhibit unique physical and chemical properties and are widely
used in the health and medical fields (47). The application of
nanomaterials offers potential advantages in the diagnosis and
treatment of many diseases, including cancer (7, 48, 49). For
example, nanomaterials can be used to detect tumor markers for
the purpose of diagnosis and evaluating prognosis (50). Drug-
loaded nanomaterials may cross many biological barriers and be
transported to a target region (51). Additionally, nanomaterials
play an important role in photodynamic therapy and radiotherapy.
Nanoprobe and STSs
Early detection is associated with timely treatment and, hence,
better prognosis. This is particularly true for STSs, which are
often overlooked by the general public and healthcare providers.
Traditional diagnostic strategies have various limitations, such as
the low sensitivity of imaging techniques and unnecessary
contamination of healthy tissues due to a poorly performed
biopsy. Researchers are currently exploring potential
breakthrough points for tumor diagnostic technologies. Thus,
the role of nanoparticles in cancer diagnosis and surveillance has
attracted increasing attention over the past few decades due to
their intrinsic magnetic, optical, and electrical properties (48).
Additionally, nanoprobes coupled with specific ligands can
accumulate at the tumor site or generate high responses to
very small targets via ligand-receptor interactions to produce
signals for ultrasensitive detection (50).
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Tumor formation is caused by the uncontrolled cell division
due to mutations in specific genes that alter the synthesis of
specific biomolecules. The overexpression of tumor-associated
proteins (TAPs) occurs during tumor formation, and TAPs can
regulate proteolysis, making them an important factor in cancer
progression. For example, MMP-2 is a TAP overexpressed in
most solid tumors including STSs (52), which can be used for the
detection of such tumors. Wang et al. (53) developed a
nanoprobe containing an MMP-2 substrate sequence for
detecting MMP-2-overexpressed tumors, which is highly
activated in human fibrosarcoma HT1080 cells in vitro and
highly expressed in human fibrosarcoma HT1080 cell
xenografts compared with MCF-7 cells. Their study
demonstrates the sensitivity and specificity of this prodrug-
type nanoprobe for tumor detect ion and imaging.
Nevertheless, the heterogeneity of specific biomarkers in each
STS subtype makes the development of a foolproof strategy for
STS detection a challenging task.

Drug Delivery Nanosystems and STSs
Despite the large number of drugs available for cancer treatment,
conventional chemotherapeutic agents have various side effects,
such as non-specific distribution, low bioavailability, toxic effects
on healthy cells, and resistance development. Therefore,
advanced drug delivery systems should be created overcome
these drawbacks. Recent developments in nanotechnology-based
drug delivery systems (DDSs) are expected to improve the drug
delivery process and control drug release using passive or active
targeting strategies, thereby reducing the side effects of
chemotherapy during tumor treatment. In addition, they can
deliver multiple drugs simultaneously to perform a combination
therapy (54). Over the years, a large number of nanomedicines
have been used to assess their potential for the treatment of STSs,
including the balance between efficacy and toxicity (Table 1).

Active targeting relies on ligand–receptor binding to deliver
drugs to cells and decrease nonspecific interactions in peripheral
tissues (Figure 1). These high-affinity ligands may include
aptamers, proteins, transferrin, antibodies, and other
macromolecules that are specifically overexpressed on the
surface of tumor cells. For example, the overexpression of
glucose transporters (GLUTs) in pediatric sarcomas was used
for active targeting. A nano-drug delivery system based on
glycosylated polymer nanocapsules targeting dasatinib was
reported for the first time by Bukchin et al. (55) In their study,
the use of a glycosylated amphiphilic nanocarrier promoted the
delivery of dasatinib in tumor parenchyma and reduced its
accumulation in the off-target tissues and organs of
immunodeficient mice bearing glucose-avid Rh30 xenograft.
Additionally, small molecules, such as folic acid, carbohydrates,
and nucleic acids, were identified. In another approach utilizing
the active targeted delivery of nano-drugs, integrin receptor-
targeted lipid protamine-siRNA (LPR) nanoparticles were
developed and used to load siRNA targeting the PAX3-FOXO1
(P3F) breakpoint, which was a specific fusion transcript of
alveolar rhabdomyosarcoma (ARMS) (56). The results of both
in vitro and in vivo studies verified the specificity and efficacy of
June 2022 | Volume 12 | Article 921983
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FIGURE 1 | Active and passive targeting strategy of drug delivery nanosystems.
TABLE 1 | Nanomaterials used in the preclinical research of STS treatment.

Nanomaterial Effect Target Cargo Tumor Cell line/ animal
model

Observation Reference

Glucosylated
polymeric
nanomicelles

Active
targeting

GLUT-1 dasatinib RMS cell line Rh30.
Patient-derivedglucose-
avid Rh30 xenograft

In vitro: a 9-fold decrease of the half maximal
inhibitory concentration of dasatinib in a RMS cell
line, Rh30.
In vivo: selective accumulation of dasatnib in a
patient-derived RMS model

(55)

LPR
nanoparticles

Active
targeting

PAX3-
FOXO1
(P3F)

siRNA Human RMS cell lines.
Rh30 cells xenograft

Significant tumor growth delay and inhibition of
tumor initiation

(56)

4-arm-PEG5K-
TPGS
nanoparticles

Passive
targeting

/ Paclitaxel S180 sarcoma-bearing
mice

Significantly improved tumor growth inhibitory
effect

(57)

CP nanoparticles Passive
targeting

/ Doxorubicin MPNST and UPS
sarcoma mouse models

CP-Dox formulation was superior to free
doxorubicin in MPNST models, but not in UPS
models.

(58)

Cerium oxide
nanoparticles

Anticancer
effect

/ / Murine fibrosarcoma cells
(WEHI164)

Significant toxicity on WEHI164 cells comparing
with L929 cells.
ROS generation in the cancer cells but scavenges
it in the normal L929 cells.

(59)

Anticancer
effect

/ / Mice bearing WEHI164
cells (mouse fibrosarcoma
cells)

Dominantly accumulation in tumor cells.
Significantly decrease tumor growth and volume.

(11)

Gold
nanoparticles

Antimigration
effect

/ / Human fibrosarcoma
cancer cell line HT-1080

No toxic effects on HT-1080 cells proliferation;
Inhibition of cell migration

(60)

Passive
targeting

/ N-
aminobacteriopurpurinimide
(photoenhancer)

Rats bearing sarcoma M
1

Extended circulation time in the blood and
enhanced tumor uptake

(61)

AuNRs/mSiO2 Multy modal
phototherapy

/ ICG-Der-02 HT-1080 human
fibrosarcoma cells

More damaging to HT-1080 cells and enhanced
the effectiveness of photodestruction

(62)
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this novel therapeutic strategy. However, the lack of universal
STS-specific targets may produce barriers for nanomedicine
development due to the heterogeneity of STSs.

Passive targeting involves the diffusion-mediated transport of
drugs(Figure 1). The enhanced permeability and retention (EPR)
effect promotes the passive accumulation of nanodrugs in tumor
cells. Thus, the efficiency of the passive targeting strategy is
dramatically affected by the inherent properties of drug–carrier
complexes, such as molecular size, weight, and surface
hydrophilicity. For instance, paclitaxel (PTX) exhibits low
aqueous solubility, which limits its delivery to tumors. To
overcome this problem, Wu’s research group synthesized a
novel nanocarrier, 4-arm-PEG5K-TPGS NP, to load PTX for
further studies. The S180 sarcoma-bearing mice treated with
Taxol® and PTX-loaded 4-arm-PEG5K-TPGS NP in vivo
exhibited a significantly improved growth inhibitory effect as
compared with that observed for the PTX-free group (57).
Additionally, the EPR effect differs between different tumor
types due to the protean pore dimensions in the vasculature
(63). Thus, the heterogeneity of STSs and their stroma can
severely impact the efficacy of passively targeted delivery. For
example, doxorubicin-based chemotherapy remains the gold
standard treatment for recurrent and metastatic STSs (64).
Dodd et al. (58) compared the efficacy of nano-encapsulated
doxorubicin and free doxorubicin in the treatment of MPNST
and UPSmouse sarcomamodels and observed different responses
of various STS subtypes to the nanoparticle-encapsulated
doxorubicin formulation (CP-Dox) treatment.

Furthermore, nanomaterials may be used not only as drug
carriers but also as antitumor agents. Recently, the anticancer
effect of cerium oxide nanoparticles was observed for mouse
sarcoma tumor cells (59). Afterwards, in vivo experiments were
performed by the same research team to confirm that cerium oxide
nanoparticlesweremainly concentrated in themousefibrosarcoma
tissues and exhibited no apparent toxicity to the mouse liver and
kidney, suggesting their potential applications in the treatment of
fibrosarcoma(11).Theproposedmechanismof the antitumoreffect
of these nanoparticles included antioxidant activity (65, 66) and
passive targeting on the tumor side (67). Karuppaiya et al. reported
for the first time a detailed procedure for the production of gold
nanoparticles using an aqueous extract of Dysosma pleiantha
rhizome (60). Interestingly, the biosynthesized nanoparticles were
able to inhibit the migration of the human fibrosarcoma cell line
HT-1080 by interfering with the actin polymerization pathway;
however, no toxic effects were observed in vitro. Thus, their
biocompatibility and anti-migration effect may be utilized to
enhance the antitumor effect of the chemotherapeutics currently
used in multimodality formulations, especially in metastatic STSs.
In summary, the optimaldesign ofnanoparticles for STSs treatment
is a daunting task due to the high heterogeneity and constantly
evolving nature of STSs.

Use of Nanomaterials in STS
Photodynamic Therapy
Photodynamic therapy (PDT) is a tumor-ablative and disease
site-specific treatment modality. It involves the generation of
cytotoxic reactive oxygen species (ROS) by illuminating a
Frontiers in Oncology | www.frontiersin.org 5
photosensitizer (PS) within tumor cells with the light having a
specific wavelength (68). ROS play significant roles in the
physiological activities of cells at moderate concentrations.
However, the overproduction of ROS may contribute to the
development of many diseases, including rheumatoid arthritis
(69), cardiovascular disease (70), and even COVID-19 (71). In
PDT, ROS cause irreversible damage to the cells and
microvasculature of solid tumors followed by a plethora of
inflammatory and immune responses. Thus, the ideal PS
should be capable of preferentially accumulating in tumor cells
and generating a sufficient amount of ROS. Nanomaterials have
recently emerged in the field of PDT to overcome most
limitations of classic PSs. They may be potentially utilized in
PDT as delivery vehicles for PS, PS alone, or PS energy
transducers. For example, gold nanoparticles have been used to
load a novel PS, N-aminobacteriopurpurinimide, for improving
drug delivery through a passive targeting strategy (61). Rats
bearing sarcoma M-1 demonstrated an extended circulation time
in the blood and enhanced tumor uptake in vivo.

Moreover, a combination of different therapeutic methods
with PDT may increase the antitumor efficacy (62, 72, 73). For
this purpose, Luo et al. (62) introduced hydrophilic indocyanine
green derivative (ICG-Der-02) into mesoporous silica-coated
gold nanorods (AuNRs/mSiO2). They found that the
nanoconjugated AuNRs/mSiO2–ICG-Der-02/RGD-4C system
preferentially bound to HT-180 human fibrosarcoma cells and
exhibited bimodal photothermal and photochemical effects
under the 808-nm irradiation, thus improving the effectiveness
of photodynamic therapy. In addition, a nanozyme that can
increase the content of H2O2 in the tumor microenviroment may
further enhance the antitumor effect of phototherapy (72). These
novel multimodal treatment approaches may enhance tumor
control in localized STSs.

Use of Nanomaterials in STS Radiotherapy
Radiotherapy is one of the most promising tumor control
strategies. During radiotherapy, cellular components, especially
DNA, are directly or indirectly damaged by delivering ionizing
radiation (IR) to tumor tissues. Increasing the radiotherapy
efficacy while maintaining the normal tissue toxicity at a
tolerable level remains a challenging task. Metal nanoparticles
have attracted significant interest in recent years due to their
promising role in enhancing the radiosensitizer effect (74). In
particular, gold nanoparticles have been most extensively
investigated owing to their biocompatibility and multifunctional
properties (75–78). For instance, these nanoparticles were used as
radiosensitizers and CT contrast agents to develop Au-loaded
polymeric micelles (GPMs) in a study conducted by the Tsourkas
research group (79). They found that GPMs exhibited a longer
circulation half-life and six-fold accumulation in tumors. An in
vivo study confirmed that the median survival time of the GPM-
radiosensitized mice bearing human fibrosarcoma cells (HT1080)
in combination with RT was 1.7 times longer than that of the
mice treated with radiation alone (79).

Moreover, hafnium oxide nanoparticles NBTXR3 possess the
ability to interact with different types of IR and accumulate in
cancer cells, thus producing high-dose energy deposition (80). A
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preclinical study confirmed the promising uptake rate and
encouraging radioenhancing effect of NBTXR3 in fibrosarcoma
cell lines (Hs913T, HT-1080) (81). The initial phase I clinical
trial of NBTXR3 activated by radiotherapy in patients with
locally advanced STSs was performed by Bonvalot et al. (82) In
their study, 22 patients with limb or trunk STSs were enrolled
into the treatment program, and all of them received a single
injection of NBTXR3 followed by external beam radiotherapy
and surgical resection. The obtained results revealed that the
median decrease in the maximal tumor diameter at the
recommended dose was 29% with a median change in volume
of −40%. This initial success led to a phase II–III trial (83) aimed
to further evaluate the efficiency and safety of NBTXR3 as a
radioenhancer in the preoperative treatment of patients with
locally advanced STSs. A total of 176 eligible patients out of 180
enrolled ones were evaluated for the primary endpoint
(pathological complete response in the intention-to-treat full
analysis set). The proportion of patients with a pathological
complete response exhibited a significant difference of 16% for
the NBTXR3 group versus 8% for the radiotherapy alone group
(p = 0.044). As a result, NBTXR3 has been approved for the
treatment of STSs and became a first-in-class radioenhancer. The
described tumor reduction strategy may facilitate surgical
resection and provide a reference for the radiation-enhanced
therapy of other solid tumors (84).
Frontiers in Oncology | www.frontiersin.org 6
CONCLUSION

STSs can occur anywhere in the body and originate from
mesenchymal tissues. Overall, the patients diagnosed with STSs
have poor prognosis, while STS heterogeneity represents a
considerable challenge for both detection and treatment.
Nanomaterials are playing increasingly important roles in STS
detection and treatment. Continuing advances in research
studies utilizing nanomaterials as drug delivery systems,
therapeutic approaches, and their combinations can help
develop an efficient and safe method for the diagnosis and
treatment of STSs. However, further optimization of
nanomaterials is necessary to achieve rapid diagnosis and
effective treatment of STSs.
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