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BNIP3 is a BH3-only protein with both pro-apoptotic and pro-survival roles depending on
the cellular context. It remains unclear how BNIP3 RNA level dictates cell fate decisions of
cancer cells. Here, we undertook a quantitative analysis of BNIP3 expression and
functions in single-cell datasets of various epithelial malignancies. Our results
demonstrated that BNIP3 upregulation characterizes cancer cell subpopulations with
increased fitness and proliferation. We further validated the upregulation of BNIP3 in liver
cancer 3D organoid cultures compared with 2D culture. Taken together, the combination
of in silico perturbations using public single-cell datasets and experimental cancer
modeling using organoids ushered in a new approach to address cancer heterogeneity.

Keywords: BNIP3, ScCRNA-seq, mitophagy, systems biology, cancer heterogeneity

INTRODUCTION

The heterogeneity of cancer is a well-known phenomenon that poses a daunting challenge for
effective treatment. Cell-to-cell variability in signaling pathways and transcription factor activities
render the whole cancer cell population only partially responsive to most drugs (1, 2). The design of
a better combination targeting strategy relies on the accurate identification of key genes and
pathways that define cancer cell subpopulations with increased cancer hallmarks.

The ability of cancer cells to elicit uncontrolled proliferation and evade apoptosis requires a
healthy mitochondrial network maintained through coordinated fission and mitophagy (3). BNIP3
is involved in cellular responses to a multitude of different stresses through either apoptotic or non-
apoptotic cell death (4). BNIP3 also serves as an autophagy receptor that plays crucial roles in the
removal of damaged mitochondria via interaction with ATG8. We have previously shown that
phosphorylation of S17 and S24 in the LC3 interacting domains dictates whether BNIP3 signals
apoptosis or pro-survival mitophagy (5). However, it is still unclear how the RNA expression level of
BNIP3 dictates cell fate decisions of cancer cells at the single-cell level.
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Single-cell RNA sequencing (scRNA-seq) has been harnessed
to gain important insights into cancer heterogeneity and resulted
in overwhelmingly rich datasets (6). Almost all solid tumors and
hematological malignancies have been investigated with scRNA-
seq. Those datasets enabled the possibility to perform in silico
perturbation experiments with single-cell resolution to
investigate the functional significance of genes of interest (7).

Here, we undertook a comprehensive analysis of BNIP3
expression and functions in single-cell datasets and The
Cancer Genome Atlas (TCGA) datasets. We identified a cancer
cell subpopulation characterized by upregulated BNIP3 in most
epithelial malignancies. We also interrogated the pathway
alterations in cancer cells with upregulated BNIP3 expression
with a quantitative pathway enrichment approach using gene set
variation analysis (GSVA) (8). Our study underscored the power
to combine computational and experimental approach to
address gene-centered cancer heterogeneity.

RESULTS

BNIP3 expression was first investigated in the tumor and normal
samples from the TCGA and the Genotype-Tissue Expression
(GTEx) projects. Using transcripts per million reads
normalization, BNIP3 expression was investigated in cancer
samples and paired normal samples across different cancer
types (Supplementary Figure 1A). The highest BNIP3
expression was found in Kidney Renal Clear Cell Carcinoma
(KIRC), while significant patient-to-patient variability in BNIP3
was noted. Those population averaged measurements were
incapable of capturing the intratumoral heterogeneity reflected
by cell-to-cell variability of cancer cells and the complex tumor
ecosystem. Single-cell transcriptomic datasets were used to
determine the heterogeneous BNIP3 expression in cancer cells.
Due to the inherent technical constrains of scRNA-seq, dropouts
(zero UMI detected) were common. Considering the technical
dropouts, cancer cells were stratified based on whether at least
one UMI is detected whenever UMI count datasets were
available. BNIP3 positivity actually might reflect BNIP3
upregulation. In almost all patients, scRNA-seq data revealed a
cancer cell subpopulation with BNIP3 positivity.

The survival analysis was performed with all cancer types in
the TCGA project (Figure 1A), suggesting BNIP3 mRNA
expression as a worse prognostic factor also for cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), cholangiocarcinoma (CHOL), and sarcoma (SARC).
However, BNIP3 upregulation appeared to be a better
prognosis indicator in kidney renal clear cell carcinoma
(KIRC) and low-grade glioma (LGG).

The functional significance of BNIP3 in cancer cells was first
investigated using a single-cell dataset derived from head and
neck cancer (9). Cancer cells were stratified by BNIP3 RNA
expression. The differentially expressed genes between BNIP3-
positive and BNIP3-negative cancer cells were shown
(Figure 1B). The top pathways enriched for BNIP3
upregulated genes included formation of the cornified

envelope, Nuclear factor erythroid 2-related factor 2 (NRF2)
pathway, and response to wounding (Figure 1C). NRF2 is a
transcription factor associated with antioxidant responses in
cells. Interestingly, the top transcription factor regulating
BNIP3 upregulated was HIF1A (Figure 1D), in agreement
with the involvement of BNIP3 in cellular response to hypoxia.
Using BNIP3 upregulated genes, protein-protein interaction
network was constructed and analyzed for core modules. NRF2
pathway and metabolic reprogramming were among the
enriched core modules, suggesting that cancer cells with higher
expression of BNIP3 might have achieved increased fitness by
multiple pathways (Figure 1E).

To gain a quantitative insight into BNIP3-associated
pathways, we employed GSVA to investigate the differential
pathway activity of BNIP3-positive and -negative cancer cells
(Figure 2A). BNIP3-positive cancer cells have an upregulated
activity in reactive oxygen species pathway, oxidative
phosphorylation, as well as MYC targets. The high ROS
burden within BNIP3-positive cancer cells might explain the
feedback activation of antioxidant transcription factor NRF2.
Cell cycle phase at the single-cell level was inferred using single-
cell RNA, suggesting that the percentage of cells in S phase is
higher in BNIP3-positive cells (Figure 2B). BNIP3-positive
cancer cell subpopulation was also detected in lung cancer
(Supplementary Figure 1B). Next, a lung cancer dataset with
42 patients was integrated with CCA or harmony algorithm and
employed to obtain BNIP3 altered gene lists and pathways. The
differentially expressed genes with p-value < 0.05 and detection
rate higher than 25% were identified with Wilcoxon test.
Interestingly, BNIP3 upregulated genes were enriched for
response to hypoxia, response to oxygen levels, response to
decreased oxygen levels, and response to oxidative stress after
CCA integration (Figure 2C). Response to oxidative stress was
also among the top pathways enriched after harmony
integration (Figure 2D).

Next, we investigated BNIP3 expression in a cervical cancer
single-cell atlas. BNIP3-positive cervical cancer cells displayed a
shifted transcriptional signature (Figure 3A). Cervical cancer
patients with high BNIP3 expression in the TCGA cohort had a
significantly decreased overall survival as compared with those with
low BNIP3 expression (Figure 3B). The top 3 pathways enriched
for BNIP3 upregulated genes were HIF1 TF pathway, response to
wounding, and Vitamin D receptor pathway (Figure 3C). The top
3 transcription factors regulating the upregulated genes were
HIF1A, SP1, and RELA (Figure 3D). The proportion of BNIP3-
positive cells is higher in breast cancer cells as compared to normal
breast epithelial cells (Figure 3E). HER2-positive and triple-
negative breast cancers seemed to have an increased proportion
of BNIP3-positive cancer cells as compared with ER-positive breast
cancers (Supplementary Figure 1C). Of note, BNIP3 is mostly
expressed by epithelial cells, but not immune cells in the tumor
microenvironment (Figure 3F). The prognostic significance of
BNIP3 in breast cancer patients was also investigated in the
TCGA breast cancer cohort. Patients with high BNIP3
expression had a significantly worse prognosis compared with
patients with low BNIP3 expression (Figure 3G).
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FIGURE 1 | (A) Prognostic significance of BNIP3 in the TCGA cohort. Highlighted squares indicate p-value smaller than 0.1. (B) Volcano plot showing the
differentially expressed genes between BNIP3-positive and -negative cancer cells. (C) Top pathways enriched for BNIP3 upregulated genes shown as barplot. (D)
The top transcription factors enriched for BNIP3 upregulated genes. (E) Top protein—protein interaction modules enriched for BNIP3 upregulated genes.
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The expression of BNIP3 was also investigated in a normal
liver cell atlas. BNIP3 was mostly expressed by hepatocytes in the
liver, but not by immune cells or stromal cells (Figures 4A, B).
BNIP3-positive hepatocytes appeared to have a more active
cycling feature, as evidenced by an increased proportion of
hepatocytes in S and G2M phase (Figure 4C). In the TCGA
liver cancer cohort, we did observe that liver cancer patients with
high expression of HIFIA or NRF2 (NFE2L2) tend to have a
worse prognosis (p-value < 0.1) (Figures 4D, E). The expression
of HIF1IA and NRF2 was highly correlated in liver cancer
samples from the TCGA cohort (Figure 4F).

Cancer cells cultured as organoids could better represent
cancer cells grown in vivo and were shown to harbor increased
stemness compared with cancer cells in 2D culture. We
hypothesized that cancer cells might upregulate BNIP3 as a
means to increase fitness when monolayer cell lines were

converted into organoid lines. To validate this hypothesis, the
HepG2 cell line was used as a parental cell line to establish a liver
cancer organoid line (Figure 5A). HepG2 2D culture and
organoid culture were subjected to bulk RNA-seq. The
similarity matrix derived from RNA-seq data indicated a global
change of transcriptome from 2D culture to 3D organoid culture
(Figure 5B). Both oxidative phosphorylation and reactive
oxygen species pathway increased in HepG2 organoids
compared with HepG2 2D culture (Figure 5C). The expression
of BNIP3 was significantly upregulated in the 3D culture of
HepG2 as compared with 2D culture (p < 0.05). This
upregulation was not observed for BCL2 Interacting Protein 3
Like (BNIP3L). Interestingly, liver cancer cells cultured as
organoids have a significantly upregulated CD24 expression (p
< 0.05), which played important roles in evasion from
phagocytosis of cancer cells from macrophages (Figure 5D).
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FIGURE 2 | (A) Heatmap of the hallmark pathways at the single-cell level. Each row represents one pathway and each column represents one cell. (B) Distribution
of cell cycle phases for BNIP3-positive and BNIP3-negative cancer cells. (C) Pathway enrichment for BNIP3 upregulated and downregulated genes in lung cancer,
using CCA integration. (D) Pathway enrichment for BNIP3 upregulated and downregulated genes in lung cancer, using harmony integration.

DISCUSSION

As carcinogenesis progresses, cancer cells are making important
decisions of life and death constantly. Cancer cells have unlocked
the secret of phenotypic plasticity represented by distinct
subpopulations with genetic or epigenetic variability.
Identification of key genes and pathways that serve as master
regulators of cancer cell fate decisions is key for the design of
optimal treatment strategy. Our study unraveled BNIP3
upregulation as a hallmark characterizing cancer cell
subpopulation with increased fitness and proliferation.

Single-cell RNA sequencing has been applied by the research
community to gain insights into cancer heterogeneity and
cellular ecosystem. The enormous datasets generated so far
would serve as a gold mine to identify key regulators of cancer
cell fate decisions if carefully reanalyzed and integrated.

Interestingly, the cancer type with the highest BNIP3
expression is clear cell renal cell carcinoma (ccRCC). This is in
agreement with the fact that HIF is no longer degradable due to
the loss of tumor suppressor VHL in ¢ccRCC (10). It has been
demonstrated in vitro that siRNA-mediated downregulation of
BNIP3 very effectively reduced the colony-forming capacity of
RCC cells (11). BNIP3 overexpression has also been shown to
enhance tumor growth for lung cancer (12) and liver cancer (13).
In liver cancer cells, BNIP3 was proposed to be a therapeutic
target for cancer metastasis as BNIP3 upregulation enhanced
anoikis resistance of HCC cells.

Controversial results have been reported regarding the role of
BNIP3 in breast cancer. BNIP3 deletion in triple-negative breast
cancer promoted the metastasis of disease by deregulating
mitophagy (14). On the contrary, it has been demonstrated
that BNIP3 promoted the malignant phenotypes of breast
cancer cells under hypoxia (15). Other studies made a
distinction between ductal carcinoma in situ (DCIS) and
invasive carcinoma, suggesting that BNIP3 upregulation was
correlated with higher risk of relapse and shorter disease-free
survival only in DCIS (16).

Cancer cells have harnessed the built-in cellular programs
to adapt to hypoxia, which is a common feature of tumor
microenvironment. The hypoxic niches typically render
chemotherapy (17) or radiation therapy (18) ineffective.
Targeting HIF-2a with belzutifan (MK-6482) has been
quite successful in a recent phase II trial, achieving a 49%
objective response rate in patients with renal cell carcinoma
(19). Another key transcription factor, NRF2, underlying
BNIP3 upregulated cancer cell subpopulation has also
recently been indirectly targeted with a chemical proteomic
approach (20).

Our study suggested that BNIP3 might be involved in the
enhanced tumorigenicity of liver cancer cells. This is consistent
with a previous report that BNIP3 protects HepG2 cells against
etoposide-induced cell death under hypoxia (21). Furthermore,
BNIP3 upregulated cancer cells might be armed with immune
evasion arsenals. Our results have demonstrated that CD24, a
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“don’t eat me” signal, has been upregulated in liver cancer
organoids together with BNIP3. It has also been shown that a
hypoxia-inducible factor elevated the expression of PD-L1 in
ccRCC cells (22).

Taken together, the systems biology approach marrying in
silico perturbations using public single-cell datasets and
experimental cancer modeling using organoids in our study
unraveled a cancer cell subpopulation characterized by BNIP3
upregulation and revealed the potential druggable master
regulators of enhanced fitness and proliferation.

METHODS

Processing of Single-Cell Datasets

For single-cell datasets, annotations (meta data) from the
original publications were used whenever possible. For
GSE131907, “Malignant cells” as defined by original
researchers were considered as cancer cells and used in our
analysis. For GSE168652, cells with the number of detected genes
(nFeature_RNA) between 500 and 7,500 were retained. The
upper limit of total UMI count was set as 50,000 to remove
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potential doublets and multiplets. Cells with more than 20% of
mitochondrial RNA detected were also removed from our
analysis. For datasets without meta data, quality control and
unsupervised clustering were performed with Seurat. The count
data were normalized using the “LogNormalize” method with a
scaling factor of 10,000. The top 2,000 most variable genes were
selected using the “vst” method. For cancer cell grouping based
on BNIP3 expression, cancer cells with at least one UMI detected
for BNIP3 were considered as BNIP3-positive.

Identification of Differentially Expressed
Genes

Upregulated genes in each cell cluster were identified using the
“FindMarkers” function with the statistical test method “wilcox”.
Only genes expressed in more than 25% of cells and altered with
log2FC higher than 0.25 were retained for further analysis.

Inference of Cell Cycle Phase From
Single-Cell Data

Cell cycle scoring with single-cell transcriptomic data was
performed with the “CellCycleScoring” function in Seurat. Each
cell is assigned a score based on expression of G2/M markers and S
phase markers. Cell cycle phase was predicted based on the
respective cell cycle scores (G1, S, and G2M). The genes used
for cell cycle scoring can be found in cc.genes.updated.2019
originally derived from a melanoma study (23).

A B c
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FIGURE 4 | (A) Liver cell atlas visualized in UMAP plot, the intensity of color indicating expression of BNIP3. (B) Dotplot visualization of BNIP3 in major cell types
within the liver. (C) Distribution of cell cycle phases for BNIP3-positive and BNIP3-negative hepatocytes. (D) Survival analysis of hepatocellular carcinoma patients in
the TCGA cohort, stratified by mRNA expression of HIF1A. (E) Survival analysis of hepatocellular carcinoma patients in the TCGA cohort, stratified by mRNA
expression of NFE2L2. (F) Correlation between the expression of HIF1A and NFE2L2 in liver cancers in the TCGA cohort.

Gene List Analysis

Differentially expressed genes with |log2FC| higher than 1 and p-
value smaller than 0.05 were subjected to gene list analysis using
metascape (24), including pathway enrichment, analysis of
protein—protein interaction, and inference of transcription
factors. Default parameters were used for implementation.

Gene Set Variation Analysis

GSVA was implemented with the GSVA package in R. The
hallmark pathways and KEGG pathways were retrieved from
MSigDB. For transcript per million reads (TPM) expression data,
“Gaussian” was used as the kernel for the non-parametric
estimation of the cumulative distribution function of
expression levels. For single-cell datasets, the normalized data
slot from the RNA assay was used as input for GSVA
implemented also using “Gaussian” as the kernel for the non-
parametric estimation of the cumulative distribution function of
expression levels.

SCENIC Analysis

SCENIC (25) was implemented with pySCENIC software.
Transcription factors and corresponding target genes (regulon)
were inferred based on co-expression of genes across cells. In
brief, SCENIC infers TFs and their target genes from correlations
between the expression of genes across cells. A TF and its target
genes are defined as a regulon. The regulons are then refined by

Frontiers in Oncology | www.frontiersin.org

July 2022 | Volume 12 | Article 923890


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Zhu et al.

BNIP3 Enhanced Cancer Hallmark

(o

2D culture

T

S Group

ample
HALLMARK_OXIDATIVE_PHOSPHORYLATION

HALLMARK_CHOLESTEROL_HOMEOSTASIS 04 Group
HALLMARK_BILE_ACID_METABOLISM g 2D _culture
HALLMARK_REACTIVE OXYGEN_SPECIES_PATHWAY -
HALLMARK_XENOBIOTIC_METABOLISM Organoids
HALLMARK APICAL_SURFACE 0.2

HALLMARK_HYPOXIA

HALLMARK_ESTROGEN_RESPONSE_EARLY Sample
HALLMARK_P53_PATHWAY o H1
HALLMARK_ANGROGEN_RESPONSE

HALLMARK_MTORCT_SIGNALING H2

02 H3

Lot
04 @2
03

Organoid

BNIP3 p=0014 Ch24

g

12-

»
8

0-
8-

6-

. ====

2D,clullure

5
Normalized Gene Expression

Normalized Gene Expression
2

—

2D,c'u lture

Organoids
Group Group

indicated genes for HepG2 cultured in 2D or organoids.

p=007

Orga‘noids

FIGURE 5 | (A) Images of HepG2 cancer cells cultured in 2D culture or organoid culture. (B) Heatmap of the correlation matrix between individual cancer
transcriptomes derived from 2D culture or organoid culture. (C) GSVA of hallmark pathways for individual cancer samples. Each row represents one hallmark
pathway and each column represents one sample. Both rows and columns were arranged by hierarchical clustering. (D) Boxplots showing the expression of

HALLMARK_WNT_BETA_CATENIN_SIGNALING

HALLMARK_G2M_CHECKPOINT

HALLMARK_NOTCH_SIGNALING

HALLMARK_APICAL_JUNCTION

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
TS Vi

TS V2

HALLMARK_UNFOLDED_PROTEIN_RESPONSE

BNIP3L p=0047

Y
3

Group

- 2D_culture

- Organoids

IS @
] 3

Normalized Gene Expression
@
8

—

Organoids

2D_cutture
Group

pruning targets based on enriched motifs. Finally, the activity of
a regulon is measured by an AUCell value in each single cell. A
high AUCell value indicates high activity and enrichment of a
regulon in a cell.

Transcription Factor Scoring

The bulk RNA-seq data from HepG2 2D culture and organoid
culture were analyzed by a method previously developed for
global transcription factor activity scoring (26). For each
transcription factor, the target genes with known regulation
modes were extracted from the TTRUST database (27),
resulting in a list of genes activated by the transcription factor
and a list of genes repressed by the transcription factor. The ratio
between the median expression level of an activated target gene
and the median expression level of a repressed target gene was
calculated for each transcription factor and log2 transformed to
obtain a final transcription factor score.

TCGA/GTEx Data Mining

Investigation of BNIP3 expression in cancer samples and normal
samples from TCGA or GTEx consortium was performed with

GEPIA2 (http://gepia2.cancer-pku.cn/) (28). For survival map
analysis, the significance level of 0.05 was used and the median
expression was used to stratify patients into a high-expression
group and a low-expression group. In total, 33 different cancer
types from the TCGA project were investigated.

Cell Culture

HepG2 cells were seeded in a 10-cm culture dish and maintained
in DMEM medium (L110K], BasalMedia) supplemented with
10% FBS. Medium was renewed every 2 days. For derivation of
organoid line, HepG2 cells were centrifuged at 500 g for 5 min at
4°C. The cell pellet was resuspended in Matrigel (R&D, 3533-
005-02). For one well of a 24-well plate, 50 ul of cell suspension
with 10,000 cells was seeded for the Matrigel to solidify. After
Matrigel solidification, 1 ml of medium was added to each well.
The organoid medium A contained 1% PS, 1% Glutamax, 10 mM
HEPES, B27 (1:50), N2 (1:100), 1.25 mM n-Acetyl-L-cysteine, 10
mM nicotinamide, 10 nM recombinant human Gastrin I, 50 ng/
ml recombinant human EGF, 100 ng/ml recombinant human
FGF10, 25 ng/ml recombinant human HGF, 10 uM Forskolin, 5
UM A8301, 10 uM Y27632, and 3 nM dexamethasone. The
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organoid medium B contained 1% PS, 1% Glutamax, 10 mM
HEPES, B27 (1:50), N2 (1:100), 1.25 mM n-Acetyl-L-cysteine,
10% Rspo-1 supernatant, 10 mM nicotinamide, 10 nM
recombinant human Gastrin I, 50 ng/ml recombinant human
EGF, 100 ng/ml recombinant human FGF10, 25 ng/ml
recombinant human HGF, 10 uM Forskolin, and 5 uM A8301.

RNA Sequencing

HepG2 cultures were subjected to RNA extraction. After quality
control with gel electrophoresis and Agilent 2100, mRNA were
captured with beads coupled with oligo(dT) and fragmented
before priming with random hexamers. First-strand and second-
strand cDNA were synthesized and purified. The purified
double-stranded ¢cDNA were subjected to end repairing, A-
tailing, and adapter ligation. The products were purified and
size-selected before final PCR amplification. The PCR products
were purified to obtain the final libraries, which were sequenced
with Nova-seq 6000 to obtain 6G data for each sample. The raw
reads were pre-processed and filtered before alignment to hg38
reference genome. Stringtie was employed to derive TPM
expression matrix (29).

Statistical Analysis

All statistical analyses were performed with R. No statistical
analysis was employed to estimate the sample size for desired
statistical power. The identification of markers distinguishing
different clusters of cells was performed with “wilcox” test, with
0.05 set as the cutoff for statistical significance. Multiple tests
were corrected with the “BH” method. The statistical difference
between survival curves for different patient groups stratified by
BNIP3 expression level was tested with log-rank test, with 0.05
set as the cutoff for statistical significance. The difference in gene
expression between 2D and 3D HepG2 cultures was tested with
t-test, using 0.05 as the significance level.
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