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Identification of pulmonary
adenocarcinoma and benign
lesions in isolated solid lung
nodules based on a nomogram
of intranodal and perinodal CT
radiomic features

Li Yi †, Zhiwei Peng †, Zhiyong Chen, Yahong Tao, Ze Lin,
Anjing He, Mengni Jin, Yun Peng, Yufeng Zhong,
Huifeng Yan and Minjing Zuo*

Department of Radiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
To develop and validate a predictive model based on clinical radiology and

radiomics to enhance the ability to distinguish between benign and malignant

solitary solid pulmonary nodules. In this study, we retrospectively collected

computed tomography (CT) images and clinical data of 286 patients with

isolated solid pulmonary nodules diagnosed by surgical pathology, including

155 peripheral adenocarcinomas and 131 benign nodules. They were randomly

divided into a training set and verification set at a 7:3 ratio, and 851 radiomic

features were extracted from thin-layer enhanced venous phase CT images by

outlining intranodal and perinodal regions of interest. We conducted

preprocessing measures of image resampling and eigenvalue normalization.

The minimum redundancy maximum relevance (mRMR) and least absolute

shrinkage and selection operator (lasso) methods were used to downscale and

select features. At the same time, univariate and multifactorial analyses were

performed to screen clinical radiology features. Finally, we constructed a

nomogram based on clinical radiology, intranodular, and perinodular

radiomics features. Model performance was assessed by calculating the area

under the receiver operating characteristic curve (AUC), and the clinical

decision curve (DCA) was used to evaluate the clinical practicability of the

models. Univariate and multivariate analyses showed that the two clinical

factors of sex and age were statistically significant. Lasso screened four

intranodal and four perinodal radiomic features. The nomogram based on

clinical radiology, intranodular, and perinodular radiomics features showed the

best predictive performance (AUC=0.95, accuracy=0.89, sensitivity=0.83,

specificity=0.96), which was superior to other independent models. A

nomogram based on clinical radiology, intranodular, and perinodular
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radiomics features is helpful to improve the ability to predict benign and

malignant solitary pulmonary nodules.
KEYWORDS

radiomics, computed tomography, sol itary pulmonary nodule, lung
adenocarcinoma, nomogram
Introduction

Lung cancer remains the most common cause of cancer-

related mortality worldwide because of its hidden incidence and

poor prognosis (1, 2). The widespread availability of low-dose

spiral CT screening has helped to reduce lung cancer mortality (3),

but an increasing number of lung nodules are being detected. The

average prevalence rate of pulmonary nodules in the first low-dose

CT screening is 30%, of which less than 5% are malignant nodules,

and peripheral adenocarcinoma is the most common (4).

Moreover, compared with ground glass and subsolid nodules,

solitary solid pulmonary nodules are more benign, and the

diagnosis of benign and malignant nodules is more difficult

(5, 6). According to the guidelines for the management of

pulmonary nodules (7, 8), stratified management and routine

periodic follow-up review of detected pulmonary nodules are

needed. For high-risk nodules with a difficult diagnosis of

benign and malignant nodules, puncture biopsy is

recommended. However, conventional CT stratification

assessment is easily affected by human factors, with only a

moderate degree of consistency (9, 10), which may lead to

misclassification and treatment of some patients as well as more

radiation doses and psychological trauma. Needle aspiration

biopsy of small nodules is more difficult and prone to

misdiagnosis and pneumothorax (11), and some older patients

with underlying diseases are not suitable for such invasive

operations. F-18 fluorodeoxyglucose (FDG) PET-CT scan is

highly sensitive and can play a key role in the identification of

benign and malignant lesions. However, it is limited by its

resolution and the inert state of some small lung cancer

nodules, as it has no differential effect on nodules below 10 mm

(12–14).

As a noninvasive new technique, radiomics can extract

features with high throughput for analysis. It has been widely

used in many aspects, such as differentiation of benign and

malignant pulmonary nodules (15–19), invasion and metastasis

(20, 21), histological classification (22), gene expression (23),

and treatment prognosis (24). The classification of benign and

malignant pulmonary nodules, in particular, have achieved

excellence in radiomics, from purely benign-malignant

differentiation to differentiation with inflammatory granulomas
02
(15), tuberculous granulomas (19), and cryptococcal infections

(17). However, most of the studies have only focused on the

interior of the nodules.

As the microenvironment for nodular growth, the

perinodular area has different degrees of heterogeneity, which

is thought to be related to biological behaviors, such as the

growth, blood supply, and invasion of the lesion (25, 26). Beig

et al. (27) also showed that different cell tissue components in the

perinodular area have different radiological characteristics. The

purpose of this study was to construct a better clinical prediction

model based on the radiomics characteristics of intra- and

perinodular areas, which could provide more help for the

identification and management of solitary solid pulmonary nodules.
Materials and methods

Patients

As this study was retrospective, the requirement for

informed patient consent was waived, and this study was

approved by the hospital ethics committee. We retrospectively

collected 365 patients with benign lung nodules from 2020.1 to

2021.12 and 465 patients with peripheral-type adenocarcinoma

from 2020.7 to 2021.12. The inclusion criteria were peripheral-

type adenocarcinoma and benign lung lesions confirmed by

surgical pathology. The patients were also screened according to

the following exclusion criteria: 1) lesions larger than 30 mm or

more than 1; 2) pure ground glass and subsolid nodules (with

ground glass components inside); 3) lesions containing

calcifications or small surrounding satellite foci; 4) no or poor

quality thin-section enhanced CT images of the chest within 2

weeks before surgery; and 5) previous or current history of a

malignant tumor.

As shown in Figure 1, 286 patients were eventually enrolled,

including 155 cases of peripheral adenocarcinomas and 131

cases of benign lesions. Most of the benign lesions were

granulomatous, including tuberculous granulomas (62, 47.3%),

chronic inflammatory nodules (38, 29.0%), fungal granulomas

(17, 12.9%), malignant tumors (9, 6.9%), and sclerosing alveolar

cell tumors (5, 3.8%). All patients were divided into a training set
frontiersin.org
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and validation set at 7:3, including a training set (105 cases of

adenocarcinoma, 95 cases of benign lesions) and a verification

set (50 cases of adenocarcinoma and 36 cases of benign lesions).
CT image acquisition and visual
image review

All patients underwent chest enhanced CT 2 weeks before

the operation, and all examinations were performed on 3 CT

scanners: 1) GE Revolution HD CT; 2) SOMATOM Definition

Flash; 3) Philips 256iCT. The scanning method was as follows:

using a double-barrel high-pressure syringe, contrast medium

(Ioversol, 350 mg I/ml) was injected into the right elbow vein at a

rate of 3.5 ml/s. The contrast medium dosage was 1.2-1.5 mL/kg.

The images of the artery, portal vein, and balance phase were

obtained after 25 s, 55 s, and 90 s, respectively. The relevant

scanning parameters are shown in Supplementary Table 1.

Two senior diagnostic thoracic radiologists evaluated the chest

CT images separately under the lung window (window width =

1500 HU, window position = - 450) without knowledge of

pathology and discussed a unified opinion when there was a

difference of opinion. The evaluation included: 1) location

(transverse, longitudinal); 2) size (long diameter, short diameter,

mean diameter); 3) border (clear, indistinct); 4) lobulation; 5)

burr; 6) cavity; 7) bronchial inflation; 8) vascular abnormality; 9)

pleural traction; 10) pleural effusion; and 11) lymph node

enlargement. The horizontal location was defined as whether

the lesion was located under the pleura, and the vertical location
Frontiers in Oncology 03
was defined as the lung lobe where the lesion was located. The size

was defined by the largest cross-section of the lesion, the

lobulation was defined as an uneven and bumpy surface of the

lesion, the burr was defined as a spine-like protrusion of 2 mm or

more on the surface of the lesion, bronchial insufflation was

defined as an air-containing bronchial shadow within or at the

edge of the lesion, vascular abnormality was shown as an

abnormal aggregation or dilatation, pleural pull was defined as a

depression of the pleura adjacent to the lesion or lymph node, and

enlargement was defined as a short diameter greater than 10 mm

and without calcification (28). All visual CT image evaluation

components and clinical information were collectively referred to

as clinical radiology (C-R) for analysis.
Nodule segmentation and
feature extraction

All nodules were segmented manually by a researcher (A)

using the open-source software 3D Slicer (version 4.8.1) (https://

www.slicer.org/) on the lung window (window width = 1500 HU,

window level =-450) until the entire lesion was sketched. The

nodule region was first outlined to form the intranodal region of

interest (intra-ROI) and then expanded outward by 5 mm using

the 3D Slicer semiautomatic segmentation program (27) to form

the perinodal region of interest (peri-ROI), and all unrelated large

vessels, bronchi, and chest wall tissue were manually removed.

The PyRadiomics program on the 3D Slicer was used to

automatically extract ROI radiomics features and resample the
FIGURE 1

Patient stowage flowchart divided into training and validation sets at a ratio of 7:3.
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images. In total, 851 features were extracted from intranodular

and perinodular areas, including 107 original features and 744

wavelet features. Original features included shape (14), first-

order statistics (18), gray-level cooccurrence matrix (glcm, 24),

gray-level dependence matrix (gldm, 14), gray level run length

matrix (glrlm, 16), gray level size zone matrix (glszm, 16), and

neighborhood gray-tone difference matrix (ngtdm, 5). All

features have been uploaded to the supplementary material,

and the main study flow is shown in Figure 2.

Reproducibility assessment

After 30 days, images of 30 patients in the cohort were

randomly selected, and researchers A and B adopted the

same method and process for nodule segmentation and

feature extraction, respectively. They were completely

unaware of each other’s segmentation process. Intra- and

intergroup correlation coefficients (ICCs) were calculated to

assess the repeatability and stability of nodule segmentation

and feature extrac t ion . An ICC > 0 .75 indica ted

good reproducibility.
Frontiers in Oncology 04
Feature selection and
radscore calculation

All patients were randomly divided into a training cohort

and a validation cohort at a ratio of 7:3, and group

randomization was assessed using 200 replicate tri-fold cross-

validation. Before feature selection, intra- and perinodal

features with all nodules were normalized using Z score [(x -

m)/s]. Feature selection was performed using the following

steps: 1) intra- and interobserver agreement was assessed for all

features, and those with ICC values greater than 0.75 were

selected for the next step; 2) the correlation coefficient was

calculated to remove redundant features (Pearson for normal

distribution, not Spearman); 3) the minimum redundancy

maximum relevance (mRMR) method was used to rank

features according to their relevance-redundancy index to

rank the features, and the top 100 features were selected; 4)

finally, the 10-fold cross-validation Lasso method was used to

filter out the final features. The radscores of intranodular

(intra-RS) and perinodular (peri-RS) lesions were calculated

according to their coefficients.
A B

D E F

C

FIGURE 2

The main research process. (A) The upper and lower layers are CT images of the lung window and mediastinal window in patients with lung
cancer and benign lung nodules, respectively. (B) Outline of the intranodal and perinodal areas in a patient with lung cancer. (C) Useful
radiomics features are filtered from the high-dimensional features. (D–F) The performance of the different models is compared and the best
model is selected to construct column line graphs and evaluate clinical effectiveness.
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The screened intranodal and perinodal features were

combined to build a gross radiomic model (G-RS) using

forward stepwise selection multiple logistic regression, and the

gross radiomic labels were calculated based on the

weighting coefficients.
Screening of clinical radiological features
and construction of the nomogram

Univariate and multivariate analyses were used to screen the

clinical-radiological features and build C-R models. Clinical

label scores were calculated based on the weighting

coefficients. The screened clinical radiological features were

combined with the gross radiomic labels, and column line

graphs were constructed by multiple logistic regression.
Model performance evaluation
and verification

The area under the receiver operating curve (AUC value) and

its associated metrics (sensitivity, specificity, accuracy, positive

predictive value, negative predictive value) were used for model

performance assessment, the Hosmer–Lemeshow test was used to

assess the degree of model fit, and the clinical decision curve

(DCA) was used for model clinical utility assessment.
Statistical analysis

All statistical analyses were performed using R 4.11 (http://

www.r-project.org) and SPSS 25.0 (IBM, Armonk, NY, USA)

software. The “glmnet” package was used for lasso logistic

regression to filter features and multiple logistic regression to

build models; the “rms” package was used for drawing

nomograms and calibration curves, and the “pROC” package

was used for plotting ROC curves and calculating AUC values

and related indicators. The Delong test was used for comparison

between models, and the Akaike information criterion (AIC)

was used for model ranking and selection. Two-sided p values <

0.05 indicate statistical significance.
Results

Clinical radiological features

A total of 155 cases of peripheral adenocarcinoma (76 males

and 79 females, mean age 62.3 ± 8.9 years [range 40-85 years])

and 131 cases of benign nodules (92 males and 39 females, mean

age 54.6 ± 11.9 years [range 22-86 years]) were included in this

study. In the training set, there were significant differences
Frontiers in Oncology 05
between the lung cancer and benign nodule groups in terms of

sex, age, short diameter, mean diameter, border, lobulation, burr,

vascular abnormality, pleural traction, and lymph node

enlargement. In the validation set, there were significant

differences in age, long diameter, short diameter, mean

diameter, lobulation, burr, bronchial inflation, vascular

abnormality, and pleural traction (P<0.05) (Table 1).
Construction of the clinical
radiology model

The univariate analysis showed significant differences

(P<0.05) in age, sex, mean diameter, border, burr, vascular

abnormality, pleural pull, and lymph node enlargement

(Table 2), which were substituted into the multivariate analysis,

showing significant differences in age and sex. The C-Rmodel was

constructed, and the signature score was calculated. The AUC

values of the training set and verification set were 0.744 and 0.698,

respectively, and the accuracy was 0.70 and 0.65.
Repeatable quantization

Intra- and interobserver consistency analysis of intra- and

perinodular features showed that there were 802 features with

ICC ≥ 0.75 (94.2%) in nodules and 788 features with ICC ≥ 0.75

(92.6%) around nodules (Supplementary Figure 1).
Construction and verification of the
radiomics signature

After removing poorly reproducible and redundant features,

the features were sorted using mRMR, and the top 100 features

were ultimately selected for lasso screening. Four features were

retained for both intra- and peri- nodular (17), and Intra-RS and

Peri-RS models were established (Figure 3). The G-RS model

was built for the combined intra- and nodular features using

forward stepwise multiple logical regression.

All intranodal and perinodal features ultimately preserved

were significantly different between the lung cancer group and

the benign nodule group (P<0.05), which could identify lung

cancer and benign nodules (Figure 4).

Radscore of C-R, Intra-RS, and Peri-RS models were

calculated based on feature weight coefficients, with the

relevant feature names and formulas for calculating radiomics

scores shown in Supplementary Table 2. Box plots showed a

significant difference in all model scores between the lung cancer

and benign nodule groups in both the training and validation

sets (P<0.05) (Figure 5).

Heatmaps of correlation coefficients for all retained features

showed that the correlation coefficients between intranodal and
frontiersin.org
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TABLE 1 Clinical-radiological performance of patients in the training and validation sets.

Characteristics Training set validation set

Lung Cancer
(n = 105)

Benign nodules
(n = 95)

p-value Lung Cancer
(n = 50)

Benign nodules
(n = 36)

p-value

Age 62.8 ± 9.3 54.8 ± 12.2 <0.001 61.0 ± 7.9 54.1 ± 11.1 0.001

Sex 0.001 0.117

Male 54 (51.4) 70 (73.7) 22 (44.0) 22 (61.1)

Female 51 (48.6) 25 (26.3) 28 (56.0) 14 (38.9)

Vertical position 0.716 0.190

Upper right lung 37 (35.2) 27 (28.4) 16 (32.0) 9 (25.0)

Right middle lung 9 (8.6) 7 (7.4) 3 (6.0) 5 (13.9)

Lower right lung 21 (20.0) 26 (27.4) 7 (19.8) 10 (27.8)

Upper left lung 19 (18.1) 19 (20.0) 9 (18.0) 7 (19.4)

Lower left lung 19 (18.1) 16 (16.8) 15 (30.0) 5 (13.9)

lateral position 0.527 0.662

Subpleural 55 (52.4) 54 (56.8) 26 (52.0) 17 (47.2)

Non-Pleural 50 (47.6) 41 (43.2) 24 (48.0) 19 (52.8)

Long Diameter 17.9 16.4 0.074 19.4 15.5 0.003

Short Diameter 15.4 13.3 0.004 16.1 13.2 0.006

Average diameter 16.7 14.9 0.020 17.8 14.4 0.003

Boundary 0.045 0.421

Clear 73 (69.5) 53 (55.8) 35 (70.0) 28 (77.8)

Blur 32 (30.5) 42 (44.2) 15 (30.0) 8 (22.2)

Lobulation 0.003 0.075

Present 100 (95.2) 78 (82.1) 49 (98.0) 32 (88.9)

Absent 5 (4.8) 17 (17.9) 1 (2.0) 4 (11.1)

Speculation 0.006 <0.001

Present 97 (92.4) 75 (78.9) 48 (96.0) 23 (63.9)

Absent 8 (7.6) 20 (21.1) 2 (4.0) 13 (36.1)

Cavity 0.376 0.584

Present 19 (18.1) 22 (23.2) 6 (12.0) 3 (8.3)

Absent 86 (81.9) 73 (76.8) 44 (88.0) 33 (91.7)

Air bronchogram 0.142 0.046

Present 13 (12.4) 19 (20.0) 2 (4.0) 6 (16.7)

Absent 92 (87.6) 76 (80.0) 48 (96.0) 30 (83.3)

Vascular abnormal 0.005 0.005

Present 53 (50.5) 29 (30.9) 29 (58.0) 10 (27.8)

Absent 52 (49.5) 65 (69.1) 21 (42.0) 26 (72.2)

Pleural pull <0.001 0.009

Present 80 (76.2) 49 (51.6) 35 (70.0) 15 (41.7)

Absent 25 (23.8) 46 (48.4) 15 (30.0) 21 (58.3)

Pleural effusion 0.212 0.813

Present 4 (3.8) 1 (1.1) 1 (2.0) 1 (2.8)

Absent 101 (96.2) 94 (98.9) 49 (98.0) 35 (97.2)

Lymph node enlarge 0.016 0.899

Present 20 (19.0) 7 (7.4) 6 (12.0) 4 (11.1)

Absent 85 (81.0) 88 (92.6) 44 (88.0) 32 (88.9)
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perinodal and total radiomic features were less than 0.75, which

suggested no covariance between these features (Figure 6,

Supplementary Figure 2).
Frontiers in Oncology 07
The AUC values of the G-RS model (training set: 0.942;

validation set: 0.934) were higher than those of either the intra-

RS (training set: 0.919; validation set: 0.911) or Peri-RS (training
TABLE 2 Univariate and multifactorial analysis of clinical radiological characteristics.

Univariate Multifactorial

OR CI P OR CI P

Age 0.93 0.91-0.96 <0.001 0.94 0.91-0.97 <0.001

Sex 0.38 0.21-0.69 <0.001 0.29 0.14-0.59 <0.001

Average diameter 0.94 0.89-0.99 0.02 NA NA NA

Boundary1 1.81 1.01-3.23 0.05 NA NA NA

Lobulation1 0.31 0.13-0.74 0.01 NA NA NA

Vascular abnormal 0.44 0.24-0.78 0.01 NA NA NA

Pleural pull 0.33 0.18-0.61 <0.001 NA NA NA

Lymph node enlarge 0.34 0.14-0.84 0.02 NA NA NA
frontiers
OR, Odds Ratio; CI, confidence interval.
A B

FIGURE 3

Screening radiomics features using lasso; (a): vertical dashed line indicates the best model fitted when l = 0.070 and Log(l) equals -2.648, (c):
vertical dashed line indicates the best model fitted when l = 0.084 and Log(l) equals -2.471; (b), (d) are the selected feature weight coefficients.
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set: 0.835; validation set: 0.805) model alone. The AUCs and

related metrics of the other models are shown in Table 3. The

mean AUC values of the five models after cross-validation of all

patients were: 0.722 (C-R), 0.912 (Intra-RS), 0.835 (Peri-RS),
Frontiers in Oncology 08
0.926 (G-RS), and 0.947 (Nomogram), which were very close to

the previous results, indicating the randomized nature of the

grouping in this study. The Intra-RS, Peri-RS, and G-RS ROC

curves are shown in Supplementary Figure 3.
A B

DC

FIGURE 4

The characteristic box line map in the training set and verification nodule (A, B) and around the nodule (C, D). 0 represents benign nodules, 1
represents lung cancer, V represents radiological features in nodules, and Z represents radiological features around nodules.
A B

FIGURE 5

Box line plots for different model radscores. (A) (training set), (B) (verification set), 0 for benign nodules, 1 for lung cancer.
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Construction and calibration
of nomogram

To develop a high predictive performance model with clinical

applicability, amultivariate logistic regression-based analysis showedC-

R (P=0.015, 95%CI: 1.14-3.28) and G-RS (P<0.001, 95% CI: 1.84-3.54)

as independent influencing factors for prediction (Supplementary

Table 3), which were combined into a nomogram (Figure 7).

The AUC values of the nomogram, which consisted of C-R

and G-RS in the training and validation sets, were as follows:

training set = 0.95, validation set = 0.94 (Figure 8). These were
Frontiers in Oncology 09
higher than those of the C-R model (training set = 0.74, validation

set = 0.68), Intra-RS model (training set = 0.91, validation set =

0.91), Peri-RSmodel (training set = 0.83, validation set = 0.80) and

G-RS model (training set = 0.94, validation set = 0.93). The

accuracy, sensitivity, specificity, positive predictive value, and

negative predictive value of the nomogram were higher than

80% (Table 3).

The Delong test showed significant differences between the

nomogram and the C-R, intra-RS, and Peri-RS models (P< 0.05).

There was no significant difference between the G-RS model and

the nomogram, but the nomogram had the smallest AIC value
FIGURE 6

Gross radiology model feature correlation heatmap. V represents intranodular features, and Z represents peri-nodular features
(Supplementary Table 2).
TABLE 3 Prediction performance of the five models in the training and validation sets.

AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Training set

C-R 0.744 0.67-0.81 0.87 0.51 0.70 0.67 0.79

Intra-RS 0.919 0.88-0.95 0.87 0.82 0.85 0.84 0.85

Peri-RS 0.835 0.78-0.88 0.75 0.78 0.76 0.79 0.74

G-RS 0.942 0.91-0.97 0.89 0.87 0.88 0.88 0.98

Nomogram 0.951 0.92-0.97 0.83 0.96 0.89 0.96 0.83

Validation set

C-R 0.698 0.58-0.81 0.60 0.72 0.65 0.75 0.57

Intra-RS 0.911 0.85-0.97 0.70 0.97 0.81 0.97 0.70

Peri-RS 0.805 0.70-0.90 0.88 0.67 0.79 0.79 0.80

G-RS 0.934 0.88-0.98 0.78 1.00 0.87 1.00 0.77

Nomogram 0.941 0.90-0.98 0.90 0.86 0.88 0.90 0.86
frontiers
AUC, area under the receiver operator characteristic curve; 95%CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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(116.79) of all models (Supplementary Table 4). The calibration

curves of the nomogram are shown in Figure 7, and the

Hosmer–Lemeshow test showed no statistical significance in

the training set or validation set (p values of 0.657 and 0.938),

indicating that the nomogram had a good fit.

In addition, to understand the efficacy of the nomogram

in different sex, age, and scan model case groups, we

conducted separate subgroup studies, which showed no

significant difference in its predictive efficacy between the

abovementioned different groups and the total cohort

(Supplementary Figure 4), and the Delong test p values were

all >0.05 (Supplementary Table 5).

The decision curve DCA (Figure 9) showed more net clinical

benefit for the Intra-RS, Peri-RS, G-RS, and nomogram than the

C-R model for most threshold ranges, and the nomogram

obtained the most net clinical benefit.
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Discussion

In this study, we analyzed the intranodal and perinodal

regional radiomic features and found that the combined gross

radiomic model was better than the single intranodular or

perinodular model, which proved the superposition of

perinodular features. Finally, a nomogram model based on

clinical radiology and gross radiomics was constructed and

tested, which improved the ability to distinguish between

benign and malignant solitary pulmonary nodules. The DCA

decision curve demonstrated its good clinical utility.

The differentiation of benign and malignant pulmonary

nodules has always been a difficult problem for radiologists.

With the popularization of screening and improvement of

treatment, the assessment of lesion size, density, location, and

shape by conventional CT can no longer meet the requirements of
A

B C

FIGURE 7

(A) Nomogram based on clinical radiology and gross radiomics. Calibration curves of the nomogram in the training (B) and validation (C) sets;
the x-axis indicates the predicted probability estimated by the nomogram, while the y-axis indicates the actual probability. Apparent probabilities
and bias-corrected probabilities are indicated by red and green solid lines, respectively.
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patients and clinicians. Just like in the multifactorial analysis of the

clinical-radiological features in the current study, only two high-

risk factors, gender and age, were screened out. Consistent with

previous studies (29), it was shown that isolated solid nodules of

the lung are more difficult to diagnose correctly by conventional

CT evaluation, as most benign nodules are associated with

malignant CT signs such as lobarization, burr, and pleural

traction. Patients with lung adenocarcinoma have a higher

proportion of women and the probability of prevalence

increases accordingly with age. Radiomics can extract focus

information with high throughput and can be combined with

clinical and conventional imaging manifestations and laboratory
Frontiers in Oncology 11
indicators, which greatly improves the diagnostic efficiency.

However, most studies have not focused on the peritumor

region (15–18). Chen et al. (15) constructed an radiomics model

to identify adenocarcinoma and granulomatous nodules in the

lung with good performance, while Liu et al. (16) included

different categories of benign nodules and showed that the

diagnostic performance of the radiomics model was better than

that of the Lung-RADS model, and the diagnostic performance of

LDCT-based radiomic models to differentiate adenocarcinomas

from benign lesions in solid pulmonary nodules were equivalent

to that of standard-dose CT (17). constructed a clinical-radiomics

model to identify pulmonary cryptococcosis and pulmonary
A B

FIGURE 8

ROC curves of the 5 models in the training (A) and validation (B) sets.
A B

FIGURE 9

(A, B) Decision curves of 5 models in the training and validation sets. The net income is shown on the y-axis, and the probability threshold is
shown on the x-axis.
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adenocarcinoma, screening four visual radiological features of

maximum diameter, size, lobulation and pleural retraction,

consistent with our routine CT evaluation, including 24

radiomics features of different categories, with wavelet features

as the main part (19/24), quantifying the heterogeneity of lesions

of different grades that are not recognized by human eyes. The

model constructed byMarmor et al. (30) incorporated clinical and

laboratory indices, but the AUC was only 0.76.

In the past decade, the central role of the tumor

microenvironment(TME) in the development and progression

of primary lung cancer has been recognized (31, 32). Cancer cells

are closely associated with the extracellular matrix (ECM),

mesenchymal cells (e.g., fibroblasts), infiltrating immune cells,

and the vascular system, an environment that in some cases is

critical for tumorigenesis or growth, and in other cases can

prevent tumorigenesis or even promote tumor growth. and

recent studies on the radiomics aspects of the peritumoral

region have intensified and yielded many results. Huang et al.

(33) established a nomogram model to predict the pathological

aggressiveness of isolated lung nodules based on clinical,

intranodal, and perinodal radiomics. Vaidya et al. (34)

developed an intra- and perinodal radiomic risk score and

associated nomogram to predict disease-free survival (DFS)

and adjuvant chemotherapy after surgery (ACT) efficacy in

early-stage non-small-cell lung cancer. Zhu et al. (35)

established a radiomic model to predict Ki-67 in early lung

adenocarcinoma, and the results showed that a radiomic model

combining intranodal and perinodal features was better than

intranodal features alone. perrone et al. (36) studied the

relationship among TME, radiomic features and pathological

histological aspects in patients with the same stage and visual

imaging presentation but significantly different survival cycles,

showing that the inflammatory response in TME is a key

determinant of cancer cell growth and proliferation, with a

more pronounced role for NLRP3 inflammatory vesicles. And

the differences in TME were closely related to the imaging

histological features (two were textural features and four were

intensity features). In terms of nodal benign-malignant

discrimination, Beig, N et al. (27) showed that different

pathological compositions of lung cancer nodules and benign

perinodular regions exhibited different radiomic features,. The

interface around the lung cancer has dense infiltrating

lymphocytes and associated macrophages, which appear as

smooth texture on CT images. In contrast, normal lung tissue

and macrophages around the granuloma exhibit high expression

of mid-frequency Gabor features, respectively. The high

nucleoplasmic ratio within the tumor exhibited low-frequency

Gabor features, Lin et al. (37) showed that deep learning models

based on intranodal and perinodular radiomics outperformed

single intranodal or perinodular models in lung cancer and

granuloma discrimination.

In this study, the perinodular area was defined as nodular

outward expansion of 5 mm. This was based on the study of
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Beig, N et al. (27), which demonstrated that the perinodal 5-mm

region features had optimal discrimination performance. The

study of Calheiros, J (38) showed that the perinodal region

features had good stability but poor discrimination performance

compared to the intranodal features, which may be because the

intranodal area is the main tumor area and carries more

substantive information. The results of this study are

consistent with them, but the Peri-RS model still achieved an

AUC value of 0.83 and an accuracy of 76%, which proves that it

is of great help in the differential diagnosis as an integral part of

the focus. The study of clinical-radiological performance

through univariate and multivariate analysis ultimately

included only two clinical variables, age and sex, and the AUC

of the model was only 0.744, indicating its poor stability and

predictive performance. The final nomogram improved the

AUC value to 0.95 with an accuracy of 0.89, which was higher

than all other models, although the Delong test showed no

significant difference between the G-RS model and the

nomogram, which may have been due to the low performance

of the combined C-R model and no obvious effect on the final

alignment map. We believe that the nomogram performs best

when considering the relevant indices of AUC and AIC value.

The intranodular and perinodular features extracted in this

study could well distinguish between the lung cancer group and

the benign nodule group (P<0.05), which consisted of Glcm,

Glrlm, and Glszm. Glcm is a texture feature that studies the

spatial correlation of grayscale and represents the heterogeneity

between images by calculating the correlation between two pixels

in a certain distance and direction. Glrlm has information about

the spatial distribution of consecutive pixels at the same gray

level in one or more directions. As an advanced texture statistical

feature, Glszm provides the size feature of the area around the

grayscale and has good performance in characterizing texture

consistency. The study by Chen et al. (15) also showed that the

imaging histological features associated with GLRLM, GLCM

are good for the identification of lung nodules, and this non-

uniform intensity distribution of the run length (non-uniform

intensity distribution), randomness in neighborhood intensity

values (randomness (non-uniform intensity distribution of the

run length), randomness in neighborhood intensity values)

reflects the higher heterogeneity and more complex internal

structure of lung adenocarcinoma. a study by Liu et al. (16)

showed higher NGTDM_Strength values (slower image

intensity changes) in benign lung nodules, indicating a more

homogeneous internal structure. Other related studies have also

proven the excellent performance of the above features in

characterizing tumor heterogeneity (33, 39, 40).

In this study, intra- and interobserver agreement studies

were performed for all radiomic features, and the proportion of

ICC values greater than 0.75 exceeded 90% for all groups, which

once again demonstrates the reproducibility and stability of

radiomics in lesion segmentation and feature extraction (41).

Both calibration curves and Hosmer–Lemeshow passed
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validation of the nomogram. Subgroup analysis proved that the

final nomogram was not affected by age, sex, or different

scanning models and showed its good generalization

performance to some extent.

There are still some limitations in this study. First, because

this was a retrospective study, there may have been biases in

different directions, and this study avoided these possible biases

by adopting a strict experimental procedure. Second, CT images

from 3 different scanners may have some bad effects, which

could have reduced but not eliminated biases by image

resampling and data standardization preprocessing. Third, the

benign group was included in this study. The variety of cases,

which may have contained certain lesions with clear benign

manifestations, had some influence on the construction of the

model, and we tried to reduce these effects by collecting cases

with strict exclusion criteria (calcifications, satellite foci, etc.)

Finally, the data in this study were insufficient, and there was a

lack of appropriate external verification queues; these are future

directions of the study.
Conclusion

In conclusion, this study proved the additional value of the

perinodular area in the differential diagnosis of benign and

malignant nodules and the reproducibility of radiological

features. Finally, we constructed a nomogram based on clinical

radiology, intranodal, and perinodal radiomic features, which

achieved the highest predictive performance and verified its

good stability. It can be used as a good noninvasive tool to

help radiologists and clinicians distinguish between benign and

malignant pulmonary nodules.
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