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Objective: Improved molecular testing for common somatic mutations and

the identification of mRNA and microRNA expression classifiers are promising

approaches for the diagnosis of thyroid nodules. However, there is a need to

improve the diagnostic accuracy of such tests for identifying thyroid cancer.

Recent findings have revealed a crucial role of long non-coding RNAs

(lncRNAs) in gene modulation. Thus, we aimed to evaluate the diagnostic

value of selected lncRNAs from The Atlas of Noncoding RNAs in Cancer

(TANRIC) thyroid cancer dataset.

Methods: LncRNAs in TANRIC thyroid cancer dataset that have significantly

increased or decreased expression in papillary thyroid cancer (PTC) tissues

were selected as candidates for PTC diagnosis. Surgical specimens from

patients who underwent thyroidectomy were used to determine the

separation capability of candidate lncRNAs between malignant and benign

nodules. Fine needle aspiration samples were obtained and screened for

candidate lncRNAs to verify their diagnostic value.

Results: LRRC52-AS1, LINC02471, LINC02082, UNC5B-AS1, LINC02408,

MPPED2-AS1, LNCNEF, LOC642484, ATP6V0E2-AS1, and LOC100129129 were

selected as the candidate lncRNAs. LRRC52-AS1, LINC02082, UNC5B-AS1,

MPPED2-AS1, LNCNEF, and LOC100129129 expression levels were significantly

increased or decreased in malignant nodules compared to those in benign

nodules and paired normal thyroid tissues. The combination of LRRC52-AS1,

LINC02082, and UNC5B-AS1 showed favorable results for the diagnosis of PTC

from fine needle aspirates, with 88.9% sensitivity and 100.0% specificity.

Conclusions: LncRNA expression analysis is a promising approach for

advancing the molecular diagnosis of PTC. Further studies are needed to

identify lncRNAs of additional diagnostic value.
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Introduction

Thyroid nodules are common and clinically significant

because about 5% of thyroid nodules are malignant (1). The

incidence of thyroid cancer is on the rise and is expected to

become the fourth most common cancer globally (2). The

distinction between benign and malignant thyroid nodules has

important therapeutic implications. Fine needle aspiration

(FNA) cytology is the gold standard for the diagnosis of

thyroid nodules. However, its results indicate cytologically

indeterminate nodules (Bethesda classification III-IV) in

approximately 20% of cases, posing a diagnostic challenge (3).

Approaches for obtaining information on cancer risk are

necessary for establishing management strategies. With the

recent development of molecular biological research and

genetic analysis technology, molecular tests for the accurate

diagnosis of thyroid cancer are being developed rapidly (4, 5).

Improved molecular testing for common somatic mutations and

identification of mRNA and microRNA expression classifiers

have emerged as the most promising approaches (6). Somatic

mutation testing is currently the most studied molecular

diagnostic test for FNA biopsy (7, 8). However, mutation tests,

except for the BRAF mutation, are not yet widely available in the

real clinical world, and mutations alone cannot explain all

aspects of the tumor. The analysis of differentially expressed

genes has emerged as an alternative to mutation testing (9).

However, although up to 70% of the human genome is

transcribed to RNA, only 2% of it represents protein-coding

genes, and transcript levels are not sufficient for the prediction of

protein levels (10, 11). MicroRNAs act by base-pairing with

target mRNA to negatively regulate the latter’s expression;

recently, microRNA analysis has gained an important place in

the study of molecular markers (12–14).

The Encyclopedia of DNA Elements project revealed that

approximately 80% of the human genome is transcribed into

14,880 long non-coding RNAs (lncRNAs) from 9,277 loci (15).

LncRNAs are defined as non-protein coding transcripts longer

than 200 nucleotides, although recent literature suggesting some

lncRNAs can encode small peptides or small proteins (16).

Currently, lncRNA research has moved to the forefront of

human cancer research, as recent findings have revealed a

crucial role for lncRNAs in gene modulation. LncRNAs are

primarily involved in the epigenetic regulation of the expression

of various genes at different levels, including chromatin, splicing,

transcription, and the post-transcription stages (17–19).

LncRNAs are potent biomarkers, although their expression

levels are considerably lower than those of mRNAs. Because

lncRNAs do not encode proteins and perform their biological

functions directly, most of their functions correlate with their

expression levels (15, 17). The expression patterns of lncRNAs

are more tissue-specific than those of protein-coding genes, and
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this property makes them useful as highly specific diagnostic

biomarkers (20).

The aims of this study were to evaluate the diagnostic value

of selected lncRNAs from our previous study and The Atlas of

Noncoding RNAs in Cancer (TANRIC) thyroid cancer dataset

to determine whether lncRNA expression analysis can be a

promising approach for advancing the molecular diagnosis of

papillary thyroid cancer (PTC) (21, 22).
Materials and methods

TANRIC thyroid cancer dataset

We obtained the data of lncRNAs, expressed in reads per

kilobase per million (RPKM), of 59 paired PTC tissues and

normal thyroid tissues from TANRIC thyroid cancer dataset,

which characterizes the expression profiles of lncRNAs in The

Cancer Genome Atlas (TCGA) PTC data sources (22–24). The

data were used for the selection of lncRNAs as candidates for

PTC diagnosis.
Patients and samples

Surgical specimens were obtained from patients who

underwent thyroidectomy, and FNA samples were obtained

from patients who underwent FNA biopsies of thyroid nodules

between June 2019 and August 2021 at the Yonsei Cancer Center

(Seoul, South Korea). All samples were immediately stored in

RNAlater (Ambion, Austin, TX, USA) and subsequently stored

at −80°C until use. Since there is no benign nodule in TANRIC

thyroid cancer dataset, surgical specimens were used to

determine the separation capability of candidate lncRNAs

between malignant and benign nodules. FNA samples were

used to verify the candidate lncRNAs and evaluate their

diagnostic performance. Clinicopathological information was

retrospectively collected from databases at our institution. This

study was conducted in accordance with the 1964 Declaration of

Helsinki and approved by the Institutional Review Board of

Severance Hospital (No. 4-2019-0335). Informed consent was

obtained from all the patients.
RNA isolation and real-time
PCR analysis

RNA from surgical specimens or FNA samples was extracted

using the RNeasy Plus Micro Kit (Qiagen, Valencia, CA, USA).

To confirm the diagnostic potential of the lncRNAs in surgical

specimens, we synthesized cDNA from 1 mg of total RNA using
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the QuantiTect Reverse Transcription Kit (Qiagen). Primer

sequences are shown in Table 1. Real-time PCR mixtures

consisted of 10 mL Power SYBR® Green PCR Master Mix

(Applied Biosystems, Foster City, CA, USA), 5 pmol each of

forward and reverse primers, 50 ng of diluted cDNA template,

and sterile distilled water to a final volume of 20 mL. PCR was

performed on an ABI StepOnePlus Real-Time PCR system

(Applied Biosystems) (21). All reactions were performed in

duplicate. GAPDH was used as an internal control.

For the analysis of FNA samples, the following TaqMan

Assay Mixes were used: LRRC52-AS1 (Hs01594821_m1; JUN-

QSY), LINC02082 (Hs00415625_m1; FAM-MGB), UNC5B-

AS1 (Hs04 27 441 6_g1 ; ABY-QSY ) , and GAPDH

(Hs02786624_g1; VIC-MGB). The real-time PCR mixtures

consisted of 5 mL TaqPath 1-Step Multiplex Master Mix

(Applied Biosystems), 1 mL each of TaqMan Assay Mix, 50 ng

RNA sample, and sterile distilled water to a final volume of 20

mL. PCR was performed on an ABI QuantStudio 5 Real-Time

PCR system (Applied Biosystems) according to the

manufacturer’s instructions.
Statistical analysis

IBM SPSS Statistics version 25 (IBM, Armonk, NY, USA)

was used for all statistical analyses. Categorical variables are

presented as the number and percentage, and continuous

variables are presented as mean ± standard deviation.

Continuous variables were compared using Student’s t-test for

TANRIC thyroid cancer dataset, whereas the Mann–Whitney U

and Kruskal–Wallis tests were performed using the patient data

from our hospital. Categorical variables were compared using

Fisher’s exact test. Differences with a p-value < 0.05 were

considered statistically significant.
Frontiers in Oncology 03
Results

Candidate lncRNA selection from
TANRIC thyroid cancer dataset

To identify candidate lncRNAs with diagnostic potential, we

first compared the expression levels of 12,727 ncRNAs from 59

paired PTC tissues and normal thyroid tissues drawn from

TANRIC thyroid cancer dataset. We selected 901 ncRNAs that

were significantly (p < 0.05) upregulated (more than 2-fold) in

PTC tissues and 1,710 ncRNAs that were significantly (p < 0.05)

downregulated (less than 0.5-fold) in PTC tissues. Among them,

we selected the top five upregulated and downregulated

lncRNAs in the PTC tissues that were annotated in the

National Center for Biotechnology Information (validated

lncRNAs) with a value that differed by more than 0.5 between

the PTC tissue and the paired normal thyroid tissue. The top five

upregulated candidates for PTC diagnosis were LRRC52-AS1,

LINC02471, LINC02082, UNC5B-AS1, and LINC02408, and the

downregulated ones were MPPED2-AS1, LNCNEF,

LOC642484, ATP6V0E2-AS1, and LOC100129129 (Figure 1

and Table 2).
Confirmation of diagnostic potential in
surgical specimens

Since there is no benign nodule in TANRIC thyroid cancer

dataset, expression levels of the candidate lncRNAs were

confirmed in six malignant nodular (PTC) tissues, five benign

nodular tissues, and nine paired normal thyroid tissues from nine

patients with thyroid nodules who underwent thyroidectomy at

our institution, before the application of candidate lncRNAs to

FNA samples. The expression levels of LRRC52-AS1, LINC02082,
TABLE 1 Primer sequences used for real-time PCR.

Gene Forward 5′-3′ Reverse 5′-3′

LRRC52-AS1 ATAAGGGGATCTGCAAGGCA AACAGGTTCCTTCAACCAGGG

LINC02471 ATCCCTTGGCATATGGTGTGTT ACTCAGGATATGGAGTTGCGA

LINC02082 AGAAACCTTCTGCCACCCAAA GCTGAACGCCCAATACAGGA

UNC5B-AS1 ACAAGCCTGCCTTCTTGGAG GTGGCGCTTGATTGGAACTC

LINC02408 GCTGTGTGATCCTAGATGGCT TACATCCAGTGAGCAGGCAC

MPPED2-AS1 AGTTGCAGTCGTTCACCAGT AGCAGCTCCAGGCATCAAG

LNCNEF TGAGGAGCTGTTTGGGCAAT TTGCGGATTCCACTCCCATC

LOC642484 GGACAGCAACCAGACCTGAG ACAGCATGCACCTGCAACTA

ATP6V0E2-AS1 CCTTGACTCCTTGCGTCAGT ACATCTTCCAGTCACGCTCC

LOC100129129 GTCTTGCTGTTTAGCGGCTC GAAGCTGAAGAAAACGGGGC

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
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and UNC5B-AS1 were significantly increased in the malignant

nodules compared to those in the benign nodules and paired

normal thyroid tissues (Figure 2). The expression levels of

MPPED2-AS1, LNCNEF, and LOC100129129 were significantly

reduced in the malignant nodules compared to those in the benign

nodules and paired normal thyroid tissues (Figure 3). The

expression levels of LINC02471, LINC02408, LOC642484, and

ATP6V0E2-AS1 were significantly different between the

malignant nodules and paired normal thyroid tissues as in

TANRIC thyroid cancer dataset. However, they were not

significantly different between the malignant and benign
Frontiers in Oncology 04
nodules. This indicates that the measurement of the expression

levels of LRRC52-AS1, LINC02082, UNC5B-AS1, MPPED2-AS1,

LNCNEF, and LOC100129129 could be used for differentiating

between benign and malignant tumors in thyroid nodules. These

lncRNAs were selected for further analysis.
Receiver operating characteristic curves
of candidate lncRNAs in TANRIC thyroid
cancer dataset

To further study the diagnostic potential of LRRC52-AS1,

LINC02082, UNC5B-AS1, MPPED2-AS1, LNCNEF, and

LOC100129129, the receiver operating characteristic (ROC)

curves were plotted to analyze the potential diagnostic efficacy

of these lncRNAs in TANRIC thyroid cancer dataset. These 6

lncRNAs, which all had AUC (area under the ROC curve) values

greater than 0.878, showed potential for diagnostic

use (Figure 4).

When the levels of lncRNAs with increased expression in

malignant nodules were divided by those of lncRNAs with

decreased expression in malignant nodules, the AUC values

remained very high (Figure 5). These results indicate the

possibility of using lncRNA expression levels as a factor in

molecular tests of PTC.
Application to FNA and verification

The expression of the candidate lncRNAs was examined in

FNA samples to confirm their diagnostic value. To confirm the

diagnostic ability of LRRC52-AS1, LINC02082, and UNC5B-

AS1 for PTC, we evaluated the expression levels of the lncRNAs

in samples collected from 51 patients who underwent FNA on

thyroid nodules at our institution (Figure 6). Based on the

Bethesda classification, 23 nodules were found to be benign

(category [Cat] II), 10 were classified as Atypia of Undetermined

Significance (AUS) (Cat III), and 18 were classified as Suspicious
TABLE 2 Selected candidate long non-coding RNAs (lncRNAs) from The Atlas of Noncoding RNAs in Cancer (TANRIC) thyroid cancer dataset.

Official symbol Gene ID P-value Mean N59 Mean T59 T59-N59 T59/N59

LRRC52-AS1 ENSG00000237463.1 9.58E−10 0.016932 2.76254 2.745608 163.1579

LINC02471 ENSG00000223914.1 8.23E−15 0.250378 10.0865 9.836122 40.28509

LINC02082 ENSG00000242268.2 1.32E−05 0.016668 0.659175 0.642507 39.54662

UNC5B-AS1 ENSG00000237512.2 6.17E−06 0.035556 1.38515 1.349594 38.95697

LINC02408 ENSG00000203585.3 2.11E−06 0.020193 0.666412 0.646219 33.00213

MPPED2-AS1 ENSG00000254489.1 1.25E−21 1.42859 0.153562 −1.27503 0.107492

LNCNEF ENSG00000237396.1 3.20E−09 1.7388 0.201443 −1.53736 0.115852

LOC642484 ENSG00000206129.3 3.83E−16 0.663489 0.11583 −0.54766 0.174577

ATP6V0E2-AS1 ENSG00000204934.6 1.14E−06 3.28217 0.785087 −2.49708 0.239198

LOC100129129 ENSG00000255020.1 6.71E−13 4.23287 1.21616 −3.01671 0.287313
fron
FIGURE 1

Flowchart for the selection of long non-coding RNAs (lncRNAs)
as candidates for papillary thyroid cancer (PTC) diagnosis from
The Atlas of Noncoding RNAs in Cancer (TANRIC) thyroid
cancer dataset.
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for Malignancy/Malignant (Cat V/VI). All nodules

corresponding to Cat V/VI were surgically confirmed as PTC,

except for that of one patient, who was lost to follow-up

without surgery.

The characteristics of these patients are shown in Table 3.

Their mean age was 50 years, and 52.9% of them were females;

there was no difference between the three groups. The average

tumor size was 1.81 cm, and the tumor size for the Cat II group

was larger compared to the other groups.

When we compared Cat II and Cat V/VI, the expression

levels of LRRC52-AS1, LINC02082, and UNC5B-AS1 were

significantly higher in Cat V/VI than in Cat II. Based on the

cut-off value of the highest Youden’s index, the sensitivity,

specificity, negative predictive value (NPV), and positive
Frontiers in Oncology 05
predictive value (PPV) of each lncRNA was good, ranging

from 83.3–88.9%, 91.3–100.0%, 88.5–91.3%, and 88.9–100.0%,

respectively (Table 4). If two or more of the LRRC52-AS1,

LINC02082, and UNC5B-AS1 lncRNAs are above the cut-off

value, better results can be achieved, with 88.9% sensitivity,

100.0% specificity, NPV 92.0%, and PPV 100.0%, for PTC

diagnosis using FNA samples.

Ten patients with a thyroid nodule classified as Cat III, after

consideration of worrisome clinical and sonographic features,

were followed up with sonography or a repeat of FNA according

to the guidelines (Table 5) (1, 25). Two out of ten thyroid

nodules, originally diagnosed as AUS via FNA, were re-classified

as Cat V via a second FNA, and finally diagnosed as PTC based

on postoperative pathology results. In these two thyroid nodules,
A B

D

E

C

FIGURE 2

Expression levels of candidate long non-coding RNAs (lncRNAs) showing increased expression in surgical specimens at our institution.
(A) LRRC52-AS1, (B) LINC02471, (C) LINC02082, (D) UNC5B-AS1, and (E) LINC02408. *p < 0.05, **p < 0.01, and ***p < 0.001.
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two or more of the LRRC52-AS1, LINC02082, and UNC5B-AS1

lncRNAs were above the cut-off value. These results imply that a

combination of lncRNA expression levels can be applied to the

actual molecular diagnosis of PTC.
Discussion

In this study, we evaluated the diagnostic value of selected

lncRNAs for the molecular diagnosis of PTC (Figure 7).

LncRNA expression analysis exhibited high diagnostic

efficiency, and certain combinations of lncRNAs exhibited

better results than single lncRNAs in the differential diagnosis

of benign thyroid tumors and PTC.
Frontiers in Oncology 06
First, we selected candidate lncRNAs with PTC diagnostic

values by analyzing TANRIC thyroid cancer dataset, an open-

access resource for interactive exploration of lncRNAs in cancer

(22). In our previous study, we established that one of the

candidates, LINC02082, had higher levels in almost all (60/64,

93.8%) PTC tissues than in the matched normal tissues (21). For

the diagnosis of PTC, the differences in expression between

malignant nodules and benign nodules are more important than

those between malignant nodules and normal thyroid tissues.

Therefore, to check and confirm the separation capability of

candidate lncRNAs, we compared the expression levels of

candidate lncRNAs in the malignant nodular tissues, benign

nodular tissues, and paired normal thyroid tissues of a few

patients who underwent thyroidectomy at our institution. The
A B

D

E

C

FIGURE 3

Expression levels of candidate long non-coding RNAs (lncRNAs) showing decreased expression in surgical specimens at our institution.
(A) MPPED2-AS1, (B) LNCNEF, (C) LOC642484, (D) ATP6V0E2-AS1, and (E) LOC100129129. *p < 0.05 and **p < 0.01.
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expression levels of LRRC52-AS1, LINC02082, UNC5B-AS1,

MPPED2-AS1, LNCNEF, and LOC100129129 were significantly

increased or decreased in malignant nodules compared to those

in paired normal thyroid tissues and also in benign nodules.

Next, ROC curves were used to analyze the potential

diagnostic efficacy of these lncRNAs in TANRIC thyroid

cancer dataset, and these lncRNAs showed potential for

diagnostic use. It was expected that the potential diagnostic

efficacy could be further improved when using the modified

expression level as calculated by dividing the increased lncRNA

level by the decreased lncRNA level. When measuring the RNA

expression levels for cancer diagnosis, a housekeeping gene

control such as GAPDH, whose expression levels remain the

same, is required (26). However, most lncRNAs have a low

expression level, and there is no known lncRNA housekeeping

gene; most housekeeping genes, such as GAPDH, have a

relatively high expression level, which may be inappropriate

for accurate lncRNA quantitative analysis (27). When dividing

the increased lncRNA level by the decreased lncRNA level, the

use of the housekeeping gene becomes unnecessary, and by

maximizing the difference in the levels, it is possible to

significantly increase the accuracy of cancer diagnosis.

We applied the data of these lncRNAs to FNA samples for

verification. However, in the preliminary FNA test, the lncRNAs

whose levels decreased in PTC did not exhibit pronounced

diagnostic performance as expected. Moreover, due to the
Frontiers in Oncology 07
limited amount of FNA samples, we focused on the lncRNAs

whose levels increased in PTC. The lncRNAs whose levels

increased in PTC exhibited a favorable diagnostic

performance, and two or more lncRNAs above the cut-off

value showed an even better diagnostic performance.

Additionally, in a cumbersome category, Cat III, these

lncRNAs showed a remarkable diagnostic value. These data

suggest that LRRC52-AS1, LINC02082, and UNC5B-AS1 can

be used to differentiate between benign and malignant tumors in

thyroid nodules by measuring their expression levels, which has

not been reported in PTC thus far.

Interestingly, the expression levels of LRRC52-AS1,

LINC02082, and UNC5B-AS1 were not elevated in a surgical

specimen of non-invasive encapsulated follicular thyroid

neoplasm with papillary-like nuclear feature (NIFTP),

although the data were not included in the study. These

lncRNAs are believed to aid in the diagnosis of borderline

thyroid tumors (hyalinizing trabecular tumor, follicular tumor

of uncertain malignant potential, well-differentiated tumor of

uncertain malignant potential, and NIFTP) that are difficult to

diagnose; however, additional research such as follicular

neoplasm is needed (28).

Although the data from this study demonstrated the

diagnostic value of lncRNAs, interestingly, limited information

is available regarding the function of these lncRNAs. Zhou et al.

showed that LRRC52-AS1 is associated with clinical progression
A B

D E F

C

FIGURE 4

Receiver operating characteristic (ROC) curves of candidate long non-coding RNAs (lncRNAs) in The Atlas of Noncoding RNAs in Cancer
(TANRIC) thyroid cancer dataset. (A) LRRC52-AS1, (B) LINC02082, (C) UNC5B-AS1, (D) MPPED2-AS1, (E) LNCNEF, (F) LOC100129129. AUC, area
under the receiver operating characteristic (ROC) curve.
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and regulates cell migration and invasion in PTC (29). Our

previous study demonstrated that LINC02082 expression is

elevated in human thyroid cancer, and it may play a critical

role in thyroid carcinogenesis (21). Wang et al. showed that the

lncRNA UNC5B-AS1 promotes proliferation, migration, and

invasion in PTC cell lines (30). There are also several studies

showed that other many lncRNAs, such as MALAT1, H19,

BANCR, HOTAIR, GAS5, and PCA3, play an important role

in regulation of different processes involved in the development

and progression of various thyroid cancers, and suggested these

lncRNAs could be used as novel biomarkers for early diagnosis

or even treatment (17, 31, 32). However, these previous studies

only analyzed in thyroid cancer cell lines or only compared

thyroid cancer tissues and adjacent normal thyroid tissues from

surgical specimen. In the present study, we additionally

compared the lncRNA data of these tissues with those of
Frontiers in Oncology 08
benign nodules and applied to actual FNA samples to show

that these lncRNAs have a real diagnostic value. Although

further research is needed, these lncRNAs are expected to be

helpful in the prognosis as well as diagnosis of PTC, based on

currently available reports (19, 33).

To date, studies on lncRNAs in thyroid cancer have been

limited compared with studies on protein-coding RNAs (34).

LncRNAs, such as BANCR, are relatively well-known; however,

most have been only discovered recently (35). The functions of

lncRNAs are dictated by their secondary structures rather than

their primary sequences, and their subcellular localization is

critical for their function (36, 37). Researchers may need to

perform gene regulation via CRISPR activation, CRISPR

inhibition, or antisense LNA GapmeRs rather than via plasmid

cDNA, siRNA, or shRNA to study lncRNA functions (38–41).

Animal experiments can be challenging because lncRNAs
A B

D E F
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C

FIGURE 5

Receiver operating characteristic (ROC) curves of long non-coding RNA (lncRNA) combinations (calculated by dividing the increased lncRNA level by the
decreased lncRNA level) in The Atlas of Noncoding RNAs in Cancer (TANRIC) thyroid cancer dataset. (A) LRRC52-AS1/MPPED2-AS1, (B)LINC02082/
MPPED2-AS1, (C) UNC5B-AS1/MPPED2-AS1, (D) LRRC52-AS1/LNCNEF, (E) LINC02082/LNCNEF, (F) UNC5B-AS1/LNCNEF, (G) LRRC52-AS1/
LOC100129129, (H) LINC02082/LOC100129129, and (I) UNC5B-AS1/LOC100129129. AUC, area under the ROC curve.
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exhibit evolutionarily poor sequence conservation across species

(17). The fact that lncRNAs are the functional units themselves

may be more meaningful for diagnosis than measuring mRNA

levels (37). However, the measurement of lncRNA levels is

difficult, as the expression of lncRNAs is generally

considerably lower than that of mRNAs (17). In this study,

several representative lncRNAs were measured using the

laboratory-level real-time PCR method; however, if more

lncRNAs are measured using a more sophisticated method,

lncRNAs could be used as effective markers for advancing the

molecular diagnosis of PTC.

This study has several limitations. First, the number of

nodules included in the study was small, and there were not

many indeterminate nodules that were difficult to diagnose.

Second, only PTC was included in the study since it is the
Frontiers in Oncology 09
most common type of thyroid cancer, while the other types of

thyroid cancer were not included. Third, in the preliminary FNA

test, the diagnostic performance with the decreased lncRNA

levels in PTC was lower than expected, and we did not discover

additional candidate lncRNAs to improve the diagnostic

accuracy. Fourth, false positive or false negative results might

exist for the cytologically proven nodules in the FNA samples, as

not all patients were surgically confirmed. Nevertheless, we

showed that lncRNA expression analysis could be a promising

approach for advancing the molecular diagnosis of PTC.

In summary, we selected candidate lncRNAs from TANRIC

thyroid cancer dataset, confirmed the diagnostic potential of

lncRNAs through our surgical specimen analysis, and verified

the diagnostic value of lncRNA by using FNA samples at our

institution. We showed that more accurate results could be
A B

C

FIGURE 6

Expression levels of candidate long non-coding RNAs (lncRNAs) showing increased expression in fine needle aspiration (FNA) samples at our
institution. (A) LRRC52-AS1, (B) LINC02082, and (C) UNC5B-AS1. ***p < 0.001.
TABLE 3 Characteristics of the patients who underwent fine needle aspiration (FNA) on thyroid nodules at our institution.

Parameters Total (n = 51) Category II (n = 23) Category III (n = 10) Categories V/VI (n = 18)

Age (years) 50.43 ± 12.95 49.65 ± 12.58 54.70 ± 16.34 49.06 ± 11.57

Sex

Male 24 (47.1) 11 (47.8) 4 (40.0) 9 (50.0)

Female 27 (52.9) 12 (52.2) 6 (60.0) 9 (50.0)

Tumor size (cm) 1.81 ± 1.42 2.41 ± 1.58 1.46 ± 1.56* 1.22 ± 0.66**
*p < 0.05 and **p < 0.01 vs. Category II.
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TABLE 5 Follow-up results of 10 patients with a thyroid nodule classified as Category III (0 = under the cut-off value, 1 = above the cut-off value).

Patient LRRC52-AS1(4.5874) LINC02082(1.5193) UNC5B-AS1(2.5240) SUM Follow-up

1 0 1 1 2 Category V

2 0 0 0 0 Sono f/u

3 1 0 0 1 Category II

4 0 0 1 1 Sono f/u

5 0 0 0 0 Category II

6 1 1 1 3 Category V

7 1 0 1 2 Not yet

8 1 0 0 1 Not yet

9 0 0 1 1 Not yet

10 0 0 0 0 Category III
Frontiers in Oncol
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f/u, follow-up.
TABLE 4 Diagnostic performance of long non-coding RNA (lncRNA) expression for the comparison of Bethesda II (n = 23) vs. Bethesda V/VI (n =
18) fine needle aspiration (FNA) samples at our institution.

Official symbol (cut-off value) Sensitivity % (95% CI) Specificity % (95% CI) aNPV % (95% CI) bPPV % (95% CI)

LRRC52-AS1
(4.5874)

83.3
(57.7–95.6)

100.0
(82.2–100.0)

88.5
(68.7–97.0)

100.0
(74.7–100.0)

LINC02082
(1.5193)

88.9
(63.9–98.1)

91.3
(70.5–98.5)

91.3
(70.5–98.5)

88.9
(63.9–98.1)

UNC5B-AS1
(2.5240)

88.9
(63.9–98.1)

91.3
(70.5–98.5)

91.3
(70.5–98.5)

88.9
(63.9–98.1)

One or more 100.0
(71.8–100.0)

82.6
(60.5–94.3)

100.0
(79.1–100.0)

81.8
(59.0–94.0)

Two or more 88.9
(63.9–98.1)

100.0
(82.2–100.0)

92.0
(72.5–98.6)

100.0
(75.9–100.0)

All three 72.2
(46.4–89.3)

100.0
(82.2–100.0)

82.1
(62.4–93.2)

100.0
(71.7–100.0)
aNPV, negative predictive value; bPPV, positive predictive value; 95% CI, 95% confidence intervals.
FIGURE 7

Flowchart of a study evaluating the diagnostic value of selected long non-coding RNAs (lncRNAs) for the molecular diagnosis of papillary
thyroid cancer (PTC).
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obtained using a combination of specific lncRNAs. With further

research on the identification of lncRNAs with additional

diagnostic value and verification in large-scale studies of

indeterminate nodules that require actual molecular diagnosis,

the diagnostic method using lncRNAs could potentially

supplement or replace FNA cytology and other existing

molecular tests.
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