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Nowadays, breast cancer has become the most common cancer worldwide with a high
mortality rate. Immune checkpoint blockade holds great promise in tumor‐targeted
therapy, and CD47 blockade as one immune therapy is undergoing various preclinical
studies and clinical trials to demonstrate its safety and efficacy in breast cancer. In this
review, we summarized different therapeutic mechanisms targeting CD47 and its
prognostic role and therapeutic value in breast cancer.
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INTRODUCTION

Breast cancer has become the most common cancer worldwide, with nearly 2.3 million new cases in
2020 (1). Despite significant advances in diagnostic techniques and treatment modalities, breast
cancer mortality remains high with more than 600 000 patients dying each year (2). Therefore, novel
and more effective therapies are still urgently in need.

Since the functional change of immune system plays an important role in the occurrence and
progression of breast cancer, immunotherapy especially the blockade of immune checkpoints leads
to new breakthroughs (3–5). The development of immune checkpoint inhibitors (ICIs) targeting the
adaptive immune system, such as programmed cell death protein-1 (PD-1) and its ligand PD-L1,
and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), has improved outcomes in patients
with advanced metastatic breast cancer and triple-negative breast cancer (TNBC) (6, 7). Although
ICIs monotherapy can enhance T cell-mediated immunity, the overall response rate (ORR) is
generally less than 30% (7–11). The inhibition of immune checkpoints targeting the innate immune
system offers a new solution. Increasing evidence indicates that CD47 acts as a dominant “don’t eat
me” signal, enabling tumor cells to escape from macrophage-mediated phagocytosis (12–14).
Currently, CD47 is an attractive target for the development of new anti-cancer therapeutics,
including options against breast cancer.
STRUCTURE AND BIOLOGICAL FUNCTION OF CD47

CD47, originally found to be expressed on red blood cells (RBCs), is a 50 kDa transmembrane
protein known as integrin-associated protein (IAP) (15). Structurally, CD47 consists of an
extracellular N-terminal IgV domain, five highly hydrophobic transmembrane segments, and a
short cytoplasmic tail (16).
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It was not until 1999 that CD47 was identified as a ligand of
signal regulatory protein-alpha (SIRPa) expressed on myeloid
cells, including macrophages (17). The extracellular IgV domain
of CD47 binds to SIRPa and initiates the phosphorylation of two
tyrosine residues from immunoreceptor tyrosine-based
inhibitory motif (ITIM) in the intracellular domain of SIRPa
(18) (19–21). The phosphorylation of ITIM subsequently recruits
and activates phosphatases SHP1 and SHP2 (22–24). This
signaling cascade results in the dephosphorylation of myosin
IIA, thereby inhibiting cytoskeleton rearrangement, which is a
necessary step for macrophage phagocytosis of target cells
(25) (Figure 1).

The role of CD47 in immune recognition and phagocytosis
was first described by Oldenborg et al. that red blood cells (RBCs)
from CD47-/- mice were rapidly cleared when infused into wild-
type recipient mice, and this effect was reversed when
macrophages were depleted with clodronate liposome (26).
Another study found that when RBCs senesce, CD47
expression decreased, and senescent erythrocytes lacking CD47
were considered ‘foreign’ and were rapidly cleared by
macrophages in the spleen (27). These results showed that
erythrocyte survival was highly dependent on CD47.

Accumulating data suggest that the CD47-SIRPa axis plays
an important role in suppressing tumor phagocytosis by
regulating the innate immune response. Knauf S et al. first
identified the expression of CD47 on ovarian tumors as early
as 1986 (28), and a series of studies subsequently confirmed that
CD47 was highly expressed in both hematological and solid
malignancies, including non-Hodgkin’s lymphoma (NHL) (29),
chronic myeloid leukemia (CML) (17), myeloma (30),
osteosarcoma (31), breast cancer (32), and other solid tumors.
Overexpressed CD47 interacts with SIRPa on myeloid cells to
help multiple malignant tumors escape immunosurveillance
(33). The disruption of CD47-SIRPa axis leads to the failure of
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SIRPa phosphorylation, thereby promoting phagocytosis by
macrophages. During this process, antigen-presenting cells
(APCs) also initiate cross-priming, activating the adaptive
immune system (34). Numerous studies have shown that anti-
CD47 antibody significantly enhanced the function of
macrophage phagocytosis (35, 36), dendritic cell (DC) antigen
presentation (37, 38), and NK cell-mediated killing (39). Overall,
CD47-SIRPa axis may mediate the link between innate and
adaptive immunity.
REGULATION OF CD47 EXPRESSION IN
BREAST CANCER

At the transcriptional level, more understanding about the
regulation of CD47 expression in breast cancer has been
described. The stimulation of tumor necrosis factor (TNF)
inflammatory pathway activates nuclear factor-kB (NF-kB),
which directly binds to a super enhancer (SE) site near the
CD47 gene, promoting CD47 gene transcription. Contrarily, the
blockade of TNF-a signaling has been shown to reduce CD47
expression and induce macrophage phagocytosis (40). Hypoxia-
inducible factor 1 (HIF-1) binds to the CD47 promoter,
activating gene transcription and increasing CD47 expression
in breast cancer cells. Moreover, when cocultured with HIF-1-
deficient breast cancer cells, the phagocytosis of macrophages
was significantly enhanced (41). Using human and mouse
models of leukemia and lymphoma, Casey et al. observed that
MYC induced the transcription of both CD47 and PD-L1 (42).
Notably, the regulatory effect of MYC on CD47 in breast cancer
requires further studies. In conclusion, more understanding of
CD47 expression regulation is very meaningful for optimizing
CD47-related tumor targeted therapeutics.
FIGURE 1 | After the interaction between CD47 and SIRPa, two tyrosine residues from ITIM in the intracellular domain of SIRPa become phosphorylated. The
phosphorylation activates SHP1 and SHP2, leading to the dephosphorylation of myosin IIA, thereby preventing macrophage phagocytosis. Anti-CD47 antibodies
could block CD47-SIRPa axis and promote phagocytosis.
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CD47 EXPRESSION IN BREAST CANCER
AND ITS CORRELATION WITH
CLINICAL OUTCOME

Although CD47 expression is shown to be associated with the
development of numerous tumors (43–45), its role in breast
cancer is less-well characterized. Next, we summarized the
currently available data in breast cancer.

In 2010, Nagahara et al. first reported CD47 as a prognosis
biomarker of breast cancer; compared with controls, breast
cancer patients have higher CD47 mRNA, and the high CD47
expression in bone marrow were correlated with poor survival.
They believed that determining CD47 expression levels in bone
marrow or peripheral blood contributed to predict the number of
circulating tumor cells that escaped from the immune system,
which is indicative of the presence of micrometastases (46). Yuan
et al. evaluated CD47 expression using immunohistochemistry
and observed that CD47 expression in breast cancer samples was
significantly associated with advanced tumor node metastasis
(TNM) stage, histological grade, estrogen receptor (ER) status,
progesterone receptor (PR) status, and recurrence. However,
high CD47 expression had a limited correlation with reduced
5-year disease-free survival (47). An analysis of 353 breast cancer
patients and a public data set showed that the high CD47 mRNA
levels were correlated with poor-prognosis molecular subtypes
(basal, Her2/Neu+) and adverse clinicopathological parameters
(high-grade, ER-, PR-). Moreover, in Her2/neu+ breast cancer
patients treated with trastuzumab plus vinorelbine, the
expression level of CD47 was negatively correlated with the
pathological response to treatment, and CD47 was significantly
reduced in the complete responders (48). By analyzing two
independent datasets of 1954 breast cancer patients, Zhang
et al. demonstrated that an increase in CD47 mRNA was
associated with a significant decrease in overall survival (OS).
The authors also reported that HIF-1 raised CD47 expression to
promote breast cancer cells escape from macrophage
phagocytosis (41). In a study by Baccelli et al., there was a 7.4-
year difference in mean OS between CD47 positive and negative
patients. Moreover, CD47 was strongly associated with lymph
node metastasis (49).

In triple-negative breast cancer, CD47 expression showed 2.3-
fold higher in cancer stem cells (CSCs) than the normal
counterparts by Gene Set Enrichment Analysis, and this
upregulation was closely related to tumor growth (50). One
study revealed that CSCs increased CD47 expression to avoid
immune-mediated elimination during conventional anti-tumor
therapy (51). When CD47 declined, CSCs were significantly
reduced in a dose-dependent manner (41, 52). Yuan et al.
examined CD47 expression in 97 breast cancer tissues, and
they reported that the positive rate of CD47 in TNBC tissue
was significantly higher than that in benign breast lesions, and
CD47 overexpression positively correlated with TNBC
metastasis and recurrence (53). Many other studies have also
shown that CD47 was highly expressed in breast tumors,
especially in TNBCs (54). Baccelli et al. demonstrated that
overexpressed biomarkers including CD47, EpCAM, CD44,
Frontiers in Oncology | www.frontiersin.org 3
and MET in breast CSCs were strongly associated with
decreased OS and increased number of metastatic sites in
metastatic breast cancer (55).
MECHANISM OF ACTION AND
IMPLICATIONS OF TARGETING CD47-
SIRPΑ AXIS IN THE BREAST CANCER
MICROENVIRONMENT

The occurrence and metastasis of tumors are closely related to
the internal and external environment of tumor cells, which
refers to tumor microenvironment. Tumor cells can maintain the
survival condition through autocrine and paracrine.
Additionally, by changing the microenvironment through
immunity, the body can restrict and affect tumor development.
Tumor microenvironment is now recognized as a potential
therapeutic target. The inhibition of CD47-SIRPa axis in the
tumor microenvironment facilitates the elimination of cancer
cells mainly through the following four pathways (Figure 2).

In the first pathway, anti-CD47 antibody disrupts anti
−engulfment signal, promoting M1/M2 macrophages-mediated
phagocytosis and shifting the immunosuppressive phenotype of
tumor-associated macrophages (TAMs) toward M1 subtype in
vivo (32, 56). Feliz-Mosquea et al. reported that CD47 blockade
significantly increased macrophage infiltration and phagocytosis
on breast cancer cells (57). Zhang et al. came to a similar
conclusion that the knockdown of CD47 expression increased
macrophage-mediated cytotoxicity toward breast cancer cells,
and the level of CD47 was negatively correlated with the degree
of phagocytosis (41).

In the second pathway, the inhibition of CD47-SIRPa axis
enhances the antigen presentation ability of DC and antigen is
subsequently presented to CD4+ and CD8+ T cells, leading to the
activation of adaptive immune response (58, 59). Recently,
Kosaka et al. suggested that the combination treatment of
cGAMP and anti-CD47 mAb induced effective anti-tumor
immune responses through the activation of monocyte/
macrophage phagocytosis and adaptive immune response,
which relied on STING and type I IFN signaling. This
combination therapy also leads to immune memory and
systemic anti-tumor immune responses (60).

In the third pathway, anti-CD47 antibody could eliminate
breast cancer cells via traditional Fc-dependent mechanisms,
including neutrophil-mediated antibody-dependent cellular
cytotoxicity (ADCC) and macrophage-mediated antibody-
dependent cellular phagocytosis (ADCP) (12, 61). A study by
Matlung et al. demonstrated that targeting CD47-SIRPa could
further improve ADCC by a cytotoxicity mechanism identified
as trogoptosis (62). Zhao et al. proved that B6H12, a murine
antibody against human CD47, can enhance ADCC activity (48).
In preclinical models of HER2+ breast cancer, CD47 blockade
significantly increased ADCP and enhanced trastuzumab
therapeutic outcomes (63).

In the fourth pathway, the inhibition of CD47 or SIRPa can
induce tumor cell apoptosis (64, 65), which could be attributed
July 2022 | Volume 12 | Article 924740
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to the direct ligation of CD47 rather than the caspase-
dependent pathway (66, 67). In breast cancer, anti-CD47
antibody mediates direct apoptosis of tumor cells, involving
the regulation of cAMP levels via heterotrimeric Gi with
subsequent effects mediated by PKA. Notably, this effect can
be effectively blocked by any drug that maintains intracellular
cAMP levels and PKA activity (68).
TARGETING CD47 IN BREAST
CANCER TREATMENTS

While SIRPa-CD47 signaling cascade remains incompletely
understood, the value of targeting CD47 in tumor treatment
has been increasingly confirmed, and the clinical studies on
CD47 mAbs have made rapid progress (Table 1). Here, we
reviewed and summarized recent advances in CD47 antibodies
in breast cancer treatment (Table 2).

Anti-CD47 Antibody Monotherapy
In 2004, Manna et al. found that anti-CD47 mAb 1F7 could
cause the death of four different breast cancer cell lines (68). Kaur
et al. showed that CD47 blockade inhibited breast CSCs
proliferation and asymmetric cell division (50). It is well
known that CSCs play an important role in tumor survival,
proliferation, metastasis, and recurrence.

Iribarren et al. demonstrated that the monotherapy of CD47
antibody could effectively reduce tumor growth and increase
overall survival in AT3 breast cancer model. Regulatory T cells
(Tregs) are involved in tumor development and progression by
inhibiting antitumor immunity. Of note, this treatment results in
Frontiers in Oncology | www.frontiersin.org 4
a partial reduction of M2 macrophages and almost complete
elimination of immunosuppressive Tregs, suggesting that CD47
blockade remodels the tumor microenvironment (69). This
elimination might be attributed to CD47 expression on Tregs,
and anti-CD47 antibody would increase ADCP of the targeted
Tregs (75).

In orthotopic mouse breast cancer model, anti-CD47
antibody inhibited tumor growth and prevented metastasis on
larger tumors, and may be curative on smaller tumors;
Importantly, anti-CD47 mAbs produced no unacceptable
toxicity in immune competent mice, albeit with a temporary
anemia, indicating the safety of targeting CD47 (32).

Anti-CD47 Antibody in Combination
With Chemotherapy
It is important to point out that targeting CD47 can immensely
enhance the anti-tumor effect of other therapeutic strategies.

Calreticulin (CRT) is the dominant pro-phagocytic signal on
multiple human cancers, which facilitates cell clearance by
engaging its counter receptor LDL-receptor-related protein
(LRP) on phagocytes. The balance between antiphagocytic
signal (i.e., CD47) and pro-phagocytic signal (i.e., CRT)
ultimately determines if cancer cells will be phagocyted or not
(76, 77). Anthracyclines induce the rapid translocation of CRT to
the cell surface, thereby increasing the immunogenicity of
tumors (78). The blockade of CD47 in combination with
anthracyclines results in the activation of immunogenic cell
death pathway and enhances tumor ablation in vivo (57).
Iribarren et al. observed that anti-CD47 antibodies and
anthracycline mitoxantrone (MTX) could be favorably
combined against carcinogen-induced breast cancers, and this
FIGURE 2 | The therapeutic targeting of CD47-SIRPa pathway can cause the elimination of breast cancer cells through the following four pathways. First, the
inhibition of CD47-SIRPa could enhance tumor cell phagocytosis by macrophage. Second, anti-CD47 antibody enables the phagocytic uptake of tumor cells by
dendritic cells and subsequent antigen presentation to CD4 + and CD8 + T cells, thereby stimulating anti-tumor adaptive immune response. Third, anti-CD47
antibody eliminates tumor cells via traditional Fc-dependent mechanisms, including ADCC and ADCP. Fourth, anti-CD47 antibody stimulates tumor cell apoptosis
through a caspase-independent mechanism.
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TABLE 1 | Clinical trials targeting CD47 registered with the National Clinical Trials Registry (NCT) system.

Drug CD47
Isotype

Mechanism Malignancy type Phase enrollment Clinical trial
ID

AK117 IgG4 Anti-human CD47 mAb Neoplasms Malignant
MDS
AML
Neoplasms Malignant
Advanced Malignant Tumors
Advanced Malignant Tumors
TNBC

1
1/2
1/2
1
1/2
1/2
2

162
190
160
159
114
130
80

NCT04728334
NCT04900350
NCT04980885
NCT04349969
NCT05229497
NCT05235542
NCT05227664

ALX148 IgG1 Anti-human CD47 mAb Microsatellite Stable Metastatic Colorectal
Cancer
B-cell NHL
Higher Risk MDS
Advanced Solid Tumors
NHL
Head and Neck Squamous Cell Carcinoma
Head and Neck Squamous Cell Carcinoma
Gastric or Gastroesophageal Junction
Adenocarcinoma

2
1/2
1/2
1
2
2
2/3

80
52
173
174
168
183
450

NCT05167409
NCT05025800
NCT04417517
NCT03013218
NCT04675333
NCT04675294
NCT05002127

AO-176 IgG2 Anti-human CD47 mAb MM
Solid Tumor

1/2
1/2

157
183

NCT04445701
NCT03834948

BAT7104 IgG-like Anti-CD47/PD-L1 bifunctional antibody Advanced Solid Tumors 1 29 NCT05200013
CC-90002 IgG4 Anti-human CD47 mAb AML

MDS
Hematologic Neoplasms

1
1

28
60

NCT02641002
NCT02367196

CPO107 IgG1 Anti-CD20/CD47 bifunctional antibody NHL 1/2 75 NCT04853329
DSP107 IgG4 Bi-functional CD47 and 41BB fusion

protein
Hematological Malignancies
Non-Small Cell Lung Cancer
AML/MDS
CML

1
2
1
2

100
36

NCT04440735
NCT04937166

Hu5F9−G4
(Magrolimab)

IgG4 Anti-human CD47 mAb Solid Tumor
AML
AML
AML
Solid Tumor
Colorectal Cancer
Ovarian Cancer
NHL
Neuroblastoma
Osteosarcoma
Hematological Malignancies
AML
AML
NHL

1
1
1
1
2
1
1/2
1
1
3
1/2
1

88
13
20
78
34
178
82
287
520
98
30

NCT02216409
NCT03922477
NCT02678338
NCT02953782
NCT03558139
NCT02953509
NCT04751383
NCT03248479
NCT04313881
NCT04435691
NCT03527147

HX009 IgG4 Anti-CD47/PD-1 bifunctional antibody Relapsed/Refractory Lymphoma
Advanced Solid Tumor
Advanced Solid Tumor

1/2
1
2

99
21
210

NCT05189093
NCT04097769
NCT04886271

IBI188 IgG4 Anti-human CD47 antibody Advanced Malignancies
Advanced Malignancies
MDS
AML
AML
MDS
Solid Tumors
Lung Adenocarcinoma
Osteosarcoma

1
1
1
1/2
1
1

49
42
12
126
58
120

NCT03717103
NCT03763149
NCT04485065
NCT04485052
NCT05263271
NCT04861948

IBI322 IgG4 Anti-CD47/PD-L1 bifunctional antibody Advanced Malignant Tumors Lymphomas
Advanced Solid Tumor
Hematologic Malignancy
Advanced Malignancies
Myeloid Tumor
Small Cell Lung Cancer
Non-Small Cell Lung Cancer

1
1
1
1
1
2
2

51
36
230
218
124
40
80

NCT04338659
NCT04912466
NCT04795128
NCT04328831
NCT05148442
NCT05296603
NCT05296278

(Continued)
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synergistic effect inhibited tumor growth more significantly than
either treatment alone (69). Feliz-Mosquea et al. used a
2-dimensional high-throughput cell proliferation assay in
mouse 4T1 breast cancer model, and they concluded that
targeting CD47 could reduce breast cancer growth and
metastasis by activating anti-tumor innate immune response,
thereby enhancing the efficacy of doxorubicin chemotherapy
Frontiers in Oncology | www.frontiersin.org 6
in vivo. In addition, anti-CD47 antibodies prevent anthracycline-
mediated cardiotoxicity and tissue toxicity (57).

Recently, Cao et al. demonstrated that the combination of CD47
blockade and cabazitaxel, an FDA-approved chemotherapeutic
agent (79), produced a potent anticancer effect in TNBC
preclinical models, promoting Programmed Cell Removal (PrCR)
of cancer cells, and inhibiting tumor development and metastasis;
TABLE 1 | Continued

Drug CD47
Isotype

Mechanism Malignancy type Phase enrollment Clinical trial
ID

IMC-002 IgG4 Anti-human CD47 antibody Advanced Cancer
Solid Tumor
Lymphoma

1
1

24
24

NCT05276310
NCT04306224

IMM0306 IgG1 Anti-CD20/CD47 bifunctional antibody NHL 1 90 NCT04746131
PF-07257876 IgG4 Anti-CD47/PD-L1 bifunctional antibody Non-Small Cell Lung Cancer

Head and Neck Squamous Cell Carcinoma
Ovarian Cancer

1 90 NCT04881045

SG2501 Unknown Anti-CD38/CD47 bifunctional antibody Hematological Malignancy
Lymphoma

1 72 NCT05293912

SHR-1603 IgG4 Anti-human CD47 antibody Physiological Effects of Drugs
Neoplasms by Histologic Type
NHL

1 128 NCT03722186

SRF231 IgG4 Anti-human CD47 antibody Advanced Solid Cancers
Hematologic Cancers

1 148 NCT03512340

STI-6643 IgG4 Anti-human CD47 antibody Solid Tumor
Relapsed Solid Neoplasm
Refractory Tumor

1 24 NCT04900519

TG-1801 IgG4 Anti-CD19/CD47 bifunctional antibody NHL
NHL
CLL

1
1

16
60

NCT03804996
NCT04806035

TJ011133 IgG4 Anti-human CD47 antibody MM
AML/MDS

1
1

163
120

NCT04895410
NCT04912063

TTI-621 IgG1 SIRPa-IgG1 Fc Fusion Proteins Hematologic Malignancies
Solid Tumor
Leiomyosarcoma
MM
Solid Tumors
Mycosis Fungoides

1
1/2
1
1

250
80
32
56

NCT02663518
NCT04996004
NCT05139225
NCT02890368

TTI-622 IgG4 SIRPa-IgG4 Fc Fusion Proteins MM
Epithelial Ovarian Cancer
Fallopian Tube Carcinoma
Primary Peritoneal Carcinomas

1
1/2

32
50

NCT05139225
NCT05261490

ZL-1201 IgG4 Anti-human CD47 antibody Advanced Cancer 1 66 NCT04257617
Ju
ly 2022 |
 Volume 12 |
MM, multiple myeloma; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; CLL, chronic lymphocytic leukemia.
TABLE 2 | Targeting CD47 in breast cancer.

Treatment Model Reference

Anti-CD47 antibody monotherapy Anti-CD47
Anti-CD47
Anti-CD47
Anti-CD47

Breast cancer cell lines
Breast CSCs
Breast cancer
Breast cancer

(68)
(50)
(69)
(32)

Anti-CD47 antibody in combination with chemotherapy Anti-CD47+Mitoxantrone
Anti-CD47+doxorubicin
Anti-CD47+cabazitaxel
Anti-CD47+mertansine

Breast cancer
Breast cancer
TNBC
TNBC

(69)
(57)
(54)
(70)

Anti-CD47 antibody in combination with tumor-targeting antibodies Anti-CD47+trastuzumab
Anti-CD47+trastuzumab
Anti-CD47+trastuzumab
Anti-CD47+trastuzumab
Anti-CD47+sorafenib

HER2+ breast cancer
Radioresistant HER2+ breast cancer
ADCC-tolerant HER2+ breast cancer
HER2+ breast cancer
Breast cancer

(71)
(72)
(73)
(63)
(74)
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while the efficacy of CD47 antibody alone in inducing PrCRwas not
satisfactory. More importantly, they discovered that the anti-cancer
effect of cabazitaxel in TNBC was due to macrophage activation
rather than drug cytotoxicity toward cancer cells. Hence, the
combination of CD47 blockade and cabazitaxel may be an
effective strategy for TNBC treatment (54).

Numerous studies found that CD47 expression was
upregulated in chemotherapy-treated TNBC cells (80, 81). Si
et al. developed an innovative antibody-drug conjugates (ADCs)
constructed from a specific anti-CD47 mAb and the potent
cytotoxic drug-mertansine for the treatment of TNBCs
following the standard cytotoxic chemotherapies. Compared
with free drug (single drug not conjugated to antibody), ADC
showed higher tumor suppressor potency with reduced IC50,
and significantly inhibited tumor growth after chemotherapy in
TNBC mouse models. Moreover, the whole blood analysis
indicated that the new anti-CD47 mAb had no general
immune toxicity (70).

Anti-CD47 Antibody in Combination With
Tumor-Targeting Antibodies
Anti-CD47 antibody can also be used with biologics in addition
to the combination with regular chemotherapy.

In the study of Weiskopf K et al., using the Her2/neu+ breast
cancer cell line for phagocytosis determination, the combination
of trastuzumab (an anti-HER2 antibody) and high-affinity
recombinant SIRPa protein FD6 or CV1 resulted in the
highest level of phagocytosis, which was significantly higher
than the additive effect of either agent administered alone.
Furthermore, CV1-monomer combined with trastuzumab
completely eliminated tumors in breast cancer xenograft model
using the humanized NOD/SCID/IL-2 receptor gamma-chain
(null) (NSG) mice (71).

During radiotherapy, tumors can gradually adapt to changes
in the physical and chemical environment and develop
radioresistance, which is the main reason for the failure of
clinical radiotherapy. Candas-Green et al. found that the
aggressive behavior of radioresistant breast cancer was caused
by CD47-mediated anti-phagocytosis conjugated with HER2-
prompted proliferation. In vivo experiments, the dual inhibition
of CD47 and HER2 can effectively increase the radiosensitivity of
radiotherapy-resistant tumors and enhance the phagocytosis of
tumor cells by macrophages (72).

Impairments in trastuzumab-mediated ADCC may lead to
relative resistance to trastuzumab in advanced-stage HER2+

breast cancer patients (82, 83). Trastuzumab could engage Fc-g
receptors (FcgR) on macrophages and promote ADCP, which
can be enhanced by anti-CD47 antibody (84). The combination
of anti-CD47 antibody and trastuzumab significantly suppressed
the growth of ADCC-tolerant HER2+ breast cancers, which
could represent a potential new treatment option for HER2+

breast cancer patients (73).
Similarly, in a study by Tsao et al., anti-CD47 antibody

significantly enhanced trastuzumab-mediated ADCP and
promoted TAM expansion and activation. In addition, CD47
expression was inversely associated with the survival of HER2+

breast cancer patients, and the tumors in human HER2+ breast
Frontiers in Oncology | www.frontiersin.org 7
cancer xenografts models treated with trastuzumab plus CD47
inhibition showed complete regression (63).

The highly immunosuppressive microenvironment after
surgery is critical for the recurrence and metastasis of breast
cancer. Recently, Huang et al. designed an injectable Double-
Layer-Gel (DLG) matrix for postsurgical treatment of breast
cancer. The outer layer of DLG could release sorafenib first,
which reeducates TAMs and promotes an immunogenic tumor
microenvironment. The inner layer, loaded with anti-CD47
antibody, enabled the sustained release of anti-CD47 antibody.
They demonstrated that in breast cancer mouse model, the DLG-
based strategy efficiently prevented tumor recurrence and
metastasis by locally reversing immunosuppression and
synergistically blocking CD47-dependent immune escape (74).
BIOSAFETY PROBLEMS AND
FUTURE PERSPECTIVES

Due to the ubiquitous expression in normal cells (85), anti-
CD47 antibodies could cause possible off-target effects, such as
anemia, thrombocytopenia, and leukopenia (76). One study
suggested that Hu5F9-G4, an anti-CD47 antibody, alone or in
combination with other antibodies may accidentally kill normal
erythrocytes, leading to anemia (86). To alleviate this adverse
effect, Advani et al., proposed to give short priming low-dose of
Hu5F9-G4 in combination with rituximab to selectively
eliminate the aged RBCs, thereby inducing compensatory
hematopoiesis (87). The wide expression of CD47 also creates
an “antigen sink”, which means that larger initiation doses and/
or frequenter administrations may be required to achieve
effective blockade. Thus, there is an ongoing need to exploit
safer solutions to overcome toxicities, and several strategies
have been developed to address these issues by selectively
binding to CD47 on tumor cells, including the identification
of tumor-specific CD47 epitopes and the designs of
bispecific antibody.

Although single CD47-targeted agents may have significant
efficacy in breast cancer, data from immunocompetent mice and
breast cancer xenograft models suggest that combination therapy
is still required. Presently, this synergy has been shown to be
effective in preclinical models, such as anti-CD47 therapy
combined with chemotherapy or immune checkpoint
inhibition agents. Future advances in cancer screening and
precision medicine would help define which type and stage of
breast cancer is most amenable to be treated with one or more
specific types of anti-CD47 therapies.
CONCLUSIONS

In conclusion, CD47 is a novel attractive target for the treatment
of breast cancer, which functions as ‘don’t eat me’ signal to assist
cancer cells to escape immunosurveillance. Strategies targeting
the CD47-SIRPa axis demonstrate promising results for breast
cancer treatment. However, there are a series of biosafety
July 2022 | Volume 12 | Article 924740
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problems with such treatments, and further clinical trials are
needed to determine the clinical efficacy of these strategies.
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