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The majority of breast cancers are estrogen receptor (ER)+ and agents targeting the ER
signaling pathway have markedly increased survival for women with breast cancer for
decades. However, therapeutic resistance eventually emerges, especially in the
metastatic setting. In the past decade disrupted epigenetic regulatory processes have
emerged as major contributors to carcinogenesis in many cancer types. Aberrations in
chromatin modifiers and transcription factors have also been recognized as mediators of
breast cancer development and therapeutic outcome, and new epigenetic-based
therapies in combination with targeted therapies have been proposed. Here we will
discuss recent progress in our understanding of the chromatin-based mechanisms of
breast tumorigenesis, how these mechanisms affect therapeutic response to standard of
care treatment, and discuss new strategies towards therapeutic intervention to
overcome resistance.
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INTRODUCTION

Over 250,000 breast cancer cases are diagnosed in the US each year (1). The majority of breast
cancers (70%) express estrogen receptor (ER) and are treated with agents targeting the ER signaling
pathway (2). Endocrine therapy has markedly improved the lives of breast cancer patients for
decades. More recently the addition of PI3K inhibitors (alpelisib) or CDK4/6 inhibitors (palbociclib,
ribociclib, abemaciclib) to antiestrogens has significantly prolonged progression-free survival (PFS)
in comparison to anti-estrogens alone in patients with ER+metastatic breast cancer (3–6). However,
de novo and acquired resistance to these treatments remains a major challenge and a high research
and clinical priority (5, 7). Research over the past decade has unmasked a key contribution of
disrupted chromatin and transcriptional regulatory processes to cancer and in particular, ER+
breast cancer. Laboratory-based functional genetic screens (siRNA, CRISPR), together with
molecular profiling of biopsies from patients resistant to targeted therapies have unveiled
chromatin modifiers and transcription factors linked to metastatic resistant tumors. Here we
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review several key epigenetic mechanisms dictating breast cancer
tumorigenesis and their roles in therapeutic response in ER+
breast cancer. We also discuss the role of epigenetic factors as
promising new targets for overcoming therapeutic resistance in
breast cancer.
EPIGENETIC MECHANISMS OF
ER SIGNALING

ER is a member of the endocrine or steroid receptor subfamily of
nuclear receptors, also known as Type I nuclear receptors. As
members of this subfamily, ER and other nuclear receptors such
as AR, share a ligand binding-driven activation mechanism,
meaning they bind chromatin upon steroid stimulation.
Moreover, they have a common structural domain distribution
that ensures the presence of: a variable binding site for
interaction with cooperating factors at the N-terminus, namely
activation function 1 (AF1); a DNA binding domain (DBD); the
interdomain hinge, which encompasses a nuclear localization
sequence (Hinge); and a specific ligand-binding domain, which
also enables the interaction with additional cofactors and is
known as activation function 2 (LBD, AF2) (2). While these
nuclear receptors exist at the plasma membrane (in their
monomeric form) and in the nucleus (dimerized), the major
pool of ER (85%) localizes to the nucleus upon estrogen
stimulation. Upon the hormonal trigger ER monomers change
conformation and dimerize (Figure 1). Dimerized ER is then
translocated into the nucleus where it specifically binds at
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estrogen responsive elements (EREs), with the subsequent
induction of the estrogen response (8). This leaves
approximately 5% of ER, in its monomeric conformation, that
travels to the cell surface upon palmitoylation and subsequently
associates with Caveolin-1. ER relies on interactions with several
co-regulator proteins to promote or inhibit its activity (Figure 1).
Examples include the p160 family proteins (SRC1, GRIP1 and
AIB1), namely co-activators, as well as nCOR1 and SMRT, which
function as repressors Other cooperating factors consist of
pioneer factors, such as FOXA1 (9) or GATA3 (10); ATP-
dependent chromatin remodelers, for instance SWI/SNIF
complex subunits BRG1, BRM or BAF57; and finally, histone
and DNA modifiers, such as acetyltransferases (HATs),
deacetylases (HDACs), methyltransferases and demethylases.
p160 proteins are responsible for recruiting the co-activators
p300 and CBP, and histone methyltransferases CARM1 and
PRMT1. p300 and CBP have intrinsic and specific histone
acetyltransferase (HAT) activity for H3K14, H4K5, H4K8 and
additional lysine residues in histone 2A and 2B subunits. ER can
also indirectly interact with other HATs. An example is p300/
CBP-associated factor (PCAF), which can self-acetylate or be
acetylated by p300, while it acetylates H3K9 and H3K14. On the
other hand, PRMT1 is responsible for H4R3 methylation, while
CARM1 methylates H3R2, H3R17 and H3R26. However, these
methylation modifications are reversible through the action of
the lysine-specific demethylase 1 (LSD1), which can specifically
demethylate H3K4 and H3K9 (2). Bromodomain protein BRD4
has also been shown to be required for ER-dependent enhancer
activation and transcription (11). Finally, ER also interacts with
other epigenetic regulators, such as Polycomb repressive
FIGURE 1 | Mechanism of action of classical and novel endocrine therapies. Schematic diagram depicting, on the left, the canonical estrogen receptor (ER)
activating signaling cascade and potential downstream interactor types; and on the right, the different mechanisms of disruption of this signaling pathway upon
distinct endocrine therapy strategies, such as, aromatase inhibitors (AI, 1), selective ER modulators (SERMs, 2), selective ER degraders (SERDs, 3) and proteolysis
targeting chimeras (PROTACs, 4). E2, estrogen; ER, estrogen receptor; T, tamoxifen; F, fulvestrant; E3, E3 ligase; HMT, histone methyltransferase; HAT, histone
acetyltransferase; coA/R, co-activator/repressor; PF, pioneer factor; TSS, transcription start site; ERE, estrogen response element.
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complex 1 (PRC1) (12). RING1B, a core PRC1 subunit and a
histone H2A ubiquitin ligase, is overexpressed in luminal breast
cancers and is a crucial regulator of the dynamic, liganded-ER
transcriptional programs (13).
GENOMIC ALTERATIONS AND
STANDARD OF CARE TARGETED
THERAPIES IN ER+ BREAST CANCER

Breast cancer was first demonstrated to be a hormone-driven
disease by George Beatson in 1896 (14), long before the discovery
of ER by Elwood Jensen and Jack Gorski in 1967 (15, 16). These
findings ignited the development of endocrine therapies and
personalized medicine. Currently, the ER signaling pathway is
targeted by selective ER modulators (SERMs) (e.g., tamoxifen),
which compete with estrogen for binding to ER; selective ER
degraders (SERDs) (e.g., fulvestrant) that are thought to induce
ER protein degradation or block ER activity; and aromatase
inhibitors (AIs) (e.g., anastrozole, letrozole, exemestane), which
deplete estrogen sources by inhibiting the conversion of
androgens to estrogens (5) (Figure 1). Of note, it has been
recently shown that a number of fulvestrant-like ER degraders
suppress ER dependent-transcription mainly by slowing the
intra-nuclear mobility of ER (17). In addition, a number of
next generation oral SERDs with potentially better
pharmacological properties than fulvestrant are in clinical trials
(18) (Figure 1). These include rintodestrant (phase I,
NCT03455270 ) , e l a c e s t r an t /RAD1901 ( ph a s e 3 ,
NCT03778931) , g i redes trant /GDC-9545 (phase I I ,
NCT04436744), amcenestrant/SAR439859 (phase III,
NCT04478266), camizestrant/AZD-9833 (phase III ,
NCT04711252), and LY3484356 (phase I, NCT04188548)
among others. Recent press news has revealed that giredestrant
and amcenestrant did not meet their primary endpoint of
improving progression free survival (PFS) while the
EMERALD trials of elecastrant showed a 30% reduction in PFS
during the 2021 San Antonio Breast Cancer Symposium. Novel
therapies that are also in the clinic include the SERMs
lasofoxifene (phase II, NCT03781063), bazedoxifene (phase I/2,
NCT02448771), the proteolysis-targeting chimeras (PROTAC)
ARV-471 (phase 1/2, NCT04072952), and the selective estrogen
receptor covalent antagonist (SERCA) H3B-5942 (phase I,
NCT04288089). Preclinical work has shown significant single-
agent antitumor activity of H3B-5942 in wild-type ER and
mutant ER xenograft models that was superior to fulvestrant
and whose potency could be improved further in combination
with CDK4/6 or mTOR inhibitors (19). The development of
these new bioavailable drugs against ER raises hopes that they
may improve the lives of patients with resistant ER+
breast cancer.

One of the hallmarks of ER+ breast cancer is its dependence
on the phosphatidylinositol-3-kinase (PI3K) pathway, which is
highlighted by the frequency of activating mutations in the gene
PIK3CA (~40%), coding for the catalytic subunit of PI3K. Other
Frontiers in Oncology | www.frontiersin.org 3
alterations that can lead to hyperactivation of the PI3K pathway
in breast cancer include ERBB2 and AKT mutations, and
deletions, nonsense and loss-of-function missense mutations in
the tumor suppressor PTEN (20, 21). Aberrant activation of the
PI3K pathway promotes acquired resistance to anti-ER therapies
in preclinical models (22, 23). The clinical significance of the
PI3K pathway in ER+ breast cancer has been shown by the
approval of PI3K pathway inhibitors in this setting. The
mTORC1 inhibitor everolimus, which inhibits a critical PI3K
pathway node was approved first in combination with AIs in
metastatic breast cancer patients that are refractory to endocrine
therapy (24, 25). More recently, in patients with metastatic ER
+/PIK3CA mutant breast cancer, the addition of the PI3Ka
inhibitor alpelisib was approved in combination with
fulvestrant (4). The AKT inhibitor capivasertib in combination
with fulvestrant has also shown benefit in preliminary studies in
endocrine refractory ER+ breast cancer. This combination may
be effective in AKT or PTEN mutant breast cancer (26).More
recently, it has been shown that proline rich 11 (PRR11)
overexpression amplifies PI3K signaling and promotes
endocrine therapy resistance in breast cancer, suggesting that
the ER+/PRR11-amplified breast cancers subgroup of tumors
can also benefit from treatment with PI3K inhibitors and
antiestrogens (27).

While ER and PI3K pathway alterations are the most frequent
oncogenic drivers in ER+ breast cancers, other drivers such as
cyclin D1 are expressed at a high level, with or without gene
amplification. ER activates the CCND1 promoter, while cyclin
D1 also binds to and facilitates ER transcriptional activity,
reflecting the possible dependence of ER+ tumors on cyclin D1
to initiate the G1-to S-phase transition. Accordingly, addition of
CDK4/6 inhibitors (e.g., palbociclib, ribociclib, abemaciclib) to
anti-ER therapy have markedly prolonged survival compared to
anti-ER therapy alone in ER+ metastatic breast cancers (3, 6).
Thus, after decades of endocrine therapy as a single agent the
approval of everolimus, alpelisib, and CDK4/6 inhibitors has led
to significant progress in breast cancer management. ERBB2
amplification/HER2 overexpression is also found in 10% of ER+
breast cancers and the current standard of care for ER+/HER2+
is a combination of anti-ER and HER2 inhibitors (28). Rare
HER2 mutants found in 5% of endocrine-resistance metastatic
breast cancer have also been associated with endocrine resistance
(29). However, the combination of the HER2 inhibitor neratinib
with fulvestrant has shown promise in this setting (30).

An enrichment in mutations in genes coding for transcription
factors (TFs), such as GATA3, CTCF, FOXA1, and MYC (31);
and chromatin modifiers, such as the histone methyltransferases
(KMT2B, KMT2D, KMT2E) and histone demethylases
(KDM4A, KDM5B, KDM5C, KDM6A) (20), and SWI/SNF
complex subunits (ARID1A, ARID2) (31), have also been
observed in ER+ breast cancer. However, the functional
relevance of most of these alterations remain to be identified.
More recently, the Breast International Group (BIG) molecular
screening initiative AURORA identified a driving role for
somatic mutations in the TF GATA1 and the chromatin
regulator MEN1 among 381 breast cancer patients (32). Apart
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from TP53, PIK3CA, ESR1, and GATA3, the most frequent
alterations in primary and/or metastases in the AURORA
cohort were found in the lysine histone acetyltransferase
KAT6A (32). KAT6A is also amplified as part of the 8p11
amplicon in 10-15% of breast cancers. In addition to the
aforementioned alterations, breast cancers also harbor a variety
of rare mutations with low prevalence across subtypes,
highlighting the heterogeneity of breast cancer and the need to
study these variants to develop targeted therapies matched to the
specific molecular alteration of each patient’s tumor.
TRANSCRIPTION FACTORS AND
CHROMATIN MODIFIERS AFFECTING
THERAPEUTIC OUTCOME IN ER+
BREAST CANCER

In the contemporary era, next-generation sequencing
technologies, such as whole genome sequencing (WGS) and
whole-exome sequencing (WES), have expanded the landscape
of genomic variations occurring in cancer, particularly in
hormone-dependent breast cancer. Among the most frequently
altered genes we find a variety of transcription factors and
chromatin remodelers (31, 33). We will focus this part of the
review on those examples proven to directly or indirectly impact
patient response to standard of care treatment. For more detailed
review of chromatin-based mechanisms in breast cancer see
Morey and colleagues (7).
Alterations in Transcription Factors
Affecting Endocrine Therapy Response
Despite the initial success of targeted endocrine therapies to
tackle ER-driven programs, resistance to such treatments
eventually emerges. Mutations in ER itself are a prominent
example of driver alterations. Recurrent ESR1 mutations
localized at the ligand-binding domain (e.g. mutations at
residues T537 and D538) have been shown to confer ligand-
independent activity, establishing a range of sensitivity to the
distinct ER antagonists and hormone depleting agents, such as
AIs (34–36). Besides promoting a constitutively active agonist
conformation, these alterations lead to an altered ER cistrome
and the induction of a pro-metastatic transcriptome (37). ER
relies on multiple cooperating factors, such as pioneer factors
and coregulators, to regulate the estrogen response. FOXA1 is a
driver of luminal breast cancer identity (38), and a crucial
pioneer and cooperating factor for nuclear receptor activity (9,
39, 40). Recent work aimed at elucidating the mechanisms that
regulate FOXA1 binding to the chromatin, has identified the
lysine-specific demethylase 1A (LSD1) to positively regulate
FOXA1 binding by demethylating lysine 270 on FOXA1 (41).
LSD1 inhibition affected androgen response in prostate cancer
and sensitized tumors further to anti-AR therapy (41). We have
also shown that FOXA1 binding profiles are influenced by the
SWI/SNF complex (42) and the histone methyltransferase
Frontiers in Oncology | www.frontiersin.org 4
KMT2D in breast cancer (43), suggesting a possible role for
the chromatin landscape to evoke further differences in DNA
binding for FOXA1.

Our work and others have also shown that genomic
disturbances in FOXA1 can alter ER transcriptional dynamics,
driving endocrine therapy resistance. Specifically, activating
missense mutations in the Wing2 loop (e.g. H247Y, S250F,
F266L) increase the recruitment of FOXA1 to ER cis-
regulatory elements and enhance ER-mediated transcription.
Breast cancer-specific mutation SY242CS, on the other hand,
incites chromatin accessibility changes, leading to the induction
of alternative transcriptomes. Moreover, these and other hotspot
mutations were found to be mutually exclusive with ESR1
mutations, and associated with a poorer response to AI
therapy in patients (44). In the same line, gene amplification or
mutations at the FOXA1 promoter induce enhanced FOXA1
expression and resistance to standard of care ER degraders and
modulators respectively (45, 46) (Figure 2). While recent studies
characterized the functional outcome of distinct FOXA1
alterations in vitro in other hormone-related cancers, such as
prostate cancer (PCa), further in vivo studies are required to
assess their effect in response to androgen deprivation therapy
(47, 48).

Alterations in a variety of ER-related pioneer factors have also
been associated with endocrine therapy resistance. One example
is GRHL2, a transcription factor classically known for its
involvement in epithelial morphogenesis and differentiation,
that has been recently characterized as a pioneer factor (49).
This novel chromatin opener is enriched at ER loci and
cooperates with FOXA1 to drive endocrine therapy resistance
in luminal breast cancer. Moreover, increased GRHL2 protein
levels are associated with reduced responsiveness to tamoxifen
treatment (50, 51). This transcription factor is also amplified in
prostate cancer, where it colocalizes with and regulates AR. Its
role in the therapeutic response in this context however is ill-
defined (52). Another important example is PBX1, which co-
occupies 85% of ER loci. Magnani et al. showed that, in fact, this
transcription factor is necessary to induce an estrogen-
dependent transcriptome distinct from that activated by
FOXA1. In line with this, FAIRE-seq experiments revealed that
PBX1-bound chromatin is rendered accessible in the absence of
estrogen stimulation, demonstrating its pioneering capacity (53).
PBX1 has also been shown to regulate ER-dependent
transcription upon PI3K inhibition and to sensitize breast
cancer cells further to alpelisib (43). Moreover, PBX1 is known
to be amplified in metastatic ER+ breast cancers. Importantly,
disease-free survival analysis of luminal breast cancer patients
from TCGA uncovered PBX1 amplification as a potential
biomarker with prognostic value, while the family member
with prognostic capacity in PCa has been suggested to be
PBX3 (54, 55). PBX1 mediates the expression of a unique
NOTCH3 transcriptome that drives endocrine therapy
resistance and reduces metastasis-free survival in ER+
cancers (56).

Another bona fide pioneer factor for ER is GATA3, which is
mutated in 17% of ER+ metastatic breast cancers (5). However,
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whether these genomic alterations predict better or worse
prognosis in breast cancer remains a controversial issue. In
fact, while some studies suggest that GATA3 mutant tumors
might have better overall survival (OS) (57), other groups found
no difference in OS, but observed better prognosis for GATA3
WT tumors (58). Moreover, a comprehensive massively parallel
sequencing analysis of 77 tumors suggested that GATA3
mutations could be positive predictive markers for aromatase
inhibitor response (59). The limited experimental evidence
suggests that frameshift alterations in this gene might provide
a growth advantage compared to cells harboring the WT version.
However, these experiments were only conducted in the context
of estrogen supplementation, and had no effect on sensitivity to a
panel of endocrine treatments or chemotherapies. Furthermore,
the mutational repertoire represented in this study only covered
a specific frameshift mutation in the ZF2 domain, while leaving
most of the truncating alterations in GATA3 unexplored (31, 60).
Evidence suggests that GATA2 is the family member with an
equivalent role in regulating the AR cistrome in prostate cancer
(61). In addition, GATA2 expression is upregulated upon
chemotherapy, driving CRPC aggressiveness (62).

ER activity is also regulated by the pioneer function of AP-2.
The gene encoding for this transcription factor, TFAP2, is
amplified in 4% of luminal breast cancers and its gene and
protein expression levels are associated with worse progression
free survival (PFS) upon fulvestrant treatment (63). Magnani and
colleagues identified another TF, namely YY1 to be associated
with clonal enhancers and promoters in breast cancer patients
Frontiers in Oncology | www.frontiersin.org 5
and as a novel critical determinant of ER transcriptional
activity (64).

The pro-oncogene MYC is frequently amplified and is a
driver of aberrant proliferation and aggressiveness in many
tumor types, including basal breast cancers (65). Along with its
well-characterized role in triple-negative or basal-like cancers
MYC has also been associated with endocrine therapy resistance
mechanisms (66, 67). Another important regulator of the ER
transcriptional program is the DNA-binding protein CTCF,
which is also found to be mutated in luminal breast cancers
(20, 68). Recently, single-nucleotide variation (SNVs) at CTCF
binding sites have been associated with altered interaction
patterns and transcription of ER target genes, leading to
endocrine therapy resistance (69). Resistance-associated SNVs
were also strongly enriched at ER binding sites. ER
reprogramming in endocrine resistant cells was associated with
rewiring of ER-bound interactions between active enhancers and
promoters and aberrant expression of these target genes, with
many of them being involved in ER-signaling and therapy
outcome (69). This work suggested that 3D epigenome
remodeling may be an important mechanism underlying
endocrine therapy resistance in ER+ breast cancer.

Treatment with PI3K (43) or CDK4/6 inhibitors (70) have
also been shown to remodel the chromatin landscape of breast
cancer, specifically at enhancers. In regards to CDK4/6
inhibitors, AP-1 transcription factors were upregulated on
treatment, which in turn were implicated with widespread
enhancer activation in breast tumor models (70). PI3K
FIGURE 2 | Transcriptional and epigenetic mechanisms of therapy resistance and potential therapeutic alternatives to overcome them. Top, Alterations in
transcription and pioneer factors involved in resistance (brown) and suggested therapeutic strategies against the driven mechanisms (orange). Bottom, Alterations in
chromatin organizers and modifiers associated to resistance (grey) and suggested therapeutic strategies against the driven mechanisms (blue). SERD, selective
estrogen receptor degraders; SERCA, selective ER covalent antagonists; PROTAC, proteolysis-targeting chimeras. Figure adapted and modified from (5).
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inhibitors on the other hand enhanced chromatin accessibility at
ER cis-regulatory elements (discussed at section 6) (43). Further
work is needed to delineate the chromatin landscape of breast
tumors resistant to PI3K or CDK4/6 inhibitors.

Finally, several coregulators involved in the activation or
repression of the ER machinery have been reported to be
recurrently altered in metastatic breast cancers. Examples are
NCOR1 (71), RUNX, RARA and AP1. However, functional
evidence has yet to be gathered in order to establish them as
drivers of endocrine therapy resistance. The case is similar for
other transcription factors reported to be mutated in metastatic
breast cancers, such as TBX3 or CBFB (31, 33).

For a recent comprehensive review on endocrine therapy
resistance mechanisms see Hanker and colleagues (5).

Alterations in Chromatin Remodelers
Impacting Endocrine Therapy Outcome
Truncating mutations in ARID1A imply loss of function of this
SWI/SNF chromatin remodeling complex subunit in ER+ breast
cancers (31, 32). Loss of function mutations or deletions in the
SWI/SNF nucleosome remodeling components ARID1A and
ARID2 are also enriched in metastatic endocrine-resistant
breast cancer (31). We and others recently reported that
ARID1A loss is associated with a shorter response to SERDs
(11, 42). Mechanistically, ARID1A loss reduces chromatin
accessibility and SWI/SNF complex binding at the loci of
luminal-determining TFs like FOXA1, ER, and GATA3,
resulting in a downregulation of luminal gene signatures and a
subset of estrogen regulated genes. These findings may provide
an explanation for the longstanding clinical observation that ER+
breast tumors exposed to therapy eventually lose ER and become
endocrine therapy resistant. Therapeutic pressure may enable the
emergence of cells harboring loss of function mutations in
ARID1A that confer independence from ER (Figure 2).
Enhancer reprogramming which promotes phenotypic
plasticity and endocrine therapy resistance in breast cancer has
also been observed to be mediated by the coordinated role of
GATA3 and AP1 TFs which re-organize enhancer landscape
promoting tumor phenotypic plasticity (72). Prostate cancer also
utilizes similar mechanisms to overcome androgen- and AR
target therapies. It has been shown that lineage plasticity can
also promote anti-androgen resistance through the SOX2
transcription factor in a TP53-and RB1 loss background in
prostate cancer (73). We anticipate that additional alterations
in epigenetic and transcriptional regulators are responsible for
lineage plasticity upon therapy in hormone-driven cancers.

Sensitivity to endocrine therapies is impacted in a similar
fashion by the perturbed action of chromatin modifiers, such as
histone methyltransferases or demethylases. For instance, loss of
KMT2C (namely MLL3), one of the six members of the SET
family of histone lysine methyltransferases, is reported to drive
hormone independence in ER+ breast cancer. KMT2C is one of
most mutated or deleted genes in ER+ breast cancer patients, and
is associated with shorter disease-free survival upon estrogen
deprivation with AIs. Despite the advantage of KMT2C-depleted
cells in estrogen-deprived conditions, these cells remain ER-
Frontiers in Oncology | www.frontiersin.org 6
dependent and thus, sensitive to therapies involving ER
degraders or modulators (74). Another member of the family,
KMT2D, happens to be frequently mutated in this cancer type.
While there is not enough scientific evidence to relate these
alterations to endocrine therapy sensitivity, our group
demonstrated that loss of KMT2D sensitizes breast cancer
further to PI3K inhibitors through the downregulation of the
ER signaling cascade (43). Thus, it is tempting to hypothesize
that loss of function mutations in KMT2D might increase
sensitivity to ER-targeted therapies. On the other hand, H3K4
demethylases, such as KDM5 (or JARID1B), have been
established as oncogenes in luminal ER breast cancer due to
their frequent amplification or overexpression (75). In fact, high
levels of KDM5 are reported to increase transcriptional
heterogeneity, leading to selection of pre-existing resistant
clones and poor prognosis in ER+ breast cancers (76).
CROSS-TALK BETWEEN SIGNALING
PATHWAYS AND HORMONE RECEPTORS

One of the first evidences of PI3K and ER signaling crosstalk
came from the Breast Cancer Trials of Oral Everolimus-2
(BOLERO-2) phase III clinical trial which demonstrated
improvement in progression-free survival (PFS) in endocrine
resistant ER+ breast cancer patients treated with the mTOR
inhibitor everolimus and exemestane (24). As the first PI3K
inhibitors were emerging in the clinic, we and others studied
their effects on ER signaling with the goal of identifying the most
effective combinatorial therapy for ER+/PIK3CA mutant breast
cancer. In this regard, we observed a highly uniform adaptive
mechanism, orchestrated by the activation of ER signaling upon
PI3Ka inhibition, that limited sensitivity to PI3K inhibitors and
could be reversed by the addition of endocrine therapy (77).
These preclinical findings paved the way for phase III clinical
studies testing the PI3Ka inhibitor alpelisib with fulvestrant in
patients with metastatic PIK3CA-mutant ER+ breast cancer and
culminated in the approval of alpelisib by the Food and Drug
Administration (FDA) in 2019 (4). Of note, in prostate cancer,
which is also dependent on AR and PI3K signaling, it has been
shown that inhibition of the PI3K pathway activates AR
signaling to support tumor survival. Thus, inhibition of
oncogenic PI3K increases tumor growth by unleashing ER/AR
signaling in breast and prostate respectively. Mechanistically,
PI3Ka inhibition enhances ER signaling through loss of
phosphorylation of the epigenetic regulator KMT2D by the
PI3K effectors AKT and SGK (43, 78), providing a rationale
for epigenetic therapy in combination with PI3K inhibition in
this setting. For recent reviews on PI3K inhibitors for cancer
therapy see (79–81).

HER2 overexpression has been shown to mediate resistance
to endocrine therapies through activation of PI3K or MAPK
signaling pathways and thus, ER+ HER2+ patients are currently
treated with endocrine therapy in combination with HER2
inhibitors (5). More recently, HER2 activating mutations were
found in ~5% of endocrine-resistant metastatic breast cancer
June 2022 | Volume 12 | Article 924808
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(31) and were shown to play active roles in driving resistance
(29). Combining anti-HER2 therapy neratinib with fulvestrant
has proved to be an effective therapeutic strategy for these
tumors (30). In addition, alterations in the MAPK pathway
such as NF1 loss are frequent in endocrine resistant ER+
metastatic breast cancer (31), and contribute to resistance to
fulvestrant via both ER-dependent and ER-independent
mechanisms (82). Moreover, nuclear RTKs like FGFR1 have
also been shown to influence gene expression in ER+ breast
cancer and mediate endocrine therapy resistance (83).
COLLABORATIVE CROSSTALK OF
NUCLEAR HORMONE RECEPTORS

Nuclear receptors events in breast cancer have been generally
studied as single receptor chromatin binding events. However, it
has become apparent that nuclear receptors collaborate with
each other to influence each other binding and therapeutic
response with greater complexity than previously recognized.
Carroll and colleagues (84) have reported that activated
progesterone receptor (PR) can reprogram ER enhancer
landscape and that progesterone inhibits estrogen-mediated
growth of ER increasing the anti-proliferative effects of
endocrine therapy. AR has also been shown to facilitate ER
chromatin binding and AR inhibition reduced estradiol-
mediated proliferation in ER+/AR+ breast cancer cell lines and
synergized with tamoxifen and fulvestrant (85). The role of
glucocorticoid receptor (GR) and its post-translational
modification of GR such as SUMOylation has been also shown
to induce or repress a number of ER binding events and
potentially influence decisions on breast cancer therapies (86).
However, it is still unclear the chromatin-based mechanisms
associated with these crosstalk among nuclear receptors.
NEW AVENUES OF
EPIGENETIC THERAPY

Precision oncology efforts have led to the development of epigenetic
drugs and nine drugs are FDA-approved including inhibition of
EZH2, IDH, DNMTs, and HDACs. Multiple others are in clinical
trials for both solids and hematological malignancies. In ER+ breast
cancer, phase II trials (NCT00676663, NCT04190056,
NCT00828854) are testing therapeutic efficacy of epigenetic drugs
with standard of care therapies. Recently, the HDAC inhibitor
entinostat has been explored to re-sensitize ER+ tumors to
endocrine therapy (ENCORE301) (NCT00676663) but
unfortunately has failed to overcome resistance (results presented
byMConnolly et al, San Antonio Breast Cancer Symposium, 2020).
HDAC inhibitors are also in clinical trials in combinations with
CDK4/CDK6 inhibitors (ribociclib, NCT04315233) in triple
negative breast cancer. Histone acetylation catalyzed by histone
acetyltransferases such as p300/CBP have been shown to be
increased in endocrine resistant breast cancer cells highlighting a
need to better understand the role of protein acetylation in breast
Frontiers in Oncology | www.frontiersin.org 7
cancer (7). Interestingly, selective inhibitors against p300/CBP,
namely CCS1477 has been shown to inhibit the AR
transcription program and is currently being evaluated in clinical
trials for metastatic castration resistance prostate cancer
(NCT03568656). A better understanding of the epigenetic
mechanisms influencing breast cancer progression and
therapeutic response will be needed for novel drug discovery
efforts and rationale-combinatory treatments.

We have learned thus far, that epigenetic regulators have been
implicated in endocrine therapy resistant tumors where they
can affect ER-dependent transcription, alter the network of ER
cofactors or its crosstalk with other signaling pathways, or induce
lineage differentiation to promote tumorigenesis. For instance,
tumors with high KDM5B have been associated with a shorter
response to endocrine treatment, suggesting that inhibitors of the
KDM5 family could improve the response to endocrine agents.
Likewise, loss of function mutations in KMT2C or mutations in
FOXA1 have been associated with a shorter response to AIs,
making ER degraders such as fulvestrant the optimal therapeutic
option for the tumors harboring these alterations. In the case of
ESR1 LBD mutations, decreased response to AIs is accompanied
of a reduced sensitivity to fulvestrant (35) requiring alternative
strategies, such as next generation SERDs, (SERCAs) or
PROTACs (19, 87–90).

Other studies have shown how loss of function mutations in
ARID1A are associated with SERD resistance (42, 91). One of the
therapeutic strategies explored inARID1Amutant cancers has been
synthetic lethality. To this end, Carroll and colleagues have
suggested exploiting synthetic lethality-based treatment strategies
in ARID1A mutant cancers using inhibitors of BET proteins (91).
Similar strategies have been proposed for ARID1Amutant ovarian
cancer targeting the methyltransferase EZH2 (92). Epigenetic
regulators such as KMT2D have also been shown to sensitize ER-
driven tumors further to PI3K inhibitors suggesting that small
molecule inhibitors against KMT2D could be a promising
therapeutic choice in combination with PI3K inhibitors and
endocrine therapy (43). Indeed, the development of small
molecules that target chromatin regulators has emerged as an
active area of current drug discovery efforts. For instance, given
the KAT6A amplification in 10-15% of breast cancers, novel
compounds against KAT6A/KAT68 (PF-9363) have been
developed and analyses in preclinical models demonstrate potent
anti-tumor activity in ER+ breast cancer cells and xenografts with
KAT6A dysregulation (93).
CONCLUSION

Over the past decade, the field of transcription and chromatin
regulation has grown tremendously and new chromatin-associated
processes have emerged as drivers of tumor development and
therapeutic response in hormone-driven cancers. These findings
have been potentiated by the genomic, transcriptomic, whole-
exome, and chromatin accessibility sequencing of breast tumors
and preclinical mechanism-based studies using CRISPR-Cas9
screens and whole-genome epigenomic sequencing such as HI-C,
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CUT & RUN, ATAC-seq and others. Specifically, genomic and
transcriptomic analyses of primary breast cancer tumors and
matched metastases, coupled with highly curated clinical
data, from MSK-IMPACT or AURORA (BIG) initiatives have
identified alterations in epigenetic regulators enriched in relapsed
metastatic breast cancer (32, 94, 95). A number of these chromatin
regulatoryprocesses havebegun tobevalidatedandmechanistically
delineated in the lab. The systematic integration of such multi-
omics analyses of paired biopsies in clinical practice coupled with
preclinical mechanistic validation will allow the identification of
uncharacterized epigenetic drivers of breast tumorigenesis and
therapeutic outcome. In addition, the rapid adoption of
technologies that detect circulating tumor-derived cfDNA along
with single-cell RNA/ATAC-sequencing will be important to
capture the molecular heterogeneity of treatment resistance.
Given that some of the genomic mechanisms of endocrine
resistance have been found to be at low frequency, future efforts
will require greater patient sample size and a focus not only on
genomics on a panel of genes but whole-exome sequencing and
transcriptomics and chromatin accessibility analyses to provide
signatures of therapeutic resistance and response. These efforts
would be facilitated by multi-institutional and cooperative data
sharing efforts similar to the AURORA initiative. Finally, the
identification of novel epigenetic regulators as drivers of breast
tumorigenesis and therapeutic response will allow the rational
design of novel inhibitors to overcome resistance. In order for
these mechanisms to be suitable targets for cancer therapy, future
work will need to identify: i) the tumor subtypes that are highly
addicted to the chromatin-based mechanism, ii) rationale-based
Frontiers in Oncology | www.frontiersin.org 8
combinatorial strategies, and iii) optimal dosing and scheduling to
increase efficacy and safety. This new and exciting body of evidence
together with the systematic and integrative pursuit of multi-omics
approaches in preclinical and clinical samples will greatly impact
the study of chromatin regulatory systems in breast cancer and the
identification of new treatment strategies.
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