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There are more than two hundred fifty different types of cancers, that are diagnosed
around the world. Prostate cancer is one of the suspicious type of cancer spreading very
fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer
in the United State of America (USA), and hence it is expected that one out of nine men
diagnosed with this severe disease during their lives. Medical science has identified
cancer at several stages and indicated genes mutations involved in the cancer cell
progressions. Genetic implications have been studied extensively in cancer cell growth.
So most efficacious drug for prostate cancer is highly required just like other severe
diseases for men. So nutraceutical companies are playing major role to manage cancer
disease by the recommendation of best natural products around the world, most of
these natural products are isolated from plant and mushrooms because they contain
several chemoprotective agents, which could reduce the chances of development of
cancer and protect the cells for further progression. Some nutraceutical supplements
might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle
arrest, cell differentiation procedures and changes in the redox states, but in other, it also
elevate the levels of effectiveness of chemotherapeutic mechanism and in results,
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cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted
the prostate cancer and importance of nutraceuticals for the control and management of
prostate cancer, and the significance of nutraceuticals to cancer patients
during chemotherapy.
Keywords: cancer, chemotherapy, prostate cancer, nutraceutical, supplements, nanotechnology, nutrition
1 INTRODUCTION

Natural derivatives are excellent sources of bioactive composites
andarewidelydistributedas themost efficaciousmodernmedicines
(1–3). In recent years, several researchers attained a lot of interest in
the natural dietary agents, due to their therapeutic potential in
cancer suppression and lowering the threat of cancer cell
development (4). Nutraceuticals are characterized as an emerging
food category that includes dietary components, and delivered the
benefits to keep balance in health by improving nutritious
standards. Nutraceuticals are predicted to have relatively lower
toxicity and are associated with adverse effects as compared to
traditional synthetic medications, which are used to cure identical
symptoms since theyarederived fromnatural nutritional resources;
but have presented dose-dependent effects (5–11). Nutraceuticals
act as an interface between, nutrition and pharmaceuticals (12). It
may be challenging to consume the entire nutrients required for the
maintenance of normal physiological and physical health. The
amalgamation of novel nutraceutical derivatives with foodstuff
are easy to consume and becomes functional foods for body (13).

In recent decades, the combination between nutraceuticals and
nanotechnology has received a lot of attention from several
research organizations. Unfortunately, several nutraceutical
products are of major concerned, because it has less benefits to
health, due to their weak physicochemical characteristics such as
poor absorption, less stability, lower water solubility, and probable
chemical alterations after their administration. Nanotechnology
could be considered as a breakthrough in activating the
therapeutic characteristics of nutraceutical products for the
human well-being as immunity booster and protect the body
from forigen harmful entities. Variety of ailments based on their
nutraceuticals potential efficacy and limiting bioavailibilty aspects.
As a result, nanotechnology could be a new frontier in the
development of novel supplementary nutritional products with
less adverse effects and more health benefits (14). Several
nutraceuticals such as quercetin, curcumin, coenzyme Q,
thymoquinone, and green tea polyphenols have been delivered
into nanoparticles and are effective in ‘‘nano chemotherapy” and
‘‘nano chemoprevention’’ (4). The various role of nanotechnology
in the delivery of nutraceuticals is illustrated in Figure 1.
2 CANCER AND CHALLENGES
FACED FOR TREATMENT USING
TRADITIONAL APPROACHES

Cancer is a hazardous, life-threatening ailment having the
utmost challenging afflictions worldwide (15). It portrays
2

enormously alarming circumstances that are illustrated by
unregulated cell growth, resulting in the incursion of nearby
tissues and oftenly extending to other sections of body (16).

Regardless, the usualmethodology of cancer treatment has been
notclear; it relies on surgery, chemotherapy, and radiotherapy.
Usually, radiotherapy and surgical resection are considered
asoften successful techniques in the abolition of the primary
tumor, even though disease relapse due to metastasis or residual
cancerous cells is a ubiquitous problematic issue. As a result,
chemotherapy is frequently used to address these issues (17).

There are a number of therapy options available to men
diagnosed with localized prostate cancer—that is, illness that
hasn’t progressed beyond the prostate region—based on the stage
and grade of the disease (potential aggressiveness of the tumor).
Some patients may have surgery on their own. Radiation
treatment may be the sole option for some.

Somepeoplemayhavebothof these conditionsat the same time.
When there’s a fear that the operationdidn’t remove all of the tumor
tissue, this is a common reaction. Radiation treatment may also be
advised if a patient’s PSA levels begin to increase months or even
years after surgery, even if imaginghasnot beenable todetect tumor
development. A shorter and more intense course of radiation
treatment after surgery is safe for many patients with prostate
cancer.Aside fromdestroyingor slowing thedevelopmentof cancer
cells, radiationmayharmhealthy cells in the area aswell. Side effects
are possible if healthy cells are damaged.

Radiation treatment often leaves its victims exhausted. To be
fatigued, one must feel drained and worn out on a regular basis.
When it happens, it might either come on quickly or gradually. If
you’re having the same quantity of radiation treatment to the
same place of your body as someone else, you may experience
weariness in different ways.

The use of hypofractionated radiation therapy to treat prostate
cancer has already been acknowledged by certain patients who are
receiving radiation therapy alone for the disease. However, it’s not
known whether this form of radiation treatment should be used
after surgery.

There are several sensitive sites in your bladder and rectum that
might be targetedby radiation following surgery.Radiation-damaged
healthy cells often recoverwithin a fewmonths of therapy ending. It’s
possible, though, that some individuals may have adverse effects that
don’t go away. In other cases, symptoms may not appear for many
months or even years after the completion of radiation treatment.

According to previous research it has been observed that several
plant-based medicines play a vital role in molecular and cellular
processes that underlie tumor development. Numerous
chemotherapeutic agents for cancer treatment are produced from
plants such as vinca alkaloids (e.g.,vincristine and vinblastine) and
July 2022 | Volume 12 | Article 925379
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Taxol (Taxus brevifolia). Nutritional dietary agents could be
advantageous in cancer treatment. Several evidences revealed that
meals that are relatively lower in carbohydrates and higher in high-
quality proteins, fats, and fibers are considered to be beneficial for
cancer patients. In addition, nutraceutical products may also be
advantageous in the reduction of toxicity and adverse effects allied
with radiation therapy and chemotherapy, and provide improved
living circumstances by plummeting tumor cachexia (18). This
prevalent usage of nutraceuticals has receiveda lot of consideration
for the importance of dietary nutrients in cancer pathogenesis (19).
3 WHY NUTRACEUTICALS REQUIRED
FOR CANCER

Although numerous anticancer medications are available
commercially, but the advent of acquired drug resistance, as
well as the extreme side effects of these widely used treatments
are main problems in efficacious chemotherapy. As a result, it is
suggested that newer and innovative drugs have to be designed
rationally with fewer adverse effects (20).

Nutritionaldietary components andphytochemicals havea long
and illustrious history, as well as substantial applications in the field
of modern medicines. Nutraceuticals can influence DNA
transcription and regulate the factors responsible for DNA
damage in tumor cells (21). They have shown to re-sensitize
drug-resistant tumors due to their pleiotropic property and
Frontiers in Oncology | www.frontiersin.org 3
capability to affect various signaling pathways (AMPK signalling
pathway, EGF-mediated signalling pathways, NF-kB signalling
pathway etc), which is a positive attribute of natural components.
Nutraceuticals target the cancerous cells at multiple levels by acting
on theirmolecular targets and cause cell cycle arrest or apoptosis by
inhibiting the proliferation of cancer cells, and suppression of
metastasis, invasion, or angiogenesis (22). They stop cancer from
spreading by inhibiting the signaling pathways that are essential for
cancer progression (23). For instance, Oleuropein reduces cell
proliferation primarily through two mechanisms: on the one
hand, it acts by inhibiting the cell cycle via upregulation of cyclin-
dependent kinase (CDK) inhibitors, and on the other hand, it
modulates the genic expression responsible for the induction of
intrinsic and extrinsic pathways of apoptosis via the upregulation
of p53 and p21. In addition, oleuropein may change the activity of
critical molecules implicated in the initiation and progression
of cancer, including MAPKs, the c-Met proto-oncogene, and the
fatty acid synthase (FASN) enzyme (24). Demidenko et al. found
that luteolin inhibited cancer cell proliferation throughout theG1/S
andG2/Mstages by inhibiting theHT-29 cell cycle (25). Inaddition,
luteolin inhibits the overexpression of certain antiapoptotic
proteins in afflicted cells and regulates the expression and activity
of CDC2 (CDK1) kinase and cyclin B1 proteins, which trigger the
G2/M transition phases in luteolin-treated colon cancer cell lines.

Many nutraceutical products such as soy isoflavones, curcumin,
resveratrol, indole-3-carbinol, lycopene, green tea polyphenols,
epigallocatechin-3-gallate, and 3,3’-diindolylmethane (DIM)
FIGURE 1 | Role of nanotechnology in nutraceutical’s delivery system.
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cause downregulation of signal transductions such as Akt, PI3K,
NFkB, mTOR and other pathways that are required for cancer
progression (26). Some of them has been tabulated as Table 1.

Nutraceuticals have a great potential to modulate various
molecular targets, such asgrowth factors [e.g., epidermal growth
factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-
1R), HER2, and VEGFR], transcription factors [e.g., STAT3, NF-
kB, NRF-2, activator protein (AP-1), HIF-1a and peroxisome
proliferator-activated receptor (PPARg)], protein kinases [e.g.,
Bcr-abl, phosphoinositide 3-kinase (PI3K), Raf/Ras and AMPK],
inflammatory mediators [e.g., TNF-a, 5-LOX, COX-2, CRP, IL-6,
IL-8, and iNOS], and other targets that are involved in cancer
progression (116). These therapeutic characteristics make
nutraceuticals good candidates for suppressing carcinogenesis
and improving treatment results in cancer patients (22). The
molecular targets and mechanism of action of nutraceutical
products in prostate cancer therapy are depicted in Figure 2.

4 PROSTATE CANCER

Cancer is the leading cause of death worldwide, where the
mortalilty rate of cancer is increasing dramatically. Majority of
the cancer cases in the world is represented by prostate cancer
(PC) with an estimated value of 13.5% (117). PC is well known as
a non-skin cancer and is considered as the most common form of
male cancer in the world (118). The abnormal growth of cells
from the prostate gland leads to the development of PC. It is
slowly growing cancer that spreads tumor cells to the other parts
of the body, especially to the bones and upper lymph nodes. The
major risk factor for the development PC in men is their age,
race, and family history of disease. In the first stage, PC is less
pronounced. In the later stages Lower Urinary Tract Symptoms
(LUTS) including pain and urinary incontinence, presence of
blood in the urine, back pain, and pain in the pelvis region have
been reported (119). The risk of death from the PC is less
malignant as the slow growth of tumor cells is not fatal to the
patient, and hence patient can survive with proper and effective
treatment strategy. Deaths from PC occur in the metastasis stage,
which is the worst part of cancer, where it spread to almost every
organ of the body, including the spine, rectum, brain, bone, and
Frontiers in Oncology | www.frontiersin.org 4
lymph nodes (120). In general, PC is rare for the people below 50
years of age. The average age of the patient with PC is between
72-74 years, and about 85% of patients are diagnosed with it
above the age of 65. Due to the genetic predisposition, the
incidence rate of PC is high in families when compared with
other forms of cancer. About 10-15% of patients diagnosed with
PC will have at least one relative with the disease, and the first
relatives of patients with PC are two to three times more likely to
be affected with it. According to GLOBCAN 2020, PC is another
common cancer after lung cancer affects men worldwide,
including an estimate of 1,414,259 young people and 375,304
deaths by 2020. The incidence and mortalilty rate of PC in the
world is associated with increase in the age on diagnosis (121).
The incidence rate of PC increases with age, where among 350
men one under the age of 50 are diagnosed with PC. In every 52
males 1 between the age of 50-59 increases the incidence of PC,
even 60% men above the age limit of 65 also increases the
incidence rate of PC (122). The mortality rate of PC increases
with the age and approximately 55% of deaths occur above the
age of 65.

PC is mainly associated with the prostate gland. The prostate
gland is a part of male reproductive system that produces
alkaline prostatic fluid to maintains the health and function of
the sperm (123). The prostate grows and matures quickly under
normal circumstances as circulating androgen levels rises during
adolescence (124). The prostate can be prone to inflammation,
hyperplasia, and cancer, that can alter testosterone-regulated
growth and function (125). The entire structure of prostate has
been altered by cancerous growth due to the effects of increasing
levels of androgens (126).

PC is caused by environmental factors, diet, hormones,
lifestyle factors, and a person’s genetic history (127). PC is
mainly related to the western lifestyle, especially foods high in
fat, meat, and dairy products. PC occurs due to the abnormal
growth in cells of prostate gland. This tumor growth is followed
by initial mutations and genetic mutations including the p53
gene and retinoblastoma, ultimately leading to tumor
progression and metastasis. As PC invades the area, abscesses
in the temporal area spread to the neck of the bladder, and the
peripheral-zone abscesses extend into the ducts and seminal
vesicles. About 90% of PCs are adenocarcinomas. Squamous cell
carcinomas make up less than 1% of all prostate carcinomas. In
PC, 70% come from the surrounding region, 15-20% from the
central region, and 10-15% from the temporal area. Most
importantly, PC has multifocal and coordinated involvement
of many prostate sites due to clonal and nonclonal cancer cells.

The treatment of PC and its recommendation rely on most of
the factors which includes, possible side effect, type, stage of
cancer, patient’s preferences, and overall health condition. Along
with all treatments, patients should be monitored closely to
demonstrate clinical, biomedical, and radiological progress.
Repeated photography and baseline scanning throughout 3–6
months is highly recommended as a major challenge in
determining appropriate treatment (128). The treatment policy
of PC covers three approaches- radiation, surgery, and
chemotherapy. The pharmacological agents available for the
TABLE 1 | Tabulated data of studies showing nutraceuticals having anti prostate
cancer activity.

Nutraceuticals References

Curcumin (27–32)
Genistein (33–41)
Ellagic acid (42–49)
Berberine (50–57)
Piperine (58–62)
Fisetin (63–70)
Pomegranate (71–73)
Delphinidin (74–76)
Daidzein (77–84)
Gambogic Acid (85–88)
Lycopene (89–98)
Luteolin (99–108)
Isothiocyanate (109–115)
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treatment of PC include antineoplastics, systemic antifungals,
chemotherapy modulating agents, endocrine monoclonal
antibodies, corticosteroids, bisphosphonate derivatives and
radiopharmaceuticals (129). Docetaxel chemotherapy was the
first treatment that showed improvement in PC. Survival benefits
have been seen in all age groups of patients affected with PC,
followed by the established form of docetaxel injected three times
a week in 10 cycles as first-line chemotherapy. The side effects of
docetaxel are similar to those seen with other medications such
as nausea and vomiting. The main drawback of this drug is that it
is associated with motor and sensory peripheral neuropathy.
Moreover, testing for men with recurrent disease is higher,
especially after more than six months of relief from docetaxel
exposure (130). Cabaxitaxel is another PC chemotherapy
medication, approved by FDA. The main drawback of this
drug in patients receiving toxic substances such as neutropenic
sepsis cannot tolerate the side effects produced by this drug.
Concomitant steroids and antiemetics are offered to reduce the
side effects produced by Cabaxitaxel (131). Abiraterone which
falls under hormone therapy, is a selective inhibitor of
cytochrome p450 17A1 (CYP17). The drug Abiraterone is
available in the form of oral dosage form and is given in
combination with prednisolone in low doses. The common
side effects of this drug include an increase in mineral
corticoid levels, leading to hypertension, hypokalaemia, and
fluid retention (132). A major risk factor for this drug is high
Frontiers in Oncology | www.frontiersin.org 5
levels of transaminase, which may interfere with liver function
over time. Enzalutamide is a novel antiandrogen that has shown
significant antitumor activity before and after PC chemotherapy.
The limitation of enzalutamide is the occurrence of seizures
reported in less than 1% of patient treated with it (133). Radium-
223 is a radiopharmaceutical compound known as alpharadin to
treat PC (134). The drug attracts double-stranded DNA, breaks
down nearby cancer cells simultaneously, and saves normal
tissue without significant visual effects. One of this drug’s most
common side effects is bone pain because it is not recommended
for patients with arthritis. Sipuleucel-T is the only
immunomodulatory agent approved to treat PC and the first
FDA-approved medical vaccine. The main limitation of this drug
is that it affects sexual and reproductive problems in
patients (135).

4.1 Pathophysiology for PCa
Androgen receptor (AR) signalling is crucial for prostate
differentiation and function, as well as PC development and
progression. A single copy gene on the X-chromosome encodes
the human AR protein (Xq11.2-q12). It is a 919-amino-acid
protein that may vary in length due to poly-glutamine, poly-
glycine, and poly-proline repeats of varying lengths. The length
of poly-glutamine repeats has been linked to receptor activity
levels. The length of the repetitions varies from 9 to 36 residues,
with an average of 18 to 22 repeats. Spinal and bulbar muscle
FIGURE 2 | Molecular targets and mechanism of action of nutraceutical products in prostate cancer therapy.
July 2022 | Volume 12 | Article 925379
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atrophy are linked to very lengthy repetitions (136, 137).
Although there is some indication that the length of the poly-
glutamine repeat is linked to the risk of PC, epidemiological
studies have revealed no substantial link (138).

AR, like other nuclear receptor family ligand-activated
transcription factors, has three main domains: an amino-
terminal transcriptional activation domain (NTD), a DNA-
binding domain (DBD) with two zinc finger motifs that
determine the DNA sequences recognised by the receptors,
and a carboxyl terminal ligand-binding domain (LBD) that
provides the regulatory switch by which androgens control the
receptor’s transcriptional activity. A nuclear localization signal is
seen in the hinge region (H), which joins the DBD with the LBD.
High-affinity DNA binding is also facilitated by a portion of the
hinge region (138).

Androgen-receptor (AR) protein is stabilised and protected
from degradation by heat shock proteins when androgens aren’t
present (Figure 3). The two primary ligands of the AR,
testosterone and dihydrotestosterone, control its activity
(DHT). Prostate 5-reductase converts testosterone into the
more powerful metabolite DHT, which is generated by
testicular Leydig cells. In terms of AR binding affinity, DHT
has a nearly 10-fold advantage over testosterone. The
phosphorylation of numerous serine residues occurs as a
consequence of DHT binding to the AR. Protection against
proteolytic degradation, stability, and transcriptional activation
are all possible outcomes of AR phosphorylation (139). AR
transactivation is regulated by a number of coregulatory
proteins that are able to react to changes in the
microenvironment to control particular gene targets that are
critical for cell growth and survival (140). There is a natural
balance between cell proliferation and cell death in the normal
prostate epithelium, but this equilibrium is broken in PC,
resulting in tumor development (141).
4.2 Nanonutraceuticals Based Approaches for
Prostate Cancer
Nanotechnology deals with wide range of technologies,
materials, and production processes for the development of
many medical products. The origins of nanotechnology create
a variety of opportunities in various fields, maximum benefits are
especially observed in the field of nanomedicine. Over the past
two decades, the successive generation of nanoscale science and
nanotechnology has been responsible for significant growth in
the field of nanomedicine. At present, nanotechnology offers
various benefits in the development of novel anticancer drugs
that help to increase the immune system strength as compare to
traditional medicine. Drug treatment associated with PC
depends on the severity of the disease, especially the two types
of methods have been considered for PC treatment. In the first
case, early detection and pharmacotherapy are recommended
and other forms of pharmacotherapy after surgical removal or
radiation treatment has been recommended (142). Conventional
treatment with the use of drug cells and nanotherapy may not
work as the body tissue of the tumor patients and drug resistance
Frontiers in Oncology | www.frontiersin.org 6
varies greatly while simultaneously increasing the dose leads to
systemic drug accumulation and toxicity. Therefore, it is an
urgent requirement of improved drug treatment by increasing
specificity by reducing systemic toxicity. The development of
controlled nanocarriers with improved safety and efficacy, which
could meet the clinical requirements for disease intensification
and the production of a suitable clinical protocol has been widely
accepted. With the discovery of newly identified approaches to
relevant clinical challenges, nanotechnology plays a vital role in
the treatment of PC (143).

The benefits listed above can be listed as targeted drug delivery
for tumors, the onset of apoptosis, and drug accumulation in
targeted tissues to increase the exposure of cancer cells (144).
Despite the complex nature of the need for a natural origin for
drug possibilities, studies began to focus on the possible additional
use of dietary products that could be used to prevent, treat (or)
delay the onset of certain health problems (145). Nutraceuticals, a
compound name derived from ‘nutrients’ and’ medicines’, are
defined as’ Phyto complex if their origin comes from the diet of
vegetables and secondary metabolites when found in animal foods,
are concentrated and mistreated (146). The most effective and
promising way to support nutraceuticals’ health benefits is by the
deve lopment of nutraceut ica l s a t the nano leve l .
Nanonutraceuticals provide greater safety and efficacy when
used to treat health conditions, especially in those patients who
cannot afford standard medical treatments. In addition to
conventional therapy, a diet high in vegetables and fruits was
associated with PC, suggesting that the disease could be prevented
to some degree by changing lifestyle (or) eating habits (147).
Lycopene, the primary carotenoid in tomato, has been linked to a
reduced risk of prostate cancer, and preclinical studies have
showed encouraging findings in normal prostate tissue showing
tomato and lycopene may suppress androgen signaling. Live-cell
Raman microscopy was used by Scarpitti et al. to study the
transport of lycopene into PC-3 prostate cancer cells (148). In
order to overcome lycopene’s low aqueous solubility and the
difficulty of replicating physiological uptake by cells, the tween
80 micelle mimics natural lipoprotein complexes that deliver
lycopene in vivo. It also provides a stable signal for assessing
cellular uptake of the nutraceutical formulation. The Raman
pictures show the lycopene’s subcellular distribution in the cells.
At 532 nm, the Raman signal for lycopene is resonantly amplified,
enabling a simple, sensitive, and label-free method to detect and
quantify lycopene absorption in live cells. A reduction in local
androgen regulatory signals and the production of insulin growth
factor type-1 (IGF-1) and interleukin 6 were shown to enhance the
rate of necrosis in mice prostate cells when lycopene was applied
(149). For example, antioxidative, cell progression, apoptotic and
insulin growth factor type 1 inhibitors of lycopene have been
identified (150–152). In the past, researchers have shown a link
between rising IGF-I blood levels and an increased risk of cancer,
particularly prostate cancer. In transgenic rats, a higher frequency
of prostatic intraepithelial neoplasia (PIN) was associated with
higher levels of IGF-1 expression on the prostatic epithelium. As a
result, IGF-1 was not only linked to an increased risk of prostate
cancer, but it was also playing a role in carcinogenesis by
July 2022 | Volume 12 | Article 925379
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promoting cell proliferation and interfering with the process of cell
death (153, 154). Lycopene’s ability to suppress IGF-1 might be a
major factor in preventing prostate cancer.In the field of targeted
medication delivery, liposomes are the most widely used and
thoroughly studied nanocarriers. Stabilizing therapeutic
chemicals, overcoming barriers to cellular and tissue absorption,
and enhancing biodistribution of compounds to target areas in
vivo have all contributed to better therapeutics for a variety of
biomedical applications (155–158). There are liposomes that have
distinct aqueous regions that are made up of one or more
concentric bilayers of lipid. Liposomal vesicles are able to
encapsulate a wide spectrum of medications because of their
unique capacity to encapsulate both lipophilic and hydrophilic
molecules. There are hydrophilic and hydrophobic molecules in
the aqueous core of the bilayer membrane A variety of
macromolecules, including as DNA, proteins, and imaging
agents, may be delivered through the vast aqueous core and
biocompatible lipid shell (159–169). Drug delivery systems like
Frontiers in Oncology | www.frontiersin.org 7
l iposomes have a broad variety of biophysical and
physicochemical features that may be manipulated to alter their
biological qualities. Particle size, charge, the number of lamellae,
the lipid content, and surface modification with polymers and
ligands all influence the stability of liposomal formulations in both
in vitro and in vivo (170–177). Due to their natural phospholipid
composition, liposomes are commonly thought to be
pharmacologically non-toxic with minimal side effects. However,
a growing number of studies have shown that liposomes may not
be as immune-inert as once thought (178–183).

The use of liposomes in medicine opens up a world of
therapeutic possibilities for a broad variety of diseases.
Research into lipid-based medication delivery has grown
significantly in the experimental in vitro and in vivo phases in
the last 50 years since liposomes were first discovered. The use of
liposomes in the administration of a broad variety of therapeutic
and diagnostic substances and agents, such as drug molecules,
gene therapy, and bioactive agents, is well-established in the field
FIGURE 3 | Androgen receptor (AR) ligand-dependent gene transactivation mechanism 5-reductase converts testosterone (T) to dihydrostosterone (DHT) in theprostate
epithelical cell. DHT binding to AR causes dissociation of the AR-HSP (Heat shock protein) complex, dimerization, and nuclear translocation. AR binds to androgen
response elements (ARE) in DNA and recruits co-activators to enhance transcription, where P, Phosphate group.
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of liposome technology. There are several ways to increase the
effectiveness of these formulations, including as altering the lipid
composition, the charge of the lipid, and the inclusion of surface
coatings or ligands (184–194).

Curcuma longa (curcumin) is a well-studied nutraceutical
derived from the turmeric plant in its purest crystalline form
(195) and has been carefully described in several studies. Various
signalling pathways, including mitogen-activated protein kinase
(MAPK), epidermal growth factor receptor (EGFR), and nuclear
factor B (NFB), have been found to suppress PC cell proliferation
and invasion and cause apoptosis in vitro and in vivo (196–198).
Genes involved in inflammation, cell proliferation, and cell
survival are heavily regulated by the NF-kB transcription factor.
Many NF-kB-regulated genes, including as COX-2
(Cyclooxygenase-2), 5-LOX (5-lipoxygenase), TNF (Tumor
necrosis factor), IL-6 (Interleukin 6), and EGFR tyrosine kinase
activity, have been shown to be inhibited by curcumin (199–202).
As part of the steroid receptor family, androgens play a critical role
in the development and progression of PC (203, 204). To promote
PC aggressive growth, aberrant activation of androgen signalling is
caused by AR mutation and amplification (205). ARs and AR-
associated cofactors have been shown to be suppressed by
curcumin (206, 207). NKX3.1 (NK3 Homeobox 1), KLK3/(PSA)
(Kallikrein related peptidase 3/Prostate-specific antigen),
TMPRSS2 (Transmembrane serine protease 2), and TMPRSS2
(Transmembrane serine protease 2) were all downregulated by
curcumin in both androgen dependent LNCaP and androgen-
independent C4-2B cells. Nearly 90% of cancer-related fatalities
are the result of metastasis (206, 207), which is a condition
characterised by rapid cell proliferation. Understanding that
several cell signalling pathways are disrupted in PC growth and
bone metastases, the majority of PC medicines target particular
targets. Thangapazham et al., formulated a liposomal formulation
of curcumin to enhance curcumin’s anticancer activity against PC
(208). The liposome of curcumin composed of dimyristoyl
phosphatidyl choline (DMPC) and cholesterol as a primary
ingredient for its preparation. The average particle size of
liposomes was found to be 100-150 nm. When cells were
exposed to DMPC liposomal curcumin (5-10 M) for 24-48
hours at 37 C, cell growth was 70-80% inhibited. Free curcumin,
on the other hand, only showed comparable inhibition at levels ten
times greater (>50 M). LNCaP cells were likewise shown to be
more responsive to liposomal curcumin-mediated inhibition of
cell growth than C4-2B cells. Curcumin liposomes and free
curcumin both have a positive effect on LNCaP and C4-2B cells,
with 31 and 70 percent of LNCaP cells surviving 10 M liposomal
and free curcumin therapy, respectively. PC cell growth was
inhibited more effectively by DPPC and DMPC liposomal
curcumin than free curcumin. However, DMPC liposomal
curcumin was shown to be the most effective of the
liposomes examined.

Phan et al., prepared genistein loaded liposomes and stealth
liposomes (GenLip) as a novel nanocarrier to enhance the
solubility, bioavailability, pharmacokinetic properties, and
cytotoxicity of genistein for specific induction of apoptosis in
breast, ovarian and PC (209). The conventional and stealth
Frontiers in Oncology | www.frontiersin.org 8
liposomes containing phospholipid and cholesterol boosted
genistein’s solubility, stability, and extended-release profile. The
antioxidant activity showed peroxide neutralization in fluorescent
probe oxidation assay quantitatively and microscopically for
GenLip. The anticancer activity of GenLip was performed in a
murine and human cancer cell line in a concentration and time-
dependent manner. They performed the pro-apoptopic activity
whereGenLip has maximum P53-independent apoptotic pathway
markers compared with all treatments (209).

Silibinin and cabazitaxel based liposomes were prepared by
Mahira et al, using ethanol injection based approaches (210).
Lipids along with silibinin and cabazitaxel were dissolved in
ethanol solvent, and TPGS was added with constant stirring to
form liposomes during evaporation of solvents. The liposomes
thus prepared has particle size of 100nm and showed enhanced
antitumor activity on PC cell lines, indicating the potential for
co-loading the molecules. The Hyaluronic acid based liposomes
interfered in the G2/M cell cycle arrest causing apoptosis. The
presence of HA caused increased in delivery of entrapped
molecules into the CD44 expressing cells, and suppressing
them (210).

The EMT, STST3, and AKT pathways, all of which are
necessary for the evolution of PC, were inhibited by plumbagin
therapy in the PTEN deletion PC mouse model, as described by
Hafeez et al. (211). Oncogenic cells need high glucose absorption
in order to fulfil their energy and anabolic demands in order to
maintain fast proliferation and angiogenesis; as a result, cancer
cells overexpress the GLUT transporter family, which consists of
14 members (212). Glucose transport in cells is increasingly
being implicated in oncogenesis and tumor suppression,
according to mounting evidence (213). This suggests that
GLUT receptor expression might be suppressed in order to
better our knowledge of the illness as well as to decrease tumor
development. Genistein, a naturally occurring isoflavone, has
been shown to have several health advantages, including
anticancer properties (214). Genistein has been shown to
increase apoptosis in hepatocellular carcinoma (HCC) via
inactivating GLUT1 and thereby reducing aerobic glycolysis.
PC cell lines were investigated by Chandler et al. for the
presence of GLUT1 and GLUT12 mRNA and protein (215).
The GLUT1 and GLUT12 proteins were found in the plasma
membrane and cytoplasm by immunofluorescence. Tumors in
the prostate, both benign and malignant, have various GLUT
proteins (216). Experimentation with genistein on PC cells has
demonstrated that Bax expression is increased, apoptotic signals
are stimulated, and the anticancer effect of Cabazitaxel is
enhanced to inhibit castration-resistant PC growth, as
previously reported (mCRPC). The combination of genistein
and cabazitaxel in the treatment of mCRPC xenograft tumors
was shown to have a substantial effect on the growth of the
tumors (217). Genistein’s action on cancer cells is restricted to
the blockage of GLUT receptors, preventing glucose absorption,
according to previous studies. As a result, administering it alone
may not be sufficient to stop the spread of PC cells. It is thus
possible to use genistein in conjunction with well-known
anticancer medicines to better target cancer cells and achieve a
July 2022 | Volume 12 | Article 925379
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higher therapeutic index. Tian et al., have developed liposomal
preparation containing genistein and plumbagin for targeting
delivery to PC specific membrane antigen (218). The Genistein
Plumbagin liposomes (GPL) with size 80-100nm size, were
conjugated with PSMA specific antibodies. The Plumbagin
released rapidly from liposomes in comparison to Genistein.
Plumbagin showed sensitizer effect on genistein, thus improving
the anticancer activity and inhibiting the pristatae cancer. The
GPL showed better effect on the LNCaP cell lines in comparison
to PC-3 cells, which can be due to high expression of PSMA on
LNCaP cell lines. The GPL increased the presence of free radicals
and decreased expression of GLUT-1 receptors and Akt3
proteins. These events led to inhibition of proliferation of
PC cells.

Unprocessed olive fruit and leaves are high in the natural
component oleuropein (OL), which is a significant member of
the secoiridoid family. Chemically, it is an elenolic acid/
dihydroxyphenylethanolheterosidic ester that hydrolyzes to
eleonolic acid and hydroxytyrosol (219), among other
beneficial compounds. A variety of pharmacological actions
have been found to include cardioprotection (antiarrhythmic),
hypotens ive (spasmolyt ic) , and ant i - inflammatory
characteristics in OL. In addition, a human pharmacokinetic
investigation found that oral administration of olive phenolic
compounds resulted in fast absorption, metabolism, and renal
clearance. Oleuropein’s bioavailability and metabolism were also
shown to be very variable and depending on formulation factors
as well as gender (220). As a result, intravenous injection is often
recommended to address the drawbacks of oral delivery.
However, no research has been done in animals to illustrate
the pharmacokinetic characteristics of OL following intravenous
administration. The drug is likely to have little impact on
prostate tissue owing to its quick metabolism and elimination.
A long-circulating intravenous approach is needed to circumvent
the problems encountered by the oral route and to properly
target PC cells with an effective dose of OL in PC care. By using a
conventional film-hydration approach, the liposomal
formulation was produced and extruded to produce nanosized
vesicles with a limited range of sizes (221). In the passive
targeting of cancer cells, increased permeability and retention
(EPR) effect plays a significant role. The fenestrations in cancer
cell membranes are 200 nm greater than in normal cell
membranes, which typically have fenestrations of 50 nm. It is
conceivable that nanocarriers that are between the lengths of 50
and 200 nm will find their way into cancerous tissues. At
addition, the weak lymphatic system in the tumor site results
in extended nanocarrier retention (222). It has been shown that
cancer cells have a negatively charged surface owing to the
release of lactic acid by cells with low oxygen levels (223). This
liposome exhibits a positive zeta potential because cholesterol
was incorporated into the lipid bilayer, which contains a positive
charge head group. It was hoped that the liposomes’ positive
charge would aid in tumor retention. This low positive potential
may, however, lead to less stability due to decreased repulsion
between charged particles. A substantial inter-bilayer repulsion
was given by the presence of PEG on the liposome surface, which
Frontiers in Oncology | www.frontiersin.org 9
would have prevented aggregation (224). Comparative DSC
thermograms of OL and OL-FML revealed a reduced peak of
OL in the liposomes, which indicated that OL molecules were
mostly contained inside the vesicular core. Liposomes’ polar
surface and the presence of hydrophilic PEG strands make it
possible for certain OLmolecules to be adsorbed on their surface.
Within the first hour of the investigation, 27.54 ± 2.995 percent
of OL was released from the OL-FML, a burst release effect was
detected. After then, there was a steady discharge over the next
24 hours. An aqueous soluble drug’s release pattern was seen in
the OL solution. During the first hour of the experiment, the
majority of the OL was excreted. The anticancer effectiveness of
compounds and drug delivery systems is first determined via
basic studies on cell viability. Researchers found that OL-FML
has significantly inhibited cell viability in comparison to OL at all
of the concentrations tested. The IC50 of OL-FML was much
lower than that of OL solution. Cellular surface adsorption of
liposomes and subsequent endocytosis are facilitated by the
attraction of positively charged liposomes to negatively charged
cell surfaces. Apoptosis and growth-promoting signals may be
activated in cancer cells by persistent oxidative stress (225). In
addition, OL inhibits Akt signalling by downregulating pAkt
(226), which in turn leads to the activation of apoptosis in cancer
cells. In the SH-SY5Y cell line, OL was tested for in situ TUNEL
of nicked DNA and shown to induce apoptosis (227). TUNEL
test has demonstrated that both OL and OL-FML induce
apoptosis in 22Rv1 cells.

Zhou et al, developed curcumin-metal ion based liposomal
formulation (228). The flower shaped confirmation of liposome
was reported first time and effect of various metal ions were
evaluated on the cancer cell lines. Metal and ligand selection was
critical to the success of the cancer treatment medication
complexes (229). Endogenous metal ions, which included a
variety of trace metals, were not harmful to normal cells and
were engaged in several metabolic activities. This study looked at
the effects of various metal ions on the activities of drug metal
complexes using the cations copper (Cu2+) and zinc (Zn2+).
Because of verstality of curcumin, it was selected as a ligand in
cancer treatment. Despite the Curcumin potential as an antitumor
drug, its low bioavailability makes it less effective (230). Curcumin
chemical stability in extreme physical conditions was greatly
enhanced by complexation with metal ions (231). In spite of
this, the Curcumin metal ions complex’s limited water solubility
was a hurdle to its implementation. It was initially hoped that
liposomes pre-loaded with metal ions solutions would be used to
generate the Curcumin metal ion complexes. Intravenous
injections might be used to administer the complexes produced
in the liposomes. Curcumin metal ions complex liposomes’
characteristics will be affected by the kind of salt solution used
to dissolve the metal ions (Cur-M liposomes). The liposomes
seemed to change colour after the liposomes have become Cur-M.
For example, liposomes containing copper or zinc exhibited a
greater electrical conductivity (EE) than those that did not. Using
Ca(Ac)2 liposomes, the Curcumin precipitated and retained its
original colour when the trapping agents were Ca(Ac)2. Lipid
liposomal formulation increased EE by increasing Chol content,
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while decreasing size. According to earlier studies, Chol content
have presented opposite impact on hydrophobic medicines (232,
233). It was hypothesised that Chol’s interaction with hydrophobic
medicines would reduce hydrophobic medications’ retention. As
long as liposomes retain their rigid structure, the reactions
between Cur and metal ions are made easier by adding high
ratio Chol to them. It was noted that the EE of liposomes reduced
when the drug to lipid ratio was more than 1:5. PBS (pH 7.4) with
or without 10 mM EDTA was used for Cur-M liposomes release
profiles. Cur-M liposomes, on the other hand, it has a more
gradual release than Cur solution. There was a noticeable
difference between Cur-Cu liposomes and Cur-Zn liposomes in
terms of their structure. EDTA has no effect on liposomal release
of Cur from Cur-Zn complexes. Cu-Cu liposomes’ Cur release
may be substantially increased by mixing with EDTA. Cur-Cu
complexes were shown to be more durable than Cur-Zn
complexes to remain in solution over time. While Zn2+ ions
remained in the liposome, Cur dissociated from Cur-Zn
complexes. Liposomes containing Cur-Cu complexes
progressively released the compounds. It was difficult to
estimate the amount of released insoluble Cur-Cu complexes.
Because of the trans-chelation reaction of the EDTA, the Cur was
released from the Cur-Cu complexes. More than two times as long
as the Cur-Zn liposomes, the t1/2 of Cur-Cu liposomes was
11.67 ± 4.45 h. With the Cur-M liposomes and FBS, Cur’s
retention was also evidently different. Less Cur-Cu liposomal
leakage in the early phase (0–12 h) was associated with a
smaller change in Cur-Cu liposomal size. It was used as a trans-
chelator in media and biological contexts. Because of its increased
stability, Cur-Cu liposomes may function better than Cur-Zn
liposomes in the bodily circulation when targeting tumors. Cur-
M liposomal carriers combine the advantages of both coordination
and encapsulation, and as predicted, they preserve Cur against
degradation more effectively than earlier techniques. Due to the
presence of serum proteins, liposomal formulations generated by
the passive loading method during blood circulation are not able
to protect Cur against degradation during blood circulation. As
different formulations were taken up, so did the ROS level. This
study found that after 2 h, the ROS level was greater in Cur
solutions, and at 8 h it was higher in Cur–M liposomes treated
groups. ROS production was mildly induced by both Zn2+ and
Cu2+ liposomes. Cur-Cu liposomes were a little more effective in
generating ROS than Cur-Zn liposomes. Metal ions have been
found to interact with GSH, consuming GSH and influencing the
ROS/GSH equilibrium, resulting in ROS production (234). In
cancer cells with high GSH expression, the release of Cur from
Cur-M liposomes would be accelerated, resulting in an increase in
ROS production. GSH and other thiols, such as Cur, have been
shown to bind covalently to ROS (235). Products of GSH-Cur
conjugates that cannot be reversed, and may lead to oxidative
stress. Cur’s cytotoxicity against cancer cells was enhanced by the
cooperation of Cur and metal ions, which generated ROS. Cur-M
liposomes were compared to Cur solutions in a subcutaneous
tumor model and a lung metastasis model. For intravenous
administration, 20 mg/kg of Cur was dissolved in ethanol and
Tween 80. The Cur-Cu liposomes, on the other hand,
Frontiers in Oncology | www.frontiersin.org 10
outperformed other groups in terms of tumor inhibition. Cur-
Cu liposomes may have a long-term anticancer impact because of
the increased concentration of Cur in the tumor and the
prolonged release of Cur to achieve this effect. The liposomes’
toxification-reactive complexes were potent in their ability to
inhibit tumor development. Cur-Zn liposomes outperformed
Cur solutions in terms of anticancer efficacy and circulating
stability, as well as tumor tissue accumulation. Even though the
Doxil-treated group have presented higher therapeutic outcomes,
the lowest safety of Doxil revealed the downsides of chemotherapy.
Though Cu2+ liposomes showed no toxicity to 4T1 cells when
tested, they were shown to have a mild inhibitory impact on tumor
development, equivalent to that of Cur solutions. As a result of this
discrepancy, it was hypothesised that Cu may make a
metalloenzyme inactive in metalloproteins, which were thought
to be crucial to cancer cell metabolism through Zn replacement
(229, 234, 236). In the meanwhile, Cur-Cu liposomes may have a
greater impact on cancer treatment than Cur-Zn liposomes
because of this.

Shikonin (SHK)was encapsulated as liposome moiety, to
induce immunogenic cell death, at high dose (237). But
loading resulted in hepatotoxic effect, so inorder to circumvent
this issue, anthracycline mitoxantrone and doxorubicin were co-
loaded to liposomes, for inducing the synegestic effect on tumor
cells. A metal ion gradient was selected as the inner phase to
stabilise SHK because it possesses the functional group necessary
to form complexes with divalent metal ions (as shown in
Figure 4). Cu2+ and Zn+ were found to be the only metal ions
that could be successfully encapsulated in the first step of the
experiment. Liposomes containing SHK-Zn were shown to be
unstable because, after a few hours, a purple sediment of SHK-Zn
developed. High-transition-temperature (HTT)-satiated
phospholipid HSPC was chosen to increase the stiffness and
stability of the lipid bilayer (237). Chol increases liposome size
and decreases loading efficiency because hydrophobic drugs
interact with Chol and get caught in the lipid membrane
readily. According to earlier studies, reducing Chol
concentration improves the retention of hydrophobic drugs
(232). SHK was leaked when 10% Chol was being used. In
order to avoid the other formulations’ instability, neutral Cu-
gluconate was chosen to operate as the inner phase because SHK
was successfully protonated and interacted with copper more
closely in the neutral state than it did in the acidic condition
(232). It was also shown that the greater the copper ion
concentration, the more medication was loaded into the
liposome and the more stable it was. To avoid copper toxicity,
a threshold value of 200 mM was established for future study.
Low levels of DSPE-PEG2000 (0.5 percent, molar ratio) were
utilised to avoid ABC (accelerated blood clearance) and increase
stability (238). It is necessary to utilise an organic solvent in order
to enable SHK penetrate the bilayer; DMSO was employed at 5%
and the drug/lipid ratio was 0.125. Its structural isomer alkannin
was also employed to assess its encapsulation into liposomes
throughout the formulation’s optimization process, yielding an
unexpected result given that alkannin could not be loaded into
liposomes despite the tiny structural difference.
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4.2.2 Nanoparticles
The increased permeability and retention (EPR) effect allows
nanoparticles to deliver medications to tumors more effectively
(239). A polymer core and a lipid shell form the core of lipid-
polymer hybrid nanoparticles (LPNs) (240). Hydrophilic and
hydrophobic pharmaceuticals may be encapsulated by the
polymer core, which is covered by a lipid shell that acts as a
barrier to prevent fast drug leakage and extend the release time
(241). A recent study suggests that LPNs are an important
component of combined PC treatment (242). Aptamer-
functionalized LPNs have received the most attention from
researchers in the development of ligands-functionalized LPNs
for the treatment of cancer (243, 244). CUR and cabazitaxel (CTX)
were conjugated ligands that were used to construct a curcumin
and aptamer-functionalized hybrid lipid polymer nanoparticle
(APT-CUR/CTX-LPN) (29). Each of the APT-CUR/CTX-LPNs
measured on average at 121.3 nm in diameter and have noticed an
electrically positive surface charge of 23.5%. PEG-PLGA or APT-
PEG-PLGA nanoparticles, did not slow down drug release as
much as LPNs, perhaps because of the presence of lipids. For
sustained circulation, PEG is by far the most essential moiety
because of its low immunogenicity and toxicity, as well as its great
flexibility and little impact on the biological characteristics of
medications that have been decorated (245). Because the
pharmaceuticals released from APT-CUR/CTX-LPNs were
slower than those released from CUR/CTX-LPNs, the aptamer
on the surface may serve as a molecular barrier to keep the
medications inside NPs (246). The cytotoxicity of LPNs was
investigated in PSMA-positive LNCaP cells and PSMA-negative
PC3 cells, both of which expressed PSMA. This may be due to the
low cytotoxicity of blank APT-LPNs, which were composed
mostly of biocompatible aptamer, SPC, PEG, and PLGA
components (247). As a result, the cytotoxicity of the systems is
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caused by the drugs loaded into the LPNs. Evidence that LPN
delivery methods may improve drug toxicity was found by
comparing the cytotoxicity of medicines put into LPNs with that
of drug solutions (248). PSMA positive LNCaP cells were more
sensitive to APT-CUR/CTX-LPNs than PSMA negative PC3 cells,
which suggests that APT-CUR/CTX-LPNs have the capacity to
target PSMA positive cancer cells (249). In this work, the Chou-
Talalay approach was used to evaluate the synergistic effects of the
combination medication delivery system. CICUR+CTX values
were lowest when the CUR/CTX ratio was 2:5, supporting the
synergistic effect and pointing to the ratio in the APT-CUR/CTX-
LPNs formulation. CUR has been shown to interact with a number
of proteins that are involved in angiogenesis, metastasis, and cell
survival, as well as disrupting dysregulated signaling pathways in
cancer cells, such as PI3K/Akt and NF-kB. To increase CTX
effectiveness in PC-3 cells, CUR increases the activity of many
key enzymes including COX-2, NF-B, phospho-Akt, PI3K, and
RTK (250, 251). More APT-CUR/CTX LPN dispersion was seen
in tumor tissue than in CUR/CTX LPN or medication solutions.
Gu et al. observed that aptamer-conjugated nanoparticles
accumulated more in the tumor than unconjugated
nanoparticles. Modifications to aptamers may explain this
phenomena by delivering medicines to PC cells and causing
tumor inhibition effects (252). CUR/CTX-LPNs have a
significant antitumor activity compared to medicines. That the
lipid outer layer has a strong affinity for the cell membrane and has
merged with the cells and allowed medications to enter the cells
(253) might be evidence of this. Experiments using APT-LPNs and
0.9 percent water demonstrated anorexia and anxiety in the mice,
which might be the cause of their weight loss. Drug-loaded LPNs
showed no noticeable changes in body weight, ALT, LDH, or
BUN, indicating that severe adverse effects of anticancer treatment,
have been adequately relieved while considerable co-therapeutic
A

B

FIGURE 4 | SHK and MIT co-loaded liposomes with dual-responsive release for synergistic chemo-immunotherapy through ICD. (A) Result of limited immunogenicity, SHK
liposomes may cause hepatotoxicity. (B) Inducing strong apoptosis in cancer cells and stimulating an ICD effect and adaptive immune response using SHK and MIT co-
loaded liposomes might shrink tumor volume and produce strong apoptosis in cancer cells.
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benefits had been preserved (254). Thipe et al., designed
resveratrol-conjugated gold nanoparticles (Res-AuNPs) as an
innovative green nanotechnological approach to enhance the
efficiency of bioactive phytochemical substance in cancer
treatment (255). The study was planned to utilize the pro-
apoptotic properties of gold nanoparticles (AuNPs) with
synergistic antitumor properties of resveratrol as a green
nanotechnological approach in cancer therapy. Res-AuNPs was
coated with gum Arabic for stability of AuNPs. The particle size of
Res-AuNPs and Res-GA-AuNPs was found to be 16.1 ± 5.0 and
14.9 ± 4.4 nm with negative zeta potential of -25 and -22 mV. The
in vitro anticancer effect of resveratrol conjugated gold
nanoparticle was conducted on human breast, pancreatic, and
PC cell lines (MDAMB-231, PANC-1, PC-3). The results of their
study on cancer cell lines provide evidence, which signify that
increased corona of resveratrol on AuNPs improved the
bioavailability of therapeutic active moiety in cancer cells.

Co-delivery systems for curcumin (CUR) and bioenhancement
(B), “trikatu,” have been developed by Sharma et al. to treat
hormone resistant PC (255). Spices such as black pepper (Piper
nigrum Linn.) and long pepper (Piper longum Lind.) containing
the active ingredient piperine (Zingiber officinale Rosc.) are known
as “trikatu” in Japanese. Natural bio-enhancers combined with
established anticancer medications in a delivery systemmay lead to
higher bioefficacy and bioavailability, as well as expanded surface
area, rescue of bioenhancers from degradation, and specificity in
the treatment of tumors. Peeking into the drug transport pathway
in PC3 cells using the neutral red test reveals an 18.4 percent
increase in CUR influx from the inside of the cells. Bioenhancers
like piperine, which inhibits the PGP, and gingerol, which affects
cell membrane permeability and changes membrane dynamics are
notable for this property (256, 257). To validate drug distribution,
FITC-loaded nanoformulations were stained with DAPI for
nucleus staining, and the remarkable impact was attributable to
CH as a nanocarrier with pluronic F68, however CH conjugation
with FA made the effect much more evident. Curcumin’s cellular
internalisation is inhibited when given in conjunction with
piperine in a nano-delivery method, providing further evidence
that polyphenolic components like piperine and gingerol-6
modulate the transport mechanism. Additionally, it increases the
CUR oral bioavailability (257, 258). Folate-conjugated nano-
delivery systems may be increased since folic acid receptors are
expressed on intestinal epithelial cells. FA enters cells by caveolae-
mediated endocytosis and decreased folate carrier separate routes
via facilitated transport, although the two pathways are not
mutually exclusive (259). The synergistic impact of the
polyphenolic bioenhancer in the formulation significantly
reduced the IC50 of the CUR-B-CH-NPs in a cytotoxicity
investigation using the PC cell line PC3. Unlike other cancer cell
lines, the AR-negative PC3 cell line possesses very aggressive cells
(259). To further understand the role of CUR-B-CH-NPs in
hormone-independent PC, researchers extended studies on PC3
cells. Although CUR has been shown to be effective against AR
arbitrated malignancies, it has some issues with cell absorption and
bioavailability even in formulations designed for oral delivery
(260). Apoptosis studies on PC3 cells showed that CUR-B-CH-
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NPs increased the percentage of apoptotic cells by 2.3 times higher
as compared to CUR alone. It was discovered that the polyphenols
in CUR-B-CH-NPs have an important role in apoptosis, since a
complex mix of bioenhancers may activate distinct apoptosis-
related pathways. The JC-1 dye based assay revealed a change in
mitochondrial membrane potential, which is a key component of
apoptosis. MMP levels were lowered by 2.7-fold, suggesting that
MMP disruption is an inherent apoptotic mechanism.
Polyphenols, which have a function in promoting oxidative
stress in cancer cells, were shown to disrupt MMPs. As
compared to the positive control H2O2, the DCFDA staining of
cells showed almost 1.68 fold increased ROS levels in PC3 cells in
the presence of CUR-B-CH-NPs. Bioenhancers P, N, and Z, on the
other hand, has a negligible cytotoxic impact on PC-3 cells. Weak
phytochemicals in combination have been shown in previous
investigations to produce an outstanding synergistic cocktail
(260). According to in-vivo results, CUR-B-CH-NPs displayed a
markedly enhanced bioavailability compared to CUR-
bioenhancement combo CZP/CUR solution, which is well
expected. Relative to CZP and CUR solution, CUR-B-CH-NPs
have significantly higher AUC by 4 and 6 times, as well as Cmax by
1.9 and 7.7 times, respectively. This may be due to the chitosan
protecting CZP, which protects the drug from acidic degradation
and also facilitates controlled release with the help of surfactant
pluronicF68, according to thedetailed statistical data. Byenhancing
intestinal membrane permeability and CZP cellular internalisation
in CH-NPs1, Pluronic F68 improves CUR solubility.

Yallupu et al., developed curcumin-PLGA based nanoparticles
for PCa (261). The internalisation of PLGA-CUR NPs was time-
dependent. There was a significant amount of NPs in membrane
vesicles during the first hour, and by the end of the second hour,
NPs have completely entered the cells. NPs were found around the
nucleus at the 18-hour mark. Based on the substantial
internalisation and distribution pattern of NPs, the endocytosis/
phagocytosis mechanism is likely clathrin-mediated. After being
endocytosed, nanoformulations may be released from the
endosome and end up in the nucleus or cytoplasm. Flow
cytometry demonstrated the absorption of PLGA-CUR NPs at
the 18-hour time point, with obvious cellular localisation. Variable
PC cells have different levels of PLGA-CURNP endocytosis. In the
three studied PC cell lines, there may be variances in the method of
internalisation of PLGA-CUR NPs because of the existence of
different lipid membranes on their surfaces.Long-term
accumulation and retention, in addition to internalisation, are
critical for improving the therapeutic effectiveness of cancer
medicines. Rapid breakdown or cellular export of many cancer
medicines prevents therapeutic levels from reaching cells. PLGA-
CUR NPs showed increased accumulation and retention
compared to free CUR at each time point. All three cell lines
examined retained a different amount of DNA, which was in
keeping with the results from the TEM. The concentration of DU-
145 cells peaked on day 2 and decreased dramatically on day 4.
Day 1 to 2 saw an increase in C4-2 cells, which remained
essentially constant at day 4, but day 3 to 4 saw a decrease. Free
curcumin and PLGA-CUR NPs were substantially less stable in
PC-3 than in PC-1, with a peak accumulation on day 2. Varied
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cancer cell types may respond to PLGA-CUR NPs differently
because of their different cellular levels. Both C4-2 and DU-145
cancer cells produced a significant number of vacuoles under
TEM. Lysosomal activity was also found to be abnormally high in
this group of cells, which may have resulted from membrane
instability that causes cell death/apoptosis signals. All of the
vacuoles were shown to leak bioactive CUR from the nucleus’s
periphery when NPs are internalised (262). By causing vacuoles in
the cell body, the presence of PLGA-CUR NPs in PC cells led in
cell membrane protrusion and disruption of the cytoskeleton
(263). PC cells were not affected by the vacuolization induced by
free CUR (264). Smaller and fewer cysts in PC-3 cells imply less
absorption of nanoparticles than larger and larger vacuoles.

Cell death in PC cells was enhanced by PLGA-CUR
nanoparticles, which promoted PARP cleavage and reduced the
expression of anti-apoptotic proteins such Bcl-xL andMcl-1 (265).
Cleaved PARP plays a vital role in the activation of Caspase-3/7,
which leads to apoptosis (265). When Mcl-1 and Bcl-xL are
downregulated, platelet-derived growth factors (PDGF) and b-
catenin transcription factors (TCF) are suppressed. On the other
hand, the expression of AR and beta-catenin in cells was shown to
be inhibited by the PLGA-CUR NPs. b-catenin is a
multifunctional protein that plays a critical role in both
ontogenesis and oncogenesis. Increased AR activation has been
linked to b-catenin dysregulation (266) and the development of
various malignancies, including PC. The upregulation of PKD1 by
PLGA-CUR which has been shown to suppress the production of
nuclear b-catenin and AR (267, 268).

In 2017, Azandeh et al. published a complementary research
on PC-3 PC cells treated with Cur-PLGA NPs (269). When
curcumin was applied to PC-3 cells, cell viability and
proliferation decreased, with a higher loss in cell viability for
Cur-PLGA NP-treated cells than for Cur-treated cells. PC-3 cell
growth was dramatically decreased by curcumin-PLGA NPs, but
PNT2 (healthy) cells were unaffected by treatment with
curcumin. It was determined that Cur-PLGANPs have affected
the chromatin structure of PC-3 cells, but PNT2 cells did not
respond to treatment with the Cur-PLGA NPs. Annexin V/PI
staining also showed that cells treated with Cur-PLGA NP
having greater apoptosis and necrosis index. This therapy is
promising for future investigations against PC since it induced
cell death via both types I (apoptosis) and type II (autophagy/
necrosis) of programmed cell death (269).

Anitha et al., formulated water soluble O-carboxymethyl
chitosan based curcumin nanoparticles(O-CMC Nps) (270).
Curcumin encapsulation and loading efficiency in O-CMC Nps
were determined to be 87% and 48%, respectively. Results
showed that the drug loading was greatly affected by the
concentrations of O-CMC and curcumin. The higher the O-
CMC concentration, the larger the particles were. Where the
drug tends to precipitate, trapping efficiency decreased with
greater drug concentrations. Curcumin and curcumin-O-CMC
Nps in the dose range of 1–5 mg/ml decreased the viability of
L929 but not curcumin alone when exposed to O-CMC Nps.
Curcumin, O-CMC Nps, and curcumin-O-CMC Nps were not
hazardous to normal cells, as shown by the fact that 80% of the
Frontiers in Oncology | www.frontiersin.org 13
cells were alive. MCF-7 exhibited no toxicity for O-CMC Nps
whereas curcumin and curcumin-O CMC Nps showed
significant toxicity. A similar toxicity was seen in PC-3
wherein cell viability was decreased to 30% at 5 mg/ml,
confirming its anticancer properties. Curcumin-O-CMC Nps
and curcumin has a similar impact on cancer cells, indicating
that curcumin maintains its anticancer action even after being
placed into a polymer matrix. Increases in curcumin-O-CMC
Nps concentrations boost the absorption in both cell lines,
according to the uptake profile.The negative charge of
curcumin-O-CMC Nps may explain the lack of variation in
particle absorption between normal and malignant cell lines.
Cellular absorption is non-specific and concentration-
dependent, according to this study’s findings. O-CMC Nps did
not cause apoptosis in both cancerous and non-cancerous cells
exposed to it. Compared to L929, MCF-7 has a higher proportion
of apoptotic cells, which is obvious. The greater dose of
curcumin-O-CMC Nps (5 mg/ml) resulted in a larger
percentage of cells showing apoptosis than the lower quantity
(1 mg/ml). Curcumin-O-CMC Nps may have been more
hazardous to cancer cells at greater concentrations because of
the increased absorption of curcumin-O-CMC Nps. In spite of
the fact that normal and cancer cells have a similar absorption
rate of particles, the greater apoptosis in cancer cells suggests the
release of curcumin inside cancer cells and demonstrates the
drug’s particular anticancer effect.” One explanation for this is
curcumin’s ability to target signalling molecules found in high
concentrations in cancer cells. Curcumin stops cell division in G0
phase without causing apoptosis in normal cells since these
mechanisms are controlled.

Vodnik et al., developed Genistein (Gen) stabilized gold
nanoparticles for targeting PCa (271). TEM was able to
characterise the shape, size, and distribution of well-dispersed
AuNPs when Gen was used as a reducing and capping agent in
the same molecule. Capped Gen-coated AuNPs are round, and
their size distribution is restricted. For Gen@AuNPs1 and Gen@
AuNPs2, the average particle diameter (dav) was determined to
be 10 nm and 23 nm, respectively. As a consequence of the
greater Gen and Au3+ concentrations added, the second
conjugate grew in diameter. In cell culture, treatment with Gen
resulted in a dose-dependent reduction in cell numbers, as
measured by mitochondrial respiration. It was found that the
half-life values determined for PC3 cells and DU 145 cells were
quite close (21.0 +/-0.6 and 22.3 +/-1.3), but LNCaP cells were
more susceptible (13.9 +/-0.8). These two cell lines, DU 145 and
PC3, are more aggressive than LNCaP, which explains their
lower response. Considering that less than 50% of Gen was
loaded onto each AuNP, it is clear that binding to AuNPs
increased Gen’s cytotoxicity. Gene concentrations at 9 and 14
g/mL were measured in LNCaP cells using Gen@AuNPs1 (46
percent Gen loaded onto AuNPs) and Gen@AuNPs2 (48 percent
loaded Gen), respectively, according to the proportion of loaded
Gen. Even while Gen’s anticancer potential isn’t much boosted,
the improved stability and distribution of Gen in this
formulation may be critical for its continuing use in vivo. Both
early and late apoptosis were not seen when Gen was incubated
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with free Gen or Gen@AuNPs1 formulations. Autophagy was
likewise unaffected by both treatments, demonstrating that
experimental therapies do not rely on programmed cell death
type II as a cytotoxic mechanism (272). There was a considerable
reduction in viability, however, since cell multiplication was
considerably suppressed. By affecting the production of the
human telomerase reverse transcriptase and different
microRNAs, genistein has been shown to decrease PC cell
growth (273, 274).

As a result, these anticancer nano-formulations are capable of
increasing medication release and activation inside tumors,
enhancing the therapeutic efficiency of the treatments. Tumor
microenvironment features including hypoxia, acidity, the EPR
effect, the presence of proteolytic enzymes, and the overexpression
of certain cell membrane antigens or proteolytic factors may all
cause disease-specific activation in solid tumors. As a result of the
presence of these tumor-specific endogenous properties, it is
possible to create formulations that are more active in the tumor
microenvironment. When it comes to medication delivery
strategies for cancer, polyglutamate (PGA) is one of the
biodegradable polymers that have proved effective (275).
However, PGA may be digested by cathepsin-B, which is
released into the tumor microenvironment of most solid tumors
and is lysosomal protease cathepsin-B. Results show that cathepsin
B-induced digestion of nanoparticles into smaller particles might
result in better dispersion of the sensitizer in dense tumor
formations, as shown by this study (276). Because of the high
interstitial fluid pressure and the thick network of collagen fibres,
nanoparticle transport is impeded in dense tumor masses (277).
Nanoparticles may be digested into smaller particles by the
enhanced pericellular cathepsin B released by malignant tumors,
according to the findings of this study. To reduce perivascular
sequestration and trapping, this may help increase particle
diffusion across the dense tumor mass during extravasation.
lysosomes are predicted to be the site where cathepsin B digests
nanoparticles completely and releases hematoporphyrin. The
sonochemical effects of ultrasonic irradiation may stimulate the
inclusion of free hematoporphyrin or amphiphi l ic
hematoporphyrin complexes in the lysosomal membrane, the
sensitization of the latter and the subsequent lysosome collapse
(278). Previously, it has been demonstrated that lysosomal collapse
may cause to apoptosis via lowering cytoplasmic pH. As a result,
the treatment modality presented in this work is speculated to
have a plausible mechanism of action, and the effect is supported
by the nanoparticulate formulation’s responsiveness to cathepsin
B. Although hydrogen peroxide is not a typical harmful ROS
produced during sonodynamic activation utilising the
nanoparticulate formulation, the ROS-induced DPBF breakdown
and subsequent drop in absorbance were both shown to occur
over the course of five minutes. Additionally, ROS generation was
compared when hematoporphyrin was free and when no
sensitising agent was present, namely just when ultrasonic
irradiation was used. Nanoformulations show equivalent efficacy
to free hematoporphyrin (p > 0.05) in terms of ROS generation,
which is suggestive of an effective SDT-induced antitumor impact.
As a result of this research, a nanoparticulate formulation has been
Frontiers in Oncology | www.frontiersin.org 14
created that specifically targets the acidic tumor interstium and
cathepsin B. Cathepsin B is a proteolytic enzyme common in
malignant tumor microenvironments, and cancer cells modulate
its production and release extensively based on interstitial pH.
This enzyme’s intracellular and secreted levels in LNCaP cells were
examined as a critical first step in our attempt to use cathepsin B to
enhance our therapeutic platform’s performance in SDT. The
incubations were carried out under hypoxic circumstances, at 2
mmHg O2, since hypoxia is known to activate cathepsin B
production in tumors (279). As compared to pH 7.4, levels of
cathepsin B in LNCaP cells at pH 6.4 were 35 percent higher and
61 percent higher than those at pH 7.4. Finally, cellular absorption
of 5-g/mL nanoparticles was measured for both pH conditions at
final concentrations of 5 g/mL. For pH 6.4, HPNP absorption by
LNCaP cells was enhanced by 75%, and this corresponds to an
increase in cathepsin B. Although there isn’t conclusive proof of a
link between cathepsin B levels and cellular absorption of
PGATyr-based nanoparticles, it does show that the proteolytic
enzyme’s levels influence cellular uptake. These findings may in
part be owing to an enhanced protonation under acidic conditions
of the glutamate residue side chains, which would contribute to an
improvement in cell internalisation. HP and PGATyr co-polymer
have been used to generate a nanoparticle formulation. To find out
how well the nanoparticles performed when exposed to pH and
cathepsin B, researchers examined the nanoparticles’ reactivity to
each. According to the research findings, cathepsin B digestion
reduced the size and overall negative charge of the formulation’s
nanoparticles, perhaps allowing for better nanoparticle diffusion
into impenetrable tumor tissues after extrusion. For LNCaP and
PC3, the “silent” toxicity profiles were different, although the
acidic pH increased the nanoparticle toxicity for both cell lines.
Cellular absorption seemed to be inversely related to the
production and secretion of cathepsin B. For PC cells treated
with HPNP and treated in vitro with sonodynamic therapy, the
stimulus (ultrasound) and formulation has little or no impact
when not combined. Compared to the free sensitizer, the
nanoparticulate formulation considerably increased HP’s
sonodynamic activity in cell-based systems, principally due to
better cellular absorption of the HP nanoparticles. SDT therapy in
immunodeficient mice resulted in a 36% decrease in LNCaP
tumor sizes after 24 hours of administration of a single dose of
nanoparticles. There were no detrimental effects on the
nanoparticle-treated animals, and their weight remained steady.

4.3 Micellaenous
Since quercetin has a low bioavailability in castration-resistant
PC, Zhao et al. used nano micelles to encapsulate it for in vitro
and in vivo research (280). Quercetin’s water solubility was
increased 450-fold by encapsulating at 1 mg/mL. According to
the results of the in vitro investigations, micellar quercetin
formulation has a half maximal inhibitory concentration of 20
M, whereas free quercetin has noticed a concentration of 200 M.
As a result, the nano based formulation effectively triggered
apoptosis and suppressed cell growth in human androgen
prostate cancer cell lines. In addition, quercetin-loaded
micelles in vivo showed greater anticancer activity, and the
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proliferation rate dropped by 52% compared to the control group
in the PC-3 xenograft mouse model, possibly owing to higher
permeability and retention of micellar quercetin at the
tumor site.

Cancer relapse, chemoresistance, and recurrence are all made
more likely by cellular senescence, a persistent problem in cancer
treatment. Drug-induced senescence is a common side effect of
long-term chemotherapy treatment. It is well-known that
Docetaxel, a prostate cancer medication authorised by the FDA,
may cause cellular senescence, reducing the overall survival time of
patients. Anti-aging strategies for cells and drugs are still unmet
therapeutic needs. With the goal of developing an innovative
therapy that targets and destroys senescent cells, researchers
created a nanoformulation of tannic acid–docetaxel self-
assemblies in an attempt to achieve this goal (DSAs) (281).
Particle size, spectroscopic, thermal, and biocompatibility
investigations verified the creation of DSAs. Docetaxel was
shown to be more effective in this formulation when compared
to docetaxel alone in a variety of biological functional tests.
Senescence-associated TGFR1/FOXO1/p21 signalling was altered
by DSAs exposure, according to microarray and immunoblot
research findings. After DSAs exposure, a decrease in
-galactosidase staining indicated a reversal of drug-induced
senescence. In addition, DSAs triggered apoptosis by
circumventing senescence, resulting in a dramatic increase in cell
death. In addition, imaging studies in mice with PC-3 xenograft
tumors showed that DSAs target tumors both in vivo and ex vivo.
Using the PC-3 xenograft mouse model, the antisenescence and
anticancer effect of DSAs was shown by suppressing TGFR1
proteins and regressing tumor development via apoptosis. These
enhanced properties of DSAs were all attributed to the use a natural
substance as the matrix/binder for docetaxel in the formulation.
Docetaxel effectiveness was enhanced by DSAs’ greater tumor
targeting and increased cell internalisation. Prostate cancer
treatment may benefit greatly from these discoveries.

Radhakrishnan et al. developed epigallocatechin-3-gallate
(EGCG) loaded solid lipid nanoparticles (SLN) by double
emulsification method to enhance the stability and anticancer
efficacy of loaded phytoconstituents (282). The in vitro
cytotoxicity was performed by MTT assay using breast cancer,
and prostate cancer cell line (MDA MB-231, and DU-145
respectively), where EGCG-SLN showed increase in
cytotoxicity against (8.1 fold) MDA MB-231 and (3.8-fold)
DU-145 cell lines. In a colloidal stability study, stability with
high resistance to electrolyte synthesis was observed in both
serum and P135. They concluded that EGCG-SLN acts as a
promising nanocarrier for delivering epigallocatechin-3-gallate
as a powerful anticancer agent.

Khan et al. suggested a different approach involving the
nanoencapsulation of epigallocatechin-3-gallate (EGCG) by
oral administration to treat prostate cancer (283). Chit-nano
EGCG performed kinetic experiments, in which the release of
EGCG has minimal effects of mimicking gut juice simultaneously
while EGCG was able to be released rapidly. The effectiveness of
the antitumor Chit-nano EGCG was tested by implanting 22Rv1
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xenografts under the skin in naked Athymic mice. By comparing
the tumor tissue of mice treated with chit-nano EGCG to the
EGCG control groups, significant effects were observed as
cracking of ADP-ribose polymerase induction, increased Bax
protein exposure and a corresponding decrease in Bcl-2
expression. Activation of caspases, reduction of Ki-67 and
proliferation of cell nuclear antigen. Through this study, they
came to the conclusion that EGCG acts as a preventive and
curative agent for prostate cancer.

Blanco et al., prepared b-Lapachone (b-lap) loaded PEG-PLA
polymeric micelles to treat quinone oxidoreductase 1 (NQO1)
overexpressing tumors (284). b-Lapachone is a chemotherapeutic
agent, biologically activated by NADP(H): quinone
oxidoreductase 1 coenzyme which is overexpressed in most of
the tumor cells. To increase the loading efficiency of micelles
dialysis, solvent evaporation and sonication method are used in
which film sonication method yielded maximum loading density
(4.7 ± 1.0% to 6.5 ± 1.0) with optimum size of 29.6 ± 1.5 nm. They
conducted a drug release kinetic study of polymeric micelles,
which shows 50% drug release within 18 h of time period. The
in vitro cytotoxicity study was conducted on lung, prostate, and
breast cancer cell lines (NQO1-overexpressing (NQO1 +) and
NQO1-null H596, DU-145, and MDA-MB-231 cell lines). The
results of cytotoxicity showed increase in toxicity on NQO1+ cells
over NQO1- cells anticipating b-Lapachone micelles as a
promising nanocarrier against NQO1-overexpressing tumor cells.

Mukerjee et al., prepared PLGA nanosphere by solvent
evaporation technique to check the potent anticancer effect of
curcumin (262). The study’s primary objective was to mask the
demerits of curcumin associated with low oral bioavailability and
poor aqueous solubility. The particle size of the nanosphere was
within the range of 35 to 100 nm, with the mean size of 45 nm.
PLGA nanosphere showed encapsulation efficiency of 90.88 ±
0.14%. The cellular viability of curcumin PLGA nanosphere was
evaluated on prostate cancer cell line where it showed more
pronounced effect when compared with free curcumin. These
results of the PLGA nanosphere were more promising, and as
adjuvant therapy, it can be used to treat prostate cancer.
5 NANOTOXICITY OF NANOMATERIALS

Currently, nanomaterials are pervasive in everyday life (285).
This toxicity and the destiny of nanomaterials depends on their
physical and chemical characteristics, which are determined by
their usage in everyday life. The physiochemical features of
nanomaterials, such as charge, surface area, shape, size, and
aggregation, are unique to this kind of material. Nanomaterials
are more reactive than bulk materials because of their tiny size,
and their ability to enter cells and cause toxicity is also higher.
Smaller nanomaterials are more harmful than larger ones
because they are easier to get into the body’s organs. Reactive
oxygen species (ROS) are formed when nanomaterials are
retained in organs (286).
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Toxicities associated with nanomaterials may be classified
according to their described morphologies, which include rods,
cubes, ellipsoids, spheres, and cylinders (287). Surface chemistry
characteristics as roughness, charge, and hydrophobicity may
have a substantial impact on the toxicological consequences of
nanomaterials. It is possible that nanoparticles’ surface features
impact the blood-brain barrier and the immune system, as well
as the phagocytosis, colloidal behavior, and cellular absorption of
nanomaterials. Compared to negatively charged nanoparticles,
positively charged nanomaterials have a far greater absorption
rate Once nanomaterials permeate membranes and bind tightly
to DNA because it is negatively charged, the G0/G1 stages of cell
life cycles are prolonged. The positively charged nanomaterials
have a stronger affinity for proteins and may modify protein
structure, which may lead to the suppression of enzyme activities
and the subsequent disruption of biological processes (288).

Materials having cationic surface charges are more likely than
neutral or anionic nanoparticles to interact with genetic
materials and biological membranes, resulting in greater
toxic i ty (289) . Agg lomerat ion and aggregat ion of
nanomaterials, as well as surface charge and size, may change
the blood-brain barrier’s integrity (290). Nanomaterials may be
made of inorganic or organic components, and a large number of
reagents are needed to make them. As a consequence,
unanticipated toxicity and side effects may occur owing to the
presence of contaminants or other undesired components. The
body’s nanomaterial composition may alter due to internal pH
and oxidation reduction reaction variations (291).

For nanotoxicity, the solubility of nanomaterials is a key issue.
The dissolution of nanomaterials is influenced significantly by
temperature and pH fluctuations. Unlike insoluble nanoparticles,
soluble nanomaterials may be very hazardous. Even though
nanoparticles have diverse physiochemical characteristics,
agglomeration may produce considerable toxicity and
increasing exposure levels to nanomaterials might induce
chronic illnesses including cancer and fibrosis. Nanotoxicology
relies heavily on nanoparticles’morphology. According to Firme
III and Bandaru (292),, long-term inhalation of nanofibers or
nanomaterials may lead to lung inflammation and cancer. It’s
been shown via several research that carbon nanotubes are much
more hazardous to health than either silica dust or ultrafine
carbon black (293).

When nanomaterials are dispersed and agglomerated, their
toxicity is directly affected by the circumstances in which they are
dispersed and agglomerated. Additionally, the hazardous effects
of nano-materials are influenced by the media in which they are
dispersed. Using the same nanomaterials in a variety of different
environments results in various harmful effects (294). Some of
the dispersion agents may increase the physical and chemical
characteristics of nanomaterials in the medium, while others can
have detrimental impacts on the environment, resulting in
hazardous consequences.

In terms of toxicity, nanoparticles are mostly determined by
their surface characteristics. The physicochemical features of
nanomaterials, such as their chemical reactivity and their
Frontiers in Oncology | www.frontiersin.org 16
optical, magnetic, and electrical properties, may be modified by
surface coating (295).

For nanoparticles, researchers have developed a risk
assessment framework that incorporates alternative testing
methods for individual nanomaterials. However, animal model
testing is significantly reliant on most testing methods for
assessing the toxicity of nanomaterials (296). Due to the fact
that nanomaterials interact with the human body in a unique
way, further study is needed to establish a long-term and
effective solution.
6 CONCLUSION AND FUTURE
DIRECTIONS

Toxicities, poor bioavailability, limited selectivity, and multidrug
resistance have all been addressed using nanotechnology in cancer
therapy. Chemotherapy’s non-specificity has long destroyed normal
growing tissues in patients, causing immunodeficiency and long-
term adverse effects. Nanotechnology has offered powerful treatment
techniques due to its selectivity to target malignant cells. Patients
treatedwith nanoparticles had improved therapy response and long-
term survival. Nanomedicine in cancer treatment may therefore
easily solve the obstacles hampering traditional therapy regimens.
Developing patient-specificmedication delivery systemswould assist
personalise and manage therapy depending on the patient’s clinical
profile. Nanomedicine promises to be the next worldwide
transformation in cancer therapies, allowing for early tumor
detection and patient management.

To prevent tumor formation or reduce cancer incidence,
chemopreventive medicines are much sought after. Because the
current therapeutic options include chemotherapy, radiation,
and surgery, which all have considerable adverse effects,
alternative or adjuvant treatments are urgently needed.
Phytochemicals are harmless and plentiful in foods. So,
alternative medicine attempts to use these non-essential
nutrients to prevent and cure cancer. Many studies support the
use of biomolecules in cancer therapy, however most are in vitro.
Despite few in vivo and clinical trials, phytochemicals offer
considerable potential in cancer therapy. Efficacy of these
compounds in clinical studies must be approached with
caution as numerous variables influence their biological effects.
This is particularly true when low nontoxic dosages are necessary
for lengthy durations to achieve significant chemotherapeutic
results with minimum adverse effects. Dosage and delivery are
now important issues. To maintain a consistent physiological
serum dosage availability, the agent must be concentrated and
stable in the target tissue. Combination technology may solve
this issue. Nanotechnology is rapidly becoming the next level of
scientific technology. In vitro research have showed that
encapsulating dietary supplements in nanoparticles increases
their delivery, stability, and availability. Maybe studies should
look at employing combo therapies. Given the findings in this
analysis, it will be fascinating to gather further pre-clinical
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evidence on these compounds’ anticancer properties. Although
little is known regarding natural chemical bioavailability in vivo.
However, further high-quality research are required to
conclusively confirm plant extracts’ therapeutic usefulness,
solely and as synergisticaly.
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