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Automatic detection of early
gastric cancer in endoscopy
based on Mask region-based
convolutional neural networks
(Mask R-CNN)(with video)
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Xuecan Mei1, Xi Wang1, Shaofang Song3, Jie Peng3, Aijiu Wu3,
Lanfang Dong2 and Derun Kong1*

1Key Laboratory of Digestive Diseases of Anhui Province, Department of Gastroenterology, The First
Affiliated Hospital of Anhui Medical University, Hefei, China, 2School of Computer Science and
Technology, University of Science and Technology of China, Hefei, China, 3Research and
Development Department, Hefei Zhongna Medical Instrument Co. LTD, Hefei, China
The artificial intelligence (AI)-assisted endoscopic detection of early gastric

cancer (EGC) has been preliminarily developed. The currently used algorithms

still exhibit limitations of large calculation and low-precision expression. The

present study aimed to develop an endoscopic automatic detection system in

EGC based on a mask region-based convolutional neural network (Mask R-

CNN) and to evaluate the performance in controlled trials. For this purpose, a

total of 4,471 white light images (WLIs) and 2,662 narrow band images (NBIs) of

EGCwere obtained for training and testing. In total, 10 of theWLIs (videos) were

obtained prospectively to examine the performance of the RCNN system.

Furthermore, 400 WLIs were randomly selected for comparison between the

Mask R-CNN system and doctors. The evaluation criteria included accuracy,

sensitivity, specificity, positive predictive value and negative predictive value.

The results revealed that there were no significant differences between the

pathological diagnosis with the Mask R-CNN system in the WLI test (c2 = 0.189,

P=0.664; accuracy, 90.25%; sensitivity, 91.06%; specificity, 89.01%) and in the

NBI test (c2 = 0.063, P=0.802; accuracy, 95.12%; sensitivity, 97.59%). Among 10

WLI real-time videos, the speed of the test videos was up to 35 frames/sec, with

an accuracy of 90.27%. In a controlled experiment of 400 WLIs, the sensitivity

of the Mask R-CNN system was significantly higher than that of experts (c2 =

7.059, P=0.000; 93.00% VS 80.20%), and the specificity was higher than that of

the juniors (c2 = 9.955, P=0.000, 82.67% VS 71.87%), and the overall accuracy

rate was higher than that of the seniors (c2 = 7.009, P=0.000, 85.25% VS

78.00%). On the whole, the present study demonstrates that the Mask R-CNN

system exhibited an excellent performance status for the detection of EGC,
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particularly for the real-time analysis of WLIs. It may thus be effectively applied

to clinical settings.
KEYWORDS

artificial intelligence - AI, region-based convolutional neural networks (R-CNN),
endoscopy, Early gastric cancer (EGC), white light imaging, narrow band imaging (NBI)
Introduction

Gastric cancer (GC) is one of the five most common types of

malignant tumors worldwide, and is regarded as the fourth cause

of cancer-related mortality (1). The five-year survival rates of

patients with early gastric cancer (EGC) and advanced gastric

cancer (AGC) are 95% and 30%, respectively (2). Therefore, the

early detection and diagnosis of gastric cancer are crucial

measures to reduce the mortality rate associated with

gastric cancer.

Endoscopy with white light images (WLIs) is recommended as

a standard procedure for the detection of EGC (3). However, some

minimal changes are easily ignored in WLIs, which often leads to

the missed diagnosis of EGC. Previous studies have proven that

magnifying endoscopy associated with image-enhanced endoscopy

techniques can effectively improve the performance in detecting

EGC (4, 5). However, this technique cannot be easily implemented

in rural or undeveloped areas owing to a lack of advanced devices

and experienced endoscopists.

In the face of these issues, the development of practical

clinical tools is necessary. With the development of computer-

assisted technology, artificial intelligence (AI) has begun to be

applied to medicine, and there have been preliminary studies in

the early detection of diseases, pathological diagnosis and

prognosis assessment, such as liver fibrosis staging diagnosis

(6), skin cancer classification (7), and diabetic retinopathy (8).

Previous studies have reported the application of AI in

identifying esophageal cancer (9, 10) and intestinal polyps

(11), and AI has also demonstrated to be of effectively

assistance in the field of endoscopic systems. At present, the

object detection algorithms based on deep learning are

commonly used in lesion detection in endoscopy (12, 13).

These algorithms have limitations, such as large calculation

and low expression accuracy (14, 15). In the early stage of the

experiment, we used a small number of samples to train and

validate several models, and found that the mask region-based

convolutional neural network (Mask R-CNN) model was the

optimal model at this stage. As a small and flexible universal

object instance segmentation framework, Mask R-CNN can

achieve rapid and accurate multi-object detection in the same

network, while meeting the accuracy requirements of semantic
02
segmentation. It has been found that Mask R-CNN has a good

transfer learning ability (16). The present study developed an

algorithm for detecting EGC based on Mask R-CNN.

Prospective and controlled trials were conducted to examine

the performance of the Mask R-CNN system in diagnosing EGC

and to assess the clinical suitability of the Mask R-CNN system

compared with endoscopists.
Materials and methods

Data sources

Images and videos of WLIs and narrow band images (NBIs)

were collected from patients, who underwent magnifying

endoscopy and narrow band imaging, as well as received

endoscopic submucosal dissection as the initial treatment

between October, 2017 and March, 2022. The retrospective data

were obtained fromprevious clinical diagnosis and treatment, and

the exemption of patient informed consent was received from the

hospital (the First Affiliated Hospital of Anhui Medical

University; Ethical no. PJ2021-08-12). All participants in the

prospective trial signed informed consent forms before the trial.

An upper gastrointestinal endoscope (GIF Q260J, GIF

H260Z and MAJ-290; Olympus Corporat ion) with

magnification and NBI functions was used to observe gastric

mucosal lesions. Two endoscopists with >10 years of experience

used the NBIs retrospectively to identify EGC according to the

vessel and surface classification (17).

All patients had biopsies or excision specimens which were

histologically evaluated by a pathologist according to the revised

Vienna gastrointestinal epithelial tumor classification (18), type

4 (high-grade mucosal tumors) and non-invasive muscular

lesions of type 5 (invasive tumors) were defined as EGC, and

the pathological result was considered as the gold standard.

Previous studies have found that EGC is difficult to

distinguish from gastritis due to inflammatory cell infiltration

and it often resulting in the underdiagnosis of EGC (19). In this

study, the Mask R-CNN system was developed to differentiate

EGC from gastric diseases such as gastritis and gastric erosion.

The selection criteria were as follows: i) Patients were aged 18 to
frontiersin.org
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80 years; ii) Only gastritis and gastric erosion were included in

the non-cancerous images; iii) lesions comprised >30% of the

entire image and could be recognized by the endoscopist. The

exclusion criteria were as follows: i) Patients aged <18 or > 80

years; ii) images of polyps, ulcers or ulcer scars, remnant

stomach cancer and other lesions; iii) images of mucus, blood,

or other foreign bodies attached; iv) images that were difficult to

evaluate due to insufficient focus, halos, bubbles or excessive

blur; and v) dye-stained images.

All images were marked by two endoscopists (JJ, QZ) who

were trained prior to collecting the data from the electronic

medical record. One endoscopist first used LabelMe (version 1.1;

IBM Inc.) or Pair programming software (version 2.0; Shenzhen

Duying Medical Technology Co., Ltd.) to mark the boundaries

of the lesion, and the other endoscopist examined the mark; the

two endoscopists then took turns in labeling work. To avoid

individual bias in the image selection and labeling, delineation

was confirmed only when the two endoscopists reached a

consensus. Subsequently, another endoscopist (DK) who is a

specialist at the First Affiliated Hospital of Anhui Medical

University confirmed the images with the indicated criteria

(Figures 1, 2).
Algorithm training and model
recognition process

A total of 7,093 images were retrospectively obtained from

the First Affiliated Hospital of Anhui Medical University,

including 4,471 WLIs and 2,662 NBIs. According to the

Holdout validation method, the most common ratio for

dividing the training and the validation set is 8:2. We selected

5,708 of these images to train and optimize the model based on

this ratio, including 3,579 WLIs (non-cancerous, 1,182; EGC,

2,184; AGC, 213) and 2,129 NBIs (non-cancerous, 102; EGC,

1,984; AGC, 43). The 2,184 EGC images in WLI were derived

from 524 EGC lesions in 522 patients while the 1,984 EGC

images in NBI were obtained from 276 EGC lesions in 276

patients. The flow of the model training and test data was shown

in Figure 3.
Frontiers in Oncology 03
A Mask R-CNN object detection neural network model was

used for early gastric cancer detection. By inputting multiple

batches of training images and using the Back-Propagation

algorithm, the network parameters are updated iteratively until

the loss function converges.

Mask R-CNN is based on the improved implementation of

object detection framework Faster-RCNN, and its architecture

mainly consists of three parts. The first part is the backbone

network, which is used to extract feature images from input

images. The backbone structure of the model is ResNet-50,

which has 50 layers of neurons. This structure first went

through the convolutional layer, batch normalization layer,

ReLU activation function and the calculation of the maximum

pooling layer, and was then connected to four residual modules

with a bottle-neck layer (Figure 4). Each module also has a

convolution layer and ReLU activation function. The residual

structure can increase the depth of the training network, learn

more complex image features and eliminate the factors that may

reduce the learning effect.

The pre-training weights of ImageNet were used as the

initial training values of all neurons in the backbone network,

as the experiment was better performed in this manner,

according to the results. The backbone network will extract

image features as a series of vectors to the second part of the

entire architecture, ROI Align layer. The features of the image

can be extracted and the proposals can be obtained. The third

part is the ROI head. As the decision-making layer, in this stage,

in addition to the precise prediction of the types and positions of

the candidate frames, the fully convolutional network branch is

added, and the image binary mask is performed to obtain pixel-

level image segmentation results. The results of Mask R-CNN

model output include the confidence of classification, that is, the

probability of classification, and the intersection over union

(IoU) of bounding boxes. The IoU is defined as follows:

IoU  =  
areapr  ∩

​  areagt
areapr  ∪​  areagt

where areapr is the bounding box predicted by the neural

network, and areagt is the bounding box of the real label. The

overall framework of Mask R-CNN is illustrated in Figure 5.
B C DA

FIGURE 1

The endoscopists and the Mask R-CNN system delineate the lesion in WLI. (A) The EGC lesion in WLI. (B) The Mask R-CNN system delineates
the EGC lesion. (C) Gastritis in WLI. (D) The AGC lesion in WLI. WLI, white light imaging; Mask R-CNN, mask region-based convolutional neural
network; EGC, early gastric cancer; AGC, advanced gastric cancer.
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FIGURE 3

Model training and testing process.
BA

FIGURE 2

The endoscopists and the Mask R-CNN system delineate the lesion in narrow band images. (A) The narrow band image with the EGC lesion.
(B) The Mask R-CNN system delineates the EGC lesion. Mask R-CNN, mask region-based convolutional neural network; EGC, early gastric cancer.
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Test of the Mask R-CNN system
in WLIs and NBIs

The test of the Mask R-CNN system in WLIs and NBIs

contained three types of lesions: Non-cancerous, EGC and AGC.

In the complete image set, we prepared 892 WLIs (non-

cancerous, 324; EGC, 534; AGC, 34) and 533 NBIs (non-
Frontiers in Oncology 05
cancerous, 27; EGC, 498; AGC, 8) as static image test sets.

This EGC WLIs were from 125 patients with an average age of

64.1 years, 71.2% of whom were male. There were 63 lesions

(50.4%) located in the cardia. The mean size of the EGC was 2.52

x 1.35 cm2 and the most common macroscopic type was type 0-

II with 89 (71.2%). Sixty-five lesions (52%) were located in the

muscular mucosa and 42 lesions (33.6%) in the lamina propria.
FIGURE 4

ResNet residual module. ReLU, Rectified Linear Unit.
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The EGC NBIs were from 276 patients with an average age of

63.46 years, 74.6% of whom were male. There were 33 lesions

(49.25%) located in the cardia. The mean size of the EGC was

2.33 x 1.41 cm2. Forty-six lesions (68.66%) were type 0-II.

Thirty-three lesions (49.25%) were located in the muscular

mucosa and 23 lesions (34.33%) in the lamina propria.

In total, nine different execution thresholds were

hypothesized from 10 to 90% for the Mask R-CNN system and

10% was used as the interval. After the Mask R-CNN system

detects the lesion, it generates a bounding box and evaluates the

likelihood that the lesion is EGC. Only when the confidence of the

bounding box exceeded the execution threshold, would the lesion

be judged as EGC. The recognition of EGC by the Mask R-CNN

system is considered correct and the capability of theMask R-CNN

system was evaluated by the recognition of EGC.
Test of the Mask R-CNN system in white
light real-time videos

In total, 10 endoscopic videos of 10 patients were

prospectively obtained, and the pathological diagnosis of the

biopsy or excision specimens of all patients was EGC. Of the 10

patients, 8 were male and 2 were female, with a mean age of 67.2

years. There are 7 lesions (70%) located in the cardia. This 10

lesions were all type 0-II, of which 6 were 0-IIc, and the mean

size was 2.49 x 1.21 cm2. Nine lesions were located in the

mucosal layer.

The acquired EGC videos were then edited, the WLI

fragments that were not electrocoagulated were retained and
Frontiers in Oncology 06
the clips were reassembled into complete videos. Based on the

Mask R-CNN algorithm system, the average time of the 10

videos was 270.9 sec (range, 105 to 422 sec). Video streaming

was up to 35 frames/sec.

After converting the video into several images according to

the corresponding ratio, the endoscopist screened out the images

containing the EGC lesions and classified them. The Mask R-

CNN systemwas then used to identify all images. In the video test,

the Mask R-CNN system added a voting screening module, that

is, voting on the prediction processing results of video content

within a certain period of time, and adjusting the final output

content and identification within the time period. This module

can effectively reduce false positives during dynamic detection. It

was stipulated that as long as >1/5 of the video frame detected the

EGC target within half a second, the target can be considered to be

correctly identified during this time. When there were multiple

lesions on a picture at the same time, the highest priority was to

identify EGC, and only positive results were identified as EGC.
Test of the Mask R-CNN system
vs. Endoscopists

In this controlled experiment, normal mucosal images were

added and AGC images were subtracted to achieve the purpose

of detecting EGC in different mucosal environments. A total of

743 images of normal mucosa and 858 images containing EGC,

non-cancerous in WLIs were prepared, from which a total of 400

images were randomly selected according to the ratio of normal:

non-cancerous:EGC of 2:1:1 (non-EGC images:EGC images,
FIGURE 5

Mask region-based convolutional neural network architecture.
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3:1). A total of 15 endoscopists from the First Affiliated Hospital

of Anhui Medical University were invited to this test. They were

divided into experts (endoscopic experience, >10 years), seniors

(endoscopic experience, >5 years) and juniors (endoscopic

experience, >1 years), and each doctor completed the test

independently. The Mask R-CNN system was then used to

identify the images, and the performance of the Mask R-CNN

system and that of endoscopists was compared.
Statistical analysis

The main evaluation indicators included accuracy,

sensitivity, specificity, positive predictive value (PPV) and

negative predictive value (NPV) (Table 1). The area under the

receiver operating characteristic (ROC) curve (AUC) was

calculated to obtain the optimal threshold and evaluate the

performance of the Mask R-CNN system in the image test and

video test. The comparison between the Mask R-CNN,

pathological diagnosis and endoscopists was conducted using a

Chi-squared test. A value of P<0.05 was considered to indicate a

statistically significant difference. Statistical analysis was

performed using SPSS software (version 26.0; IBM Inc.).
Results

Performance of the Mask R-CNN system
in WLIs and NBIs

The Mask R-CNN system was tested at various thresholds to

obtain the ROC curve. In WLIs, the Mask R-CNN system

identified EGC most effectively at a threshold of 80%, with an

accuracy of 90.25%, a sensitivity of 91.06%, a specificity of 89.01%,

PPV of 92.61%,NPV of 86.81% and an AUCof 0.94 (Figure 6). At

this time, the accuracy, sensitivity and specificity of identifying

non-cancerous were 83.86%, 88.50%, and 81.01%. The accuracy,

sensitivity, and specificity of identifying AGC were 98.32%,

82.35%, and 98.95%. The accuracy assessment of the outline

boundary (mask) is calculated using the cross-merger ratio

(IoU) of the detection boundary and the true label boundary,
Frontiers in Oncology 07
based on the benchmark when the IoU > 0.5 is counted as the

correct judgment, and the comprehensive accuracy of the outline

boundary (mask) is 61.04%. Following a comparison with the

diagnosis results of the pathological analysis, no notable

statistically significant differences were found between the Mask

R-CNN system and the pathological analysis (c2 = 0.189, P=0.664)
(Table 2). In NBIs, the Mask R-CNN system exhibited an

accuracy of 95.12%, a sensitivity of 97.59%, a specificity of

89.01%, PPV of 97.20%, NPV of 63.64%, and an AUC of 0.81 at

the 50% threshold (Figure 7). No significant differences were

found between the Mask R-CNN system and the pathological

analysis (c2 = 0.063, P=0.802) (Table 3).
Performance of the Mask R-CNN system
in white light real-time videos

The Mask R-CNN system had the same detection

capabilities of testing both local videos and real-time videos.

The Mask R-CNN system can test local videos without frame

limits. It also can capture real-time videos up to 35 frames/s and

output results with a delay of 80 msec, enabling most clinical

environments (Video S1).

When the threshold was 90%, the Mask R-CNN system

obtained better results on the video stream. The accuracy,

sensitivity and specificity of diagnostic EGC were 90.27, 84.86

and 91.87%, respectively, and the PPV and NPV were 75.47 and

95.37%, respectively. The AUC of the RCNN system was

0.93 (Figure 8).
Performance of the Mask R-CNN system
vs. Endoscopists

At the 70% threshold, the various indicators of the Mask R-

CNN system were relatively balanced, with an accuracy,

sensitivity, and specificity of 85.25, 93 and 82.67%,

respectively, and the PPV and NPV were 64.14 and 97.25%.

The AUC was 0.91 (Figure 9).

The accuracy (83.80%), sensitivity (80.20%) and specificity

(85.00%) of the experts in identifying EGC were significantly
TABLE 1 Evaluation criteria.

Accuracy Correct identification number/All images

Sensitivity Correctly identify EGC/real EGC
The higher the sensitivity, the less missed the diagnosis

Specificity Correctly identify non-EGC/real non-EGC
The higher the specificity, the less misjudgments there are

Positive Predictive Value Real EGC/identify EGC
The higher the positive predictive value, the higher the true diagnosis rate identified as EGC

Negative Predictive Value Real non-EGC/identify non- EGC
The higher the negative predictive value, the higher the true non-prevalence rate identified as non-EGC
EGC, early gastric cancer.
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B

A

FIGURE 6

The ROC curve of the white light images test. (A) The global ROC curve of the white light images test. (B) The regional ROC curve of the white
light images test.
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higher than those of seniors (accuracy of 78.00%, sensitivity of

74.60% and specificity of 79.13%) and juniors (accuracy of

70.90%, sensitivity of 68.00% and specificity of 71.87%).

The sensitivity of the Mask R-CNN system was 93.00%,

which was significantly higher than that of the experts and the

difference was statistically significant (c2 = 7.059, P=0.000). The

specificity was higher than that of the juniors (c2 = 9.955,

P=0.000) and the overall accuracy rate was higher than that of

the seniors (c2 = 7.009, P=0.000) (Table 4).
Discussion

Gastric cancer is the most common type of cancer and it is

the fourth leading cause of cancer-related mortality worldwide

(1). Considering the notable differences between EGC and AGC,

early detection and diagnosis are crucial for patients. An

endoscopy is recognized as the standard method for detecting

EGC, and endoscopic pathology is considered the gold standard

for diagnosing EGC (3, 20). However, it is difficult to distinguish

the miniscule changes of the mucosa in traditional WLIs. The

successful detection of lesions mainly depends on the

professional skills and experience of the endoscopist (21).

Studies have validated the effectiveness of WLIs in diagnosing

EGC, although the sensitivity is low. In recent years, several

more advanced techniques, such as magnifying endoscope, NBI,

automatic fluorescence imaging and blue laser imaging have

been applied to EGC detection (4, 5), and studies have

demonstrated that a magnifying endoscope combined with

NBI technology for the diagnosis of EGC has a better

sensitivity and specificity than conventional WLI (22).

However, the small field of view of the magnification

endoscope and the insufficient brightness of the NBI are not

suitable for routine screening. In addition, the use of these

advanced technologies has certain requirements for endoscopic

equipment and endoscopists, and this remains a challenge for

hospitals in underdeveloped areas (23).

AI is based on the computing and learning ability of machines,

which can efficiently solve problems (24). It was widely used and

developed in the field of medical image recognition, such as

radiological diagnosis (6), skin cancer classification (7), diabetic

retinopathy (8) and histopathology (25).
Frontiers in Oncology 09
The combination of AI and endoscopic systems is mainly

manifested in gastrointestinal tumor screening and predicting the

depth of invasion (9, 26). Ikenoyama Y et al. (27) developed a CNN

system that specifically identifies early cancer lesions in WLI still

images. The CNN system showed a higher diagnostic sensitivity

(58.4% vs 31.9%) and faster diagnosis in an experiment comparing

the diagnostic ability of 67 endoscopists. On the downside, the

system uses rectangular boxes to identify lesions and does not allow

dynamic identification of early cancers, and its diagnostic capability

in still images could be improved. Nam et al. (28) designed three

consecutive submodels to identify single stationary images. The

heatmap display generated by gradient-weighted class activation

mapping (Grad-CAM) was used for comparison. This model

indicates the rough edges of lesions; however, the use of heatmap

display has a greater impact on the endoscopists’ observation of the

mucosa. Tang et al. (29) developed a real-time AI assist system for

detecting EGC that can diagnose at a rate of 15 msec per image,

sufficient to handle gastroduodenoscopic video streams. In the 26

videos of the experiment, 23 lesions were detected and the

sensitivity was 88.5%. Wu et al. (30) developed an AI system

termed ENDOANGEL-LD, trained with multicenter, large sample

data to detect gastricmucosal lesions andgastric tumors frommany

different types of gastric lesions. The study performed well in both

WLI still images and videos. Particularly in the experiment of

diagnosing gastric tumors by videos, the accuracy of

ENDOANGEL-LD was 72.0% (72/100) and the sensitivity was

100.0% (38/38), which was higher than the four experts (accuracy,

68.0%; sensitivity, 85.5%). The study also designed prospective trials

to achieve high sensitivity and specificity in successive patients,

initially demonstrating the potential of ENDOANGEL-LD to assist

endoscopists in their clinical work. However, using the number of

videos as a unit of judgment is not sufficient to illustrate the ability

of ENDOANGEL-LD in dynamic detection. Wu et al. (31)

proposed a randomized controlled trial to evaluate the

performance of AI systems for catching blind spots during

endoscopy and detecting EGC in real-time. The mean [standard

deviation (SD)] for the total time of the system outputs predicted

was 230 (SD60)msec. Therefore, it was set to process videos in real-

time at two frames per second. The study converted videos into

images at the corresponding frame rate for the first time; however,

the performance of AI in this case has not yet been evaluated. Hu

et al. (32) used deep learning to recognize EGC under ME-NBI
TABLE 2 Performance of the Mask R-CNN system in white light images.

Mask R-CNN Pathology

EGC Non-EGC (non-cancerous, AGC) Total

EGC 489 39 528

Non-EGC
(non-cancerous, AGC)

48 316 364

Total 537 355 892
frontier
According to the Chi-square test results, P=0.664 (>0.05). Mask R-CNN, mask region-based convolutional neural network; EGC, early gastric cancer; AGC, advanced gastric cancer.
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FIGURE 7

The ROC curve of the narrow band images test. (A) The global ROC curve of the narrow band images test. (B) The regional ROC curve of the
narrow band images test.
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images with an accuracy rate of 77.0% and a sensitivity of 79.2%,

which can be similar to that of experts. This study used Grad-CAM

to visualize the area where the model predicts the most likely.

Ueyama H et al. (33) also designed an AI model to identify EGC

under ME-NBI images, which used the more accurate Heatmap of

occlusion analysis marker and obtained high sensitivity (98%) and

specificity (100%). However, these models only worked with ME-

NBI images, but not with videos. This requires the endoscopist to

first suspect EGC under the WLI prior to initiating the

next procedure.

In recent years, with the development of computer-aided

technology, a variety of deep learning models have been applied

to endoscopic systems. In terms of the lesion detection of

endoscopic images, deep learning-based object detection
Frontiers in Oncology 11
algorithms are usually used, which are mainly divided into two

categories. The first category is the one-stage object detection

algorithm represented by ‘you only look once’, which has a high

detection speed; however, the detection accuracy still needs to be

improved (34). The other type is the two-stage algorithm

represented by the dynamic convolutional neural network

(DCNN), Fast RCNN, Faster RCNN, etc., based on CNN and

regional candidate networks, which has a higher detection accuracy

than the one-stage algorithm (35, 36). The learning ability of DCNN

has been greatly improved; however, the training time is too long

and the practicality is poor; Fast RCNN requires the time-

consuming extraction of candidate regions for images; the

efficiency of Faster RCNN has improved, although the

requirements for experimental equipment are high and the
TABLE 3 Performance of the Mask R-CNN system in narrow band images.

Mask R-CNN Pathology

EGC Non-EGC (non-cancerous, AGC) Total

EGC 486 14 500

Non-EGC
(non-cancerous, AGC)

12 21 33

Total 498 35 533
frontier
According to the Chi-square test results, P=0.802 (>0.05). Mask R-CNN, mask region-based convolutional neural network; EGC, early gastric cancer; AGC, advanced gastric cancer.
Gastric cancer is one of the five most common types of malignant tumors worldwide, and is regarded as the fourth cause of cancer-related mortality. The five-year survival rates of patients
with early gastric cancer and advanced gastric cancer are 95% and 30%, respectively. Therefore, the early detection and diagnosis of gastric cancer are crucial measures to reduce the
mortality rate associated with gastric cancer. Endoscopy with white light images is recommended as a standard procedure for the detection of early gastric cancer. However, some minimal
changes are easily ignored in WLIs, which often leads to the missed diagnosis of EGC. With the development of computer-assisted technology, artificial intelligence has begun to be applied
to solve this problem. Existing study often focus on only individual aspects, such as high accuracy or high precision.This study used the Mask R-CNN algorithm, tested separately underWLI
and NBI, and compared with endoscopists. This AI model can achieve high accuracy in identifying EGC and depict the boundaries of EGC lesions. At the same time, the AI model can meet
the high-speed recognition requirements of gastroscopy in clinical environments.
FIGURE 8

The ROC curve of the white light real-time videos test.
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FIGURE 9

The ROC curve of the experiment between the Mask R-CNN system and Endoscopists. (A) The global ROC curve of the controlled experiment.
(B) The regional ROC curve of the controlled experiment.
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training time is lengthy. At the same time, Faster RCNN only

obtains a rough representation (35, 36).

In view of the existing gastric cancer screening studies, such

as a large training sample size, long training time, large

calculation, slow running speed and low expression accuracy, a

Mask R-CNN based AI system was developed as a novel

technology to assist in the endoscopic diagnosis of EGC. Mask

R-CNN integrates the previous excellent deep learning research

results; it can not only perform multi-object detection rapidly

and accurately in the same network, but can also complete

semantic segmentation and achieve high accuracy target outlines

at the pixel level. Mask R-CNN also delegates the four steps of

candidate region generation, feature extraction, classifier

classification and regressor regression to the deep neural

network, which is not only relatively small in size, but also

faster in calculation. It has been demonstrated that the algorithm

has a good transfer learning ability, and it can achieve a better

learning effect with a lower amount of data training (16).

The Mask R-CNN system was trained on an appropriate

sample size and performed well in WLIs with an accuracy of

90.25%, a sensitivity of 91.06%, a specificity of 89.01%, a PPV of

92.61% and a NPV of 86.81%. It also exhibited excellent

diagnostic performance (accuracy, 95.12%; sensitivity, 97.59%;

PPV, 97.20%) in the NBI test. There were no significant

differences between the AI and the pathological diagnosis

results. In the prospective video experiments, the Mask R-CNN

system was able to identify EGC lesions (100%) in all videos.

Unlike previous studies (29–31), in order to further evaluate its

performance, the video streamswere converted into images of the

corresponding frame number for detection. While maintaining a

high performance (90.27, 84.86 and 91.87% accuracy, sensitivity

and specificity for the diagnosis of EGC, respectively), the latency

of acquiring data and outputting results is only 80 msec, and it

can process videos at 35 frames per second. In the controlled trial,

the overall performance of the Mask R-CNN system was no

worse than that of the experts, providing a basis for AI-assisted

endoscopic diagnosis. In addition, the present study

demonstrated that the AI model identified independent EGC in

multi-sample test images consisting of normal mucosa,

inflammation non-cancerous, EGC and AGC.
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The system was tested in both WLI and NBI data. When it

recognized EGC under WLI, it can further switch to the NBI

recognition mode. This design simulates as much as possible the

actual operation process of endoscopists in clinical examination

and provides a basis for the future application of the Mask R-

CNN system to the clinical environment.

It is worth noting that, in the image display of the existing

research, the majority of the lesions were illustrated in boxes or

heatmaps, which were lacking in accurate range and visual field

display. Similar to the previous study (37), the Mask R-CNN

system in this study used images labeled by artificial polygons as

training data. As a pixel-level object detection method, Mask R-

CNN can accurately draw the predicted EGC lesion boundary

when identifying images. It more effectively indicates the lesion

range, and prompts for the next biopsy or endoscopic mucosal

dissection. Accurate lesion display promises to provide new

clues for EGC feature learning in the future. Compared to the

algorithms used in previous studies, Mask R-CNN had better

results in some indicators. At the same time, the system added a

module for voting and screening of video detection results to the

video processing, which effectively reduced the false alarm rate of

background processing and analysis and reduced misjudgments.

In clinical practice, the consequences of the missed diagnosis

of gastric cancer are much more severe than misdiagnosis. The

authors focused on the balance of sensitivity and specificity in

the results of the Mask R-CNN system, and strive to achieve the

most suitable results for clinically applications, minimizing EGC

misses, while avoiding misjudgments as much as possible.

The present study is not without limitations however, and these

should be stated. First of all, as the data were single-center, the

sample size was small and the selection bias cannot be excluded.

Second, the training data were all derived from manual labeling,

and it may be influenced by the level of expertise of the

endoscopists. In addition, no biopsy or long-term follow-up was

performed for non-cancerous images, and there was a possibility of

false negatives. Fourth, this study only included gastritis, gastric

erosion and AGC images as the identification of EGC, and did not

add images of ulcers and intestinalization, etc. At the same time, the

Mask R-CNN system was only generally designed for the diagnosis

of EGC, and could not better distinguish the specific types of
TABLE 4 Comparison between the Mask R-CNN system and endoscopists.

Diagnoser Accuracy Sensitivity Specificity

Mask R-CNN %
(n/total)

85.25
(341/400)

93.00
(93/100)

82.67
(248/300)

Experts %
(95% CI)

83.80
(81.70, 85.90)

80.20
(75.95, 84.45)a

85.00
(81.84, 88.17)

Seniors %
(95% CI)

78.00
(75.88, 80.12)a

74.60
(72.34, 76.86)a

79.14
(76.07, 82.15)

Juniors %
(95% CI)

70.90
(68.87, 72.93)a

68.00
(65.22, 70.78)a

71.87
(69.36, 74.38)a
f

aCompared to artificial intelligence, P<0.05. Mask R-CNN, mask region-based convolutional neural network.
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mucosal lesions. In the future, the groupwill further add a variety of

lesion images that are difficult to identify with EGC to improve the

accuracy of the Mask R-CNN system. As image-enhanced

endoscopy is rarely used in clinical examinations unless there are

suspicious findings in the WLI. This study focused on the

experiment of WLIs for Mask R-CNN systems and endoscopists

and did not add controlled tests for NBIs. At last, the present study

conducted training and testing on the existing data, and did not add

test images to the training set for re-learning. This suggests that the

Mask R-CNN system is lacking in self-directed learning.

In conclusion, the Mask R-CNN system developed proved

its excellent performance in detecting EGC through prospective

trials and controlled trials. It is expected to play a role in the

training of endoscopists in underdeveloped regions and in the

diagnosis of EGC in the clinical environment.
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