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A delta-radiomics model for
preoperative prediction of
invasive lung adenocarcinomas
manifesting as radiological
part-solid nodules

Wufei Chen*, Ruizhi Wang, Zhuangxuan Ma, Yanqing Hua,
Dingbiao Mao, Hao Wu, Yuling Yang, Cheng Li and Ming Li*

Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
Purpose: This study aims to explore the value of the delta-radiomics (DelRADx)

model in predicting the invasiveness of lung adenocarcinoma manifesting as

radiological part-solid nodules (PSNs).

Methods: A total of 299 PSNs histopathologically confirmed as lung

adenocarcinoma (training set, n = 209; validation set, n = 90) in our hospital

were retrospectively analyzed from January 2017 to December 2021. All

patients underwent diagnostic noncontrast-enhanced CT (NCECT) and

contrast-enhanced CT (CECT) before surgery. After image preprocessing and

ROI segmentation, 740 radiomic features were extracted from NCECT and

CECT, respectively, resulting in 740 DelRADx. A DelRADx model was

constructed using the least absolute shrinkage and selection operator logistic

(LASSO-logistic) algorithm based on the training cohort. The conventional

radiomics model based on NCECT was also constructed following the same

process for comparison purposes. The prediction performance was assessed

using area under the ROC curve (AUC). To provide an easy-to-use tool, a

radiomics-based integrated nomogram was constructed and evaluated by

integrated discrimination increment (IDI), calibration curves, decision curve

analysis (DCA), and clinical impact plot.

Results: The DelRADx signature, which consisted of nine robust selected

features, showed significant differences between the AIS/MIA group and IAC

group (p < 0.05) in both training and validation sets. The DelRADx signature

showed a significantly higher AUC (0.902) compared to the conventional

radiomics model based on NCECT (AUC = 0.856) in the validation set. The

IDI was significant at 0.0769 for the integrated nomogram compared with the

DelRADx signature. The calibration curve of the integrated nomogram

demonstrated favorable agreement both in the training set and validation set

with a mean absolute error of 0.001 and 0.019, respectively. Decision curve

analysis and clinical impact plot indicated that if the threshold probability was

within 90%, the integrated nomogram showed a high clinical application value.
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Conclusion: TheDelRADxmethodhas thepotential toassistdoctors inpredicting

the invasiveness for patients with PSNs. The integrated nomogram incorporating

the DelRADx signature with the radiographic features could facilitate the

performance and serve as an alternative way for determining management.
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Introduction

With the popularity of low-dose CT for lung cancer screening

in recentyears, a largenumber of early-stage lungadenocarcinomas

radiographically manifesting as partial solid nodules (PSNs) have

been screened out (1). Given the distinct surgical management

strategy and prognosis for disease-free survival (DFS) and overall

survival (OS), differentiation of the invasive adenocarcinoma (IAC)

from the adenocarcinoma in situ (AIS) or minimally invasive

adenocarcinoma (MIA) for this distinct subtype has been

confirmed to be of great clinical significance (2). The malignant

potential of PSNs inCT images has not been clarified; however, the

evaluation of invasive qualities was primarily imaging- or clinic-

based at the present stage, which is nonquantifiable and subjective

(3, 4). Both radiologists and surgeons desire a precise and practical

way to help guide clinical decision-making for the invasiveness of

PSNs when faced with a such diagnostic quandary.

Histological evidence has revealed a tight relationship between

the solid component of PSNs and the invasive component of

adenocarcinomas (5, 6). The extra blood supply information of

solid components may benefit from contrast-enhanced CT

(CECT), which also brings out tumor heterogeneity (7, 8).

Furthermore, a new high-throughput radiomics analysis method

called delta-radiomics (DelRADx), which deals with a string of

eigenvalue changes within different modes, has reportedly been

linked to the efficacy or prognosis for malignancies such as

colorectal, liver, or lung cancer (9–11). However, the use of

DelRADx for the prediction of invasive adenocarcinomas

manifested as PSNs is rarely reported. The purpose of this study

is to develop a DelRADx model based on CECT and noncontrast-

enhancedCT (NCECT)data in order toprovidepatientswithPSNs

for better decision support.
Materials and methods

Patients

Patients who underwent surgical resections for lung cancer

at our hospital between January 2017 and December 2021 were

reviewed retrospectively. The inclusion criteria were as follows:
02
(1) pathologically confirmed as lung adenocarcinoma; (2)

radiographically represented as PSNs (diameter, ≤3 cm) in

axial CT at lung window setting; (3) NCECT and CECT

images were obtained at one examination; and (4) thin-slice

CT images (1–1.25 mm) could be obtained. The exclusion

criteria were as follows: (1) nodule diameter less than 6 mm,

due to the inherent calibration error of solid components within

the threshold; (2) poor CT quality, such as severe motion

artifacts; and (3) failure to extract the radiomic features for

unknown reasons. For the multiple PSNs in one patient, only the

lesion with the pathologically conclusive result was included.

Consequently, 299 cases with 299 PSNs who met the

principles were enrolled in the cohort for the current analysis

(detailed in Figure S1). According to the histopathological

examination, 159 cases were diagnosed with AIS/MIA, while,

140 cases were diagnosed with IAC. The cases were randomly

divided into training and validation sets in a ratio of 7:3. This

study design was approved by the institutional research ethics

board of our institution, and the informed consent requirement

was waived for the retrospective research with anonymous data.
Image acquisition and radiographic
feature assessment

NCECT examinations were conducted in the supine position

with the arms up after deep inspiration. The CT datawere acquired

from one of the two scanners: Somatom Definition flash (Siemens

Medical Solutions, Germany) and GE Discovery CT750 HD

scanner (GE Healthcare, USA). The scanning parameters are

detailed in Supplementary Table S1. Subsequently, the CECT was

performed at 35 to 60s after injecting a dose of 80–100ml nonionic

IV contrast material (350 mg/ml, Omnipaque, GE Healthcare)

mixedwith isotonic saline into the ulnar vein using a high-pressure

syringe at a rate of 3.0–4.0 ml/s.

The clinical and radiographic features were reviewed by two

radiologists (H.W. and D.B.M.) with more than 10 years of

experience in chest CT interpretation in a blinded fashion. We

used the electronic caliper in our picture archiving and

communication system to measure the maximum diameter of

PSNs (nodule_max) and the maximum diameter of the
frontiersin.org
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corresponding solid component (solid_max). The consolidation-

to-tumor ratio (CTR)was subsequently determined bydividing the

solid_max by the nodule_max. Any discrepancies in describing the

radiographic features were settled by consensus reading.
Nodule segmentation

Theregionsof interest (ROI)weremanually contoured slicewise

by one radiologist (Z.X.M.) with 5 years of experience to achieve

three-dimensional segmentation using the open-source medical

image processing and navigation software 3D slicer (version 4.8.0,

Brigham andWomen’sHospital). Another radiologist (Y.L.Y.) with

6 years of experience segmented a random set of 20 nodules

independently to assess the interobserver robustness of radiomic

features. All ROIwere exported inNrrd (desensitization format) for

the following analysis.
Image preprocessing and radiomics
feature extraction

All images were isotropically resampledwith 1.0mmatX/Y/Z-

spacing using linear interpolation to standardize. The Gaussian

filterwasused to reduce thenoise influenceof the voxel on radiomic

features. Feature extraction was performed with pyRadiomics

(https://doi.org/10.1158/0008-5472.CAN-17-0339). The

DelRADx was defined as the change of radiomic features from

NCECT to CECT: DelRADx = FeatureCECT − FeatureNCECT.
Feature selection and modeling

The training set was used for feature selection. Robust

features with an interclass correlation coefficient (ICC) of >0.8

were chosen for further analysis. The discriminative ability was

first evaluated using the Mann–Whitney U test. Features with

statistical significance were taken for the following analysis. The

correlation matrix with the pair-wise Spearman correlation

analysis was built to eliminate the redundant features

(correlation coefficient >0.90). The least absolute shrinkage

and selection operator (LASSO) logistic regression algorithm

with fivefold cross-validation was used to develop a predictive

DelRADx signature by linear summing the core DelRADx

multiplied by their coefficient. Another conventional radiomics

model based on the NCECT features was constructed by using

the same flow process to evaluate the optimal predictive model.
Statistical analysis

The feature selection, modeling, and statistical analysis were

performed with R software (version 3.6.2; http://www.Rproject.
Frontiers in Oncology 03
org) or SPSS 21.0 (IBM, Chicago, IL, USA). The “irr” package

was used for ICC. LASSO analysis was performed with the

“glmnet” package. The nomogram and calibration curve were

plotted based on the “rms” package. Decision curve analysis

(DCA) and clinical impact plot were done with the “rmda”

package. Multivariate binary logistic regression analysis was

performed with an input parameter strategy. The model

performance between the two radiomics models was evaluated

by the ROC analysis. The significant difference was evaluated

using the DeLong method. Integrated discrimination increment

(IDI) was used to analyze the improvement of the integrated

nomogram. A p-value of < 0.05 was considered statistically

significant. All p-values were two sided in this study.
Results

Patients’ general characteristics

The general characteristics of 299 patients in the training and

validation sets are summarized in Table 1. In the univariate

analysis, there were no significant differences in gender, age,

location, margin, air bronchogram, and vacuole sign (p >0.05).

Statistically significant differences could be observed in the

nodule_max, solid_max, and CTR both in the training and

validation sets (p < 0.05). Consequently, these three quantitative

parameters were chosen to establish a radiographic model.

According to the univariate logistic regression analysis, only

solid_max could independently predict the invasiveness of PSNs

(Table S2).

The AUC of the radiographic model based on the binary

logistic regression analysis was 0.890 (95% CI, 0.843–0.938) in

the training set and 0.835 (95% CI, 0.745–0.926) in the validation

set. The associated criterion of solid_max was 4.53 mm.
Feature selection and DelRADx
signature building

A total of 740 radiomic features were extracted from the ROI

of NCECT and CECT, respectively, resulting in 740 DelRADx.

The schematic depiction of radiomics modeling was illustrated

in Figure 1. After the process of ICC, ANOVA/MW, Spearman

rank correlation test, and LASSO logistic regression analysis

(detailed in Figure S2), nine robust DelRADx were ultimately

selected. Based on the coefficients, the DelRADx signature was

calculated for each patient. The signature formulas are provided

in Figure S3.

Both the DelRADx and conventional radiomics signatures

were significantly different between IAC and the AIS/MIA in the

training set (0.78 ± 0.23 vs. 0.22 ± 0.25, 0.74 ± 0.24 vs. 0.26 ±

0.26) and the validation set (0.64 ± 1.25 vs. −1.99 ± 1.96, 0.44 ±

0.82 vs. −0.84 ± 0.81) (p-values < 0.05).
frontiersin.org
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Performance comparison

The DelRADx model exhibited good performance with an

AUC of 0.925 (95% CI, 0.888–0.962) in the training set and

0.902 (95% CI, 0.838–0.966) in the validation set, respectively.

For the conventional radiomics models, the AUC was 0.894

(95% CI, 0.853~0.936) in the training set and 0.856 (95% CI,

0.767–0.945) in the validation set, respectively. Compared with

the conventional radiomics model, the DelRADx model showed

significantly higher AUC in the validation set (p < 0.05 of the

DeLong test) (Figure 2).
Radiomics nomogram building
and evaluation

To provide an easy-to-use tool, a delta-radiomics-based

integrated nomogram incorporating the DelRADx signature

and the solid_max was constructed using the multivariable

logistical regression analysis (as shown in Figure 3). According

to the univariate logistic regression analysis, both the DelRADx

signature and the solid_max could independently predict the

invasiveness of PSNs (Table 2). Compared with the DelRADx
Frontiers in Oncology 04
signature, the total IDI was significant at 0.0769 for the

integrated nomogram (95% CI, 0.0394–0.1144, p < 0.001).

The calibration curve of the integrated nomogram

demonstrated favorable agreement with actual observation in

the training cohort and was confirmed in the validation set with

a mean absolute error of 0.001 and 0.019, respectively (Figure 4).

Decision curve analysis and clinical impact plot indicated that if

the threshold probability of a patient was within 90%, using the

integrated nomogram to predict IAC added more benefit than

either the treat-all-patient scheme or the treat-none scheme

(Figures 5A, B).
Discussion

In this study, we developed and validated a diagnostic

DelRADx signature in the individualized evaluation of invasive

adenocarcinomas for patients with PSNs. Our results

demonstrated that the proposed DelRADx model outperformed

the conventional radiomics model based onNCECT with an AUC

of 0.925 in the training set and 0.902 in the validation set,

respectively. Furthermore, our easy-to-use nomogram

incorporating the DelRADx signature and radiographic
TABLE 1 Demographic and radiographic characteristics of enrolled patients.

Variable Training set Validation set

AIS/MIA IAC p AIS/MIA IAC p

Gender

Male 32 (43.2) 42 (56.8) 0.134 14 (46.7) 16 (53.3) 0.068

Female 73 (54.1) 62 (45.9) 40 (66.7) 20 (33.3)

Age 52.38 ± 12.20 54.93 ± 11.10 0.115 57.50 ± 10.14 58.06 ± 9.67 0.796

Solid_max 3.56 ± 0.72 5.07 ± 1.30 0.0001* 4.28 ± 0.98 5.79 ± 1.33 0.0001*

Nodule_max 9.30 ± 2.45 10.55 ± 2.64 0.001 10.67 ± 2.62 12.31 ± 3.16 0.009

CTR 0.39 ± 0.08 0.49 ± 0.10 0.0001* 0.41 ± 0.07 0.49 ± 0.12 0.0001*

Location

RUL 41 (52.6) 37 (47.4) 0.632 16 (69.6) 7 (30.4) 0.103*

RML 7 (46.7) 8 (53.3) 1 (12.5) 7 (87.5)

RLL 24 (58.5) 17 (41.5) 8 (47.1) 9 (52.9)

LUL 23 (43.4) 30 (56.6) 23 (69.7) 10 (30.3)

LLL 10 (45.5) 12 (54.5) 6 (66.7) 3 (33.3)

Margin

Blurred 40 (44.0) 51 (56.0) 0.111 20 (60.6) 13 (39.4) 0.929

Clear 65 (55.1) 53 (44.9) 34 (59.6) 23 (40.4)

Air bronchogram

Present 9 (75.0) 3 (25.0) 0.077 7 (77.8) 2 (22.2) 0.254*

Absent 96 (48.7) 101 (51.3) 47 (58.0) 34 (42.0)

Vacuole sign

Present 9 (50.0) 9 (50.0) 0.983 2 (66.7) 1 (33.3) 0.811*

Absent 96 (50.3) 95 (49.7) 52 (59.8) 35 (40.2)
frontie
Data in parentheses are percentages. Fisher’s exact test results are marked by asterisks. Significant results (p < 0.05) are bolded.
*Mann–Whitney U test for the abnormal distribution.
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independent predictor facilitated the performance compared with

the DelRADx model alone. Our findings indicate that the

DelRADx signature could provide additional information for

invasive adenocarcinomas and, consequently, help to provide

better support for decision-making when treating patients

with PSNs.

The association between the solid component and

pathological invasion has been extensively researched (12, 13).

Several studies suggest good prediction of IACs if the threshold

of the solid component is >5 mm (14). Our data are in keeping

with previous observations that the diameter of solid
Frontiers in Oncology 05
components is a significant independent differentiator for

IACs. While in our investigation, the prediction threshold was

preshifted to 4.5 mm. The observed discrepancy could be

explained in part by the fact that the current study included

not only the subcohort of MIA but also a sample of AIS, which

contained fewer solid components. Similarly, Luo et al. (15)

developed a model with pleural indentation, solid component

size, and solid component proportion for differentiating IAC

from non-IAC in patients with PSNs and achieved an AUC of

0.85. Weng et al. (16) used lesion shape and solid component

size to create a prediction model for PSNs with an AUC of 0.76.
BA

FIGURE 2

The predictive performance of the DelRADx signature and conventional radiomics signature for each patient in the training set (A) and validation set (B).
FIGURE 1

The schematic depiction of radiomics modeling.
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Despite the predictive power of the radiographic features,

the accurate identification of IACs with subjective assessment

remains challenging in clinical practice. Radiomics is a high-

throughput and automatic analysis technique for medical

images. Numerous studies have proved that the development

of radiomics represents a significant breakthrough in

overcoming the limitation of subjective evaluation (17). Delta

radiomics have shown potential advantages in earlier diagnosis

and prognosis estimation in a variety of tumors.

In this study, we constructed an individualized delta-

radiomics model to predict the invasiveness of PSNs. The

results indicated that our delta-radiomics signature derived
Frontiers in Oncology 06
from CECT and NCECT outperformed the conventional

radiomics signature. One of the potential explanations is that

the images obtained from CECT could reveal the density of

microvessels, which is closely linked with tumor invasion (18).

Additionally, delta-radiomics could provide supplementary

information on intratumoral heterogeneity, which is also

supporting evidence for tumor invasion.

Previous studies support our interpretation. Son et al. (19)

found that CECT imaging metrics could add value in

distinguishing invasive adenocarcinoma from AIS/MIA that

manifested as PSNs. For the DelRADx analysis, Wang et al.

investigated a delta-radiomics model derived from the
TABLE 2 Multivariate analysis of radiomics-based integrated nomogram for differentiating invasive adenocarcinoma.

Variables Odds ratio 95% CI p

Solid_max 1.23 1.82-6.39 0.0001

DelRADx signature 1.51 2.28-8.93 0.0001
frontiers
FIGURE 3

The integrated nomogram incorporating the DelRADx signature and solid_max.
BA

FIGURE 4

The calibration curve of the integrated nomogram in the training dataset (A) and validation dataset (B).
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B

A

FIGURE 5

Decision curve analysis (A) and clinical impact plot (B) for the integrated nomogram in the validation set. The x-axis indicates threshold
probability, and the y-axis indicates the net benefit. The red line represents the integrated nomogram.
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positioning CT and resetting CT after radiation therapy, and the

result demonstrated that the delta-radiomics signature could be

a promising image biomarker for the prediction of severe acute

radiation pneumonitis. In line with our study, Saeed et al. (11)

indicated that the Rider features in the machine learning-based

delta-radiomics model could improve the performance of lung

cancer screening. Our study found that the delta-radiomic

features of the gray-level run-length matrix (GLRLM) had the

added value in differentiating the invasiveness of lung

adenocarcinoma. As is well-known, GLRLM is used to

describe the distribution of texture changes between

neighboring pixels. In our research, the change of GLRLM for

IACs was significantly higher than for AIS/MIA, which verified

the higher heterogeneity or asymmetry for IACs.

We further developed a novel delta radiomics-based

nomogram by integrating the DelRADx signature with a

radiographic independent predictor for convenient access in

clinical applications. Our proposed nomogram showed

facilitated performance with an IDI of 0.077 compared with

the DelRADx model alone. Meanwhile, the developed tool

revealed favorable calibration performance in the calibration

curve analysis. Additionally, the decision curve analysis and

clinical impact plot illustrated the potential clinical

application value of our nomogram. Our findings concurred

with the observations that delta radiomics incorporated with

clinical data could improve the performance of the prediction

model. Khorrami et al. (20) incorporated DelRADx and

per inodular morphologica l character is t ics into an

individualized decision-making model for patients with

advanced NSCLC, and the results showed that the

noninvasive approach could effectively identify the

candidates who benefit from immunotherapy. Notably, the

data used in our model was all clinically accessible, requiring

no more investigations and expenditures.

There are several limitations to this study. Firstly, inherent

biases are inevitable in this retrospective, single-center

analysis. For instance, the PSNs that were examined without

CECT were excluded from this study. Secondly, although

manual segmentation is regarded as the golden criterion for

ROI, it is a labor- and time-intensive method that limits its

application to a larger cohort. Thirdly, the reproducibility of

radiomic features may face additional challenges due to the

variance from different scanner parameters. Last but not the

least, the stability of radiomic features may be affected by

different acquisition phases of CECT scanning. A multicenter

study with a prospective design is planned for our

future study.

In conclusion, the delta-radiomics signatures can significantly

improve the performance in the differential diagnosis of IACs from

AIS/MIAs in patients with PSNs. The delta-radiomics-based

nomogram coupled with radiographic features may serve as a

convenient way in providing highly informative data for clinical

decision support.
Frontiers in Oncology 08
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