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Chemo-radiotherapy (CRT) remains the main treatment modality for non-small-cell lung
cancer (NSCLC). However, its clinical efficacy is largely limited by individual variations in
radio-sensitivity and radiotherapy-associated toxicity. There is an urgent need to identify
genetic determinants that can explain patients’ likelihood to develop recurrence and
radiotherapy-associated toxicity following CRT. In this study, we performed
comprehensive genomic profiling, using a 474-cancer- and radiotherapy-related gene
panel, on pretreatment biopsy samples from patients with unresectable stage III NSCLCs
who underwent definitive CRT. Patients’ baseline clinical characteristics and genomic
features, including tumor genetic, genomic and molecular pathway alterations, as well as
single nucleotide polymorphisms (SNPs), were correlated with progression-free survival
(PFS), overall survival (OS), and radiotherapy-associated pneumonitis and/or esophagitis
development after CRT. A total of 122 patients were enrolled between 2014 and 2019,
with 84 (69%) squamous cell carcinomas and 38 (31%) adenocarcinomas. Genetic
analysis confirmed the association between the KEAP1-NRF2 pathway gene alterations
and unfavorable survival outcome, and revealed alterations in FGFR family genes, MET,
PTEN, and NOTCH2 as potential novel and independent risk factors of poor post-CRT
survival. Combined analysis of such alterations led to improved stratification of the risk
populations. In addition, patients with EGFR activating mutations or any oncogenic driver
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mutations exhibited improved OS. On the other hand, we also identified genetic markers
in relation to radiotherapy-associated thoracic toxicity. SNPs in the DNA repair-associated
XRCC5 (rs3835) and XRCC1 (rs25487) were associated with an increased risk of high-
grade esophagitis and pneumonitis respectively. MTHFR (rs1801133) and NQO1
(rs1800566) were additional risk alleles related to higher susceptibility to pneumonitis
and esophagitis overall. Moreover, through their roles in genome integrity and replicative
fidelity, somatic alterations in ZNF217 and POLD1 might also serve as risk predictors of
high-grade pneumonitis and esophagitis. Taken together, leveraging targeted next-
generating sequencing, we identified a set of novel clinically applicable biomarkers that
might enable prediction of survival outcomes and risk of radiotherapy-associated thoracic
toxicities. Our findings highlight the value of pre-treatment genetic testing to better inform
CRT outcomes and clinical actions in stage III unresectable NSCLCs.
Keywords: non-small cell lung cancer, radiotherapy, radiation sensitivity, biomarker, genetic variation, prognosis,
chemo-radiotherapy, radiotherapy-associated toxicity
INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths
worldwide and in China, among which approximately 85% of
patients have non-small cell lung cancers (NSCLCs) (1, 2).
NSCLC is sub-categorized based on histological features into
mainly adenocarcinoma (ADC) and squamous cell carcinoma
(SCC) (1). Over the past two decades, many therapeutic advances
have been made given our deepened understanding of lung
cancer etiology. The identification of actionable molecular
targets has revolutionized the management of NSCLC, with
targeted therapies demonstrating remarkable clinical benefits in
patients carrying specific driver mutations (1). Nevertheless, the
majority of lung cancer patients still require radiotherapy for
cure or palliative care. In particular, for NSCLC patients with
unresectable locally advanced tumors, especially SCC, the
combination of chemotherapy and thoracic radiation, given
either concurrently or sequentially, remains the standard of
care (3).

Radiotherapy, together with the radio-sensitizing effect of
chemotherapy, results in enhanced anti-tumor efficacy,
although at the expense of significant normal tissue toxicity.
Radiotherapy-induced lung injury (known as radiation
pneumonitis in an early phase and pulmonary fibrosis in the
late phase), as well as esophagitis are common adverse events
following thoracic radiation (4, 5). There are considerable
variations between patients in their likelihood to develop
severe adverse events following a given dose of radiation,
which consequently, limits the maximum dose that can be
administered to the majority (6). Similarly, there are
substantial differences in individual response to chemo-
radiotherapy (CRT) and the risk of resistance development. It
has been long recognized that genetic variations between
individuals or tumors are major contributors to the differences
in radio-sensitivity and risks of developing radiotherapy-
associated toxicity, and thus, must be taken into consideration
for personalized radiotherapy dose-prescription.
2

Our understanding of differential response to radiotherapy
begins with the discovery of several genetic syndromes caused by
mutations in the DNA repair pathways, which can lead to life-
threatening radiotherapy toxicity (7, 8). Subsequently, a number
of other molecular processes, such as scavenging of reactive
oxygen species (ROS), apoptosis, proliferation and inflammatory
response, have been implicated in the development of radiation-
induced toxicity (9–12). While multiple approaches, including
candidate gene approach and genome-wide association studies,
were undertaken to identify genetic variants that might explain
the differences in individual response to radiotherapy, no robust
biomarkers with convincing clinical applicability have been
identified (13) . In addit ion, a lung tissue-specific,
comprehensive analysis for personalized radiotherapy is still
lacking. Here, taking advantage of next-generation sequencing
(NGS) technology, we performed comprehensive genomic
profiling on 474 cancer- and radio-sensitivity-related genes of
the tumor biopsies from 122 unresectable stage III NSCLC
patients prior to radiation therapy, and identified a set of
promising biomarkers for predicting radiation survival and
toxicity, which may prove beneficial for guiding clinical
treatment decision-making.
MATERIAL AND METHODS

Patient Enrollment
The patients with NSCLC in the study were treated with CRT at
the multiple centers between October 2014 and March 2019.
Eligible patients for this study were determined based on the
following criteria: histological diagnosis of unresectable stage
IIIA-C NSCLC based on the tumor, node and metastasis (TNM)
staging system without severe pleural or pericardial effusion, age
older than 18 years, adequate lung, bone marrow, renal, hepatic,
and cardiac function, and no history of systemic treatment or
radiotherapy for thoracic cancers. The study was approved by the
Ethical Review Board of the Oncology Center of Shandong
July 2022 | Volume 12 | Article 928605
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Provincial Hospital, and all patients provided written
informed consent.

Treatment and Assessments
All patients in this study received standard definitive CRT
(dCRT). A median of five cycles of cisplatin- or paclitaxel-
based chemotherapy were given concurrently or sequentially
with radiotherapy. The choice of chemotherapy regimen was
left to the investigator’s discretion. Three-dimensional conformal
radiation therapy (3D-CRT) or intensity-modulated radiation
therapy (IMRT) was administered at a total dose of 50-70 Gy.

The follow-up of all patients was conducted 1 month after
radiotherapy, and then every 3 months during the first year.
After that, the patients were followed up every 3-6 months.
Radiotherapy-associated thoracic toxicities were graded
according to the toxicity criteria of the Radiation Therapy
Oncology Group (RTOG) and the European Organization for
Research and Treatment of Cancer (EORTC) (14). For toxicity
criteria of pneumonitis, grade 1 includes mild symptoms of dry
cough or dyspnea on exertion; grade 2 includes persistent cough
requiring narcotic or antitussive agents, or dyspnea with minimal
effort but not at rest; grade 3 includes severe cough unresponsive
to narcotic antitussive agent or dyspnea at rest, clinical or
radiological evidence of acute pneumonitis, or requirement of
intermittent oxygen or steroids; and grade 4 includes severe
respiratory insufficiency or continuous oxygen or assisted
ventilation. For esophagitis, grade 1 includes mild dysphagia or
odynophagia, requirement of topical anesthetic, non-narcotic
analgesics, or soft diet; grade 2 includes moderate dysphagia or
odynophagia, requirement of narcotic analgesics, puree or liquid
diet; grade 3 includes severe dysphagia or odynophagia with
dehydration or weight loss >15% from pretreatment baseline,
requirement of nasogastric feeding tube, intravenous fluids, or
hyperalimentation; grade 4 includes complete obstruction,
ulceration, perforation, or fistula. Treatment responses were
assessed using CT imaging at each follow-up and compared to
the images at baseline or from the last follow-up and were
evaluated according to the Response Evaluation Criteria in
Solid Tumors (RECIST), version 1.1. Progression-free survival
(PFS) was defined as the time from the beginning of treatment to
disease progression. Patients who had not progressed were
censored at the date of their last scan. Overall survival (OS)
was defined from the beginning of treatment to the time of death
from any cause or the last follow-up.

DNA Extraction and Library Preparation
All tumor samples were formalin-fixed paraffin-embedded
(FFPE, 10 µm) and were obtained from original biopsies prior
to any treatment. At least 10% tumor content of all samples, as
determined by pathologists, was required. NGS was performed in
a CLIA-certified and CAP-accredited laboratory (Nanjing
Geneseeq Technology Inc., Nanjing, China). Genomic DNA
was extracted from de-paraffinized FFPE sections using
QIAamp DNA FFPE Tissue Kit (Qiagen) according to the
manufacturer’s instructions. Quantity and quality of DNA
were assessed using Qubit 3.0 fluorometer and Nanodrop 2000
(ThermoFisher), respectively. DNA was fragmented into 350 bp
Frontiers in Oncology | www.frontiersin.org 3
using the Covaris M220 sonication system and purified with
Agencourt AMPure XP beads (Beckman Coulter).

DNA (50 ng) libraries were prepared with KAPA hyper library
preparation kit (KAPA Biosystems). Libraries with different indices
were pooled for targeted enrichment with IDT xGen Lockdown
Reagents and a customized enrichment panel (IDT) covering 474
cancer-related genes with whole-exon coverage, including those that
have been implicated in radiotherapy response and/or radiotherapy-
associated adverse effects (Radiotron®, Nanjing Geneseeq
Technology Inc., Nanjing; Supplementary Table 1). Libraries were
captured with Dynabeads M-270 (Life Technologies) and xGen
Lockdown hybridization and wash kit (IDT). The captured library
was further on-beads PCR amplified with Illumina p5 (5’AATGAT
ACG GCG ACC GA 3’) and p7 (5’ CAA GCA GAA GAC GGC
ATA CGA GAT 3’) primers in KAPA Hifi HotStart ReadyMix
(KAPA Biosystems) and purified with Agencourt AMPure XP
beads. Sequencing libraries were sized on the Agilent Bioanalyzer
2100 (Agilent Technologies) and their concentrations analyzed by
qPCR with KAPA Library Quantification kit (KAPA Biosystems).
The final libraries were sequenced on an Illumina Hiseq 4000
platform to a mean coverage depth of ~350.

Sequencing Data Analysis
NGS read preprocessing, including quality control of FASTQ
files and removing leading/trailing low quality (quality reading
below 15) or N bases, was conducted with Trimmomatic (15).
Qualified pair-end reads were aligned to the reference human
genome hg19 with Burrows-Wheeler Aligner (v0.7.12) (16). PCR
deduplication was performed using Picard and local realignment
around indels and base quality score recalibration was performed
using GATK3. Samples with mean dedup depth of less than 30X
were also removed. Cross-sample contamination was quantified
by using ContEst (Broad Institute). Single nucleotide
polymorphisms (SNPs) were identified if present in >1%
population frequency in the 1000g, genomAD, or ExAC
databases. Somatic single nucleotide variants (SNVs) and
indels were identified using VarScan2 (17) with the following
parameters: i) minimum read depth=20; ii) minimum variant
supporting reads=5, mapped to both strands; iii) minimum base
quality=15; iv) strand bias no greater than 10%. Somatic variants
were further filtered through an internally collected list of
recurrent sequencing errors and if present in >1% population
frequency in the 1000g, genomAD or ExAC database. Copy
number variations (CNVs) were detected using CNVkit (18).
CNV gain and loss were identified if depth ratio were above 1.6
or below 0.6, respectively. Final list of mutations was annotated
using vcf2maf (call VEP for annotation). Panel tumor mutational
burden (TMB) was counted by summing all base substitutions
and indels in the coding region of targeted genes, including
synonymous alterations to reduce sampling noise and excluding
known driver mutations as they are over-represented in the
Panel, as previously described (19).

Statistical Analysis
For comparisons of proportion between groups, Fisher’s exact
tests were performed. For non-normally distributed data, such as
TMB, differences between two groups were evaluated with the
July 2022 | Volume 12 | Article 928605
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non-parametric Mann-Whitney/Wilcoxon rank-sum test. For
survival analyses, Kaplan-Meier curves were estimated using
the log-rank test, and hazard ratios (HRs) for PFS and OS
were calculated by Cox proportional hazards model.
Multivariable survival analysis was performed using the Cox
regression model. A two-sided P value of less than 0.05 was
considered to be statistically significant unless otherwise
indicated. All statistical analyses were done in R (v.3.5.2).
RESULTS

Patient Overview
We retrospectively performed analyses on 122 patients with
unresectable stage III NSCLC, who underwent dCRT. Patients’
baseline characteristics were summarized in Table 1. Median age
of the study cohort was 62 years. Histological subtypes included
84 SCC (68.9%) and 38 ADC (31.1%). Consistent with a higher
proportion of SCC patients, there were more male patients
(87.7%) and former smokers (74.6%) in the study cohort.
51.6% (63/122) patients received concurrent dCRT and the
remaining (48.4%) received sequential dCRT. At data cutoff,
the median follow-up time was 30.1 months. Median PFS and OS
of the study cohort were 11.4 and 34.6 months, respectively
(Supplementary Figure 1). A total of 51 (41.8%) patients
developed grade 2 or higher toxicity, with 39 patients
developed grade 2 or higher pneumonitis and 16 cases
of esophagitis.

Genomic profiling on baseline tissues using a targeted NGS
panel covering 474 cancer- and radiotherapy-associated genes
(Supplementary Table 1) revealed the mutational landscape of
the cohort (Figure 1A). The most frequently altered genes were
TP53 (ADC, 78.9%; SCC, 94.0%), MCL1 (ADC, 52.6%; SCC,
62.7%), MYC (ADC, 23.7%; SCC, 38.5%), NOS2 (ADC, 26.3%;
SCC, 28.9%) and EGFR (ADC, 31.6%; SCC 24.1%). Notably, we
observed a high frequency of TP53 and a low frequency of EGFR
mutations in our ADC patients, which was consistent with an
enrichment of former smokers in our study. The median TMB of
the cohort is 13.4 mutations/Mb, with no significant difference
observed between ADC (12.4 mutations/Mb) and SCC (13.9
mutations/Mb; P=0.68).

Predictive Markers for Survival Outcome
Following CRT
First, we examined potential associations between clinical
characteristics and survival outcome following dCRT. No
significant difference in survival outcomes was observed
comparing patients with different histological subtypes (PFS,
P=0.27; OS, P=0.76). Patients treated with concurrent and
sequential dCRT also had similar PFS outcome (P=0.56,
Supplementary Figure 2A), albeit a small trend towards
increased OS in patients treated with concurrent dCRT (HR
[95% CI] =0.63 [0.37-1.1], P=0.10, Supplementary Figure 2B).
Patients treated with 3D-conformal RT had lower risk of
progression compared with those treated with intensity-
modulated RT (HR [95% CI] =0.53 [0.31-0.90], P=0.01,
Frontiers in Oncology | www.frontiersin.org 4
Supplementary Figure 2C), which did not translate into an
OS difference (P=0.92, Supplementary Figure 2D). Patients with
smoking histories had worse outcome compared with never
smokers (PFS, HR [95% CI] =1.95 [1.15-3.32], P=0.01; OS, HR
[95% CI] =1.58 [0.79-3.16], P=0.19, Supplementary Figures 2E, F).
A higher overall dose was associated with a trend towards improved
PFS and prolonged OS (PFS, HR [95% CI] =0.73 [0.45-1.18], P=0.2;
OS, HR [95% CI] =0.56 [0.31-1.0], P=0.05, Supplementary
Figures 2G, H).

Next, we explored the associations between individual
genomic alterations (non-synonymous alterations that occur in
at least 5% of the cohort) and dCRT survival outcome. We
identified 19 patients with mutations in Kelch Like ECH
Associated Protein 1 (KEAP1, Figures 1A, B). KEAP1 is an E3
ubiquitin ligase that functions as a sensor for oxidative stress and
negatively regulates NRF2, a transcription factor upstream of
cytoprotective and antioxidant genes, in the absence of stress
(20). Of the 19 KEAP1-mutant patients, three carried nonsense
mutations and the rest carried missense mutations that were all
except three predicted to be deleterious or potentially damaging
to protein function by SIFT or PolyPhen. Specifically, we
detected three mutations in the BTB domain and four in the
intervening BACK (BTB and C-terminal Kelch) domain, both of
which mediate its interaction with Cullin 3 (Cul3) for protein
TABLE 1 | Clinical characteristics of the patients.

Characteristics No. of patients (%)

Sex
Male 107 (87.7%)
Female 15 (12.3%)
Age
<65 73 (59.8%)
≥65 49 (40.2%)
Median age (range) 62 (33–84)
Histological subtypes
Adenocarcinoma 38 (31.1%)
Squamous cell carcinoma 84 (68.9%)
Smoking history
Former smokers 91 (74.6%)
Never smokers 31 (25.4%)
Treatment regimen
SCRT 59 (48.4%)
CCRT 63 (51.6%)
Radiation type
3DCRT 30 (24.6%)
IMRT 92 (75.4%)
Radiation dose
<60 Gy 28 (23.0%)
=60 Gy 66 (54.0%)
>60 Gy 28 (23.0%)
RT-related pneumonitis
Grade 0-1 83 (68.0%)
Grade 2 18 (14.8%)
Grade 3 19 (15.6%)
Grade 4 2 (1.6%)
RT-related esophagitis
Grade 0-1 106 (86.9%)
Grade 2 8 (6.55%)
Grade 3 8 (6.55%)
Grade 4 0 (0%)
July 2022 | Volume
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ubiquitination, as well as ten mutations located in the Kelch
repeat domains that mediates interaction with NRF2
(Figure 1B). KEAP1 mutations have been reported to correlate
with an increased rate of local recurrence in NSCLC patients
treated with radiotherapy (21). Indeed, our data independently
showed that patients with KEAP1mutations had shorter median
PFS (6.7 months vs. 12.2 months; HR [95% CI] = 2.17 [1.24-
3.81], P = 0.006, Supplementary Figure 3A) and OS (18.8 vs.
37.8 months; HR [95% CI] =2.37 [1.23-4.55], P=0.008,
Supplementary Figure 3B) compared with those with the
Frontiers in Oncology | www.frontiersin.org 5
wild-type gene. Considering patients with deleterious
mutations in genes in the KEAP1-NRF2 pathway (KEAP1,
NFE2L2 or CUL3) showed a consistent increase in the risk of
disease progression (HR [95% CI] =1.86 [1.1-3.15], P=0.02,
Figure 1C), as well as decreased OS (HR=2.27 [1.22-4.23],
P=0.008, Figure 1D).

Univariate analysis revealed additional associations of
survival outcome following dCRT with variations in several
key genes that play important roles in lung cancer initiation
and progression. The MET oncogene, which encodes a receptor
A

B

DC

FIGURE 1 | Landscape of genetic variations and the associations of dCRT survival outcomes with the KEAP1-NRF2 pathway. (A) The distribution of various genetic
variations in each patient was shown. Clinical characteristics of each patient were shown at the bottom. ADC, adenocarcinoma; SCC, squamous cell carcinoma. (B)
Lollipop plot showing the distribution of KEAP1 mutations in the study cohort. (C, D) Kaplan-Meier estimates of (C) PFS and (D) OS in the full analysis set comparing
patients with and without KEAP1-NRF2 pathway gene mutations. HR denotes hazard ratio; CI denotes confidence interval. Tick marks indicate censored data.
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tyrosine kinase, has become an important target for the
treatment of NSCLC. We identified 11 patients with MET
alterations, of which one had MET amplification, four carried
exon 14 skipping mutations, three had MET fusions, and one
patient with both amplification and an exon 14 skipping
mutation (Figure 1A). The presence of MET alterations had a
negative impact on disease progression, with shorter PFS than
those with the wild-type gene (HR [95% CI] =2.33 [1.2-4.52],
P=0.01, Figure 2A). No significant difference in OS was found
comparing patients with MET alterations and those with the
wild-type gene (HR [95% CI] =1.29 [0.55-3.03], P=0.56,
Frontiers in Oncology | www.frontiersin.org 6
Figure 2B). PTEN is an important tumor suppressor gene in
lung cancers. Patients with deleterious mutations in PTEN,
including nonsense, frameshift and splicing alterations
exhibited a higher progression risk than those without (PFS,
HR [95% CI] =2.19 [1.12-4.27], P=0.02, Figure 2C). Similarly, no
OS difference was found comparing patients with and without
PTEN alterations (HR [95% CI] =1.57 [0.67-3.68], P=0.29,
Figure 2D), suggesting that both MET and PTEN alterations
might serve as predictive markers of dCRT response. Preclinical
studies have suggested that the NOTCH signaling pathway might
also promote radiation resistance (22). Mutations in NOTCH2
A B

D

E F

C

FIGURE 2 | Clinical associates of dCRT survival outcomes in NSCLC. (A, B) Kaplan-Meier estimates of (A) PFS and (B) OS in the full analysis set comparing
patients with and without MET alterations. (C, D) Kaplan-Meier estimates of (C) PFS and (D) OS in the full analysis set comparing patients with and without PTEN
deleterious mutations. (E, F) Kaplan-Meier estimates of (E) PFS or (F) OS in the full analysis set comparing patients with and without NOTCH2 alterations.
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were found to correlate with unfavorable survival outcome (PFS,
HR [95% CI] = 2.0 [1.12-3.57], P=0.02; OS, HR [95% CI] = 3.12
[1.65-5.89], P=0.0002, Figures 2E, F).

Genetic analysis also revealed alterations in FGFR1 in
association with higher risk of progression in our study cohort
(HR [95% CI] = 2.44 [1.16-5.14], P=0.015, Figure 3A). No
difference in survival was observed between FGFR1 wildtype
and mutant patients (HR [95% CI] = 1.41 [0.56-3.56], P=0.46,
Figure 3B). Given that FGFR signaling is often dysregulated in
NSCLC and have been implicated in radiation resistance in
preclinical studies (23, 24), we sought to further test the
association between FGFR family genes and patient survival.
Indeed, we found that genetic alterations in the FGFR family
receptors, including FGFR1-4, were associated with earlier
progression (PFS, HR [95% CI] = 1.72 [1.06-2.79], P=0.03; OS,
HR [95% CI] = 2.04 [1.14-3.65], P=0.01, Figures 3C, D).

Based on these findings, we also assessed if other oncogenic
mutations might influence patient outcome. Overall, the
presence of oncogenic driver mutations in key lung cancer
targets, such as activating mutations in EGFR, ERBB2, KRAS,
MET, as well as ALK, RET, and ROS1 fusions, had no impact on
patient progression (HR [95% CI] =0.87 [0.55-1.38], P=0.56,
Supplementary Figure 4A). Interestingly, carriers of oncogenic
mutations had significantly improved OS compared with those
without (HR [95% CI] =0 .52 [0 .27-0 .99] , P=0.04 ,
Frontiers in Oncology | www.frontiersin.org 7
Supplementary Figure 4B). Similarly, patients with activating
EGFR mutations alone had no significant impact on PFS but
demonstrated increased OS compared with EGFR wild-type
patients (PFS, HR [95% CI] =0.77 [0.46-1.26], P=0.3; OS, HR
[95% CI] =0.42 [0.20-0.89], P=0.02, Supplementary Figures 4C, D),
which is likely explained by the potential use of subsequent targeted
therapies in these patients. We also examined the effect of TMB on
patient recurrence, and no significant association was identified.

By adjusting for differences in clinical characteristics,
including types of RT, smoking histories and overall dose,
multivariate Cox analysis showed that alterations in MET and
deleterious mutations in PTEN, as well as the FGFR pathway
gene alterations remained independent predictive factors for
reduced PFS following CRT (Figure 4A). On the other hand,
the associations of OS with alterations in NOTCH2 and those in
genes in the FGFR and the KEAP1-NRF2 pathways remained
independent (Figure 4B). Subgroup analysis considering all
patients who had received the recommended doses of 60-66Gy
was performed and we found that deleterious mutations in PTEN
and FGFR1 mutations remained independently associated with
poorer PFS (Supplementary Table 2). In addition, mutations in
NOTCH2 remained independent predictors of unfavorable OS
outcome (Supplementary Table 2). Building on these
associations and the largely exclusive nature of KEAP1, MET,
PTEN, NOTCH2 and FGFR family gene alterations, we next
A B

DC

FIGURE 3 | Associations of dCRT survival outcomes with the FGFR pathway. (A, B) Kaplan-Meier estimates of (A) PFS and (B) OS in the full analysis set
comparing patients with and without FGFR1 alterations. (C, D) Kaplan-Meier estimates of (C) PFS and (D) OS in the full analysis set comparing patients with and
without alterations in the FGFR family genes.
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sought to improve the stratification of NSCLC patients with
differential survival outcome. Combined analysis of the mutant
subgroup showed markedly improved risk stratification of our
patients with significant PFS (HR=2.09, 95% CI=1.36-3.2,
P=0.0006) and OS (HR= 2.73, 95% CI=1.54-4.85, P=0.0003)
differences (Figures 5A, B). In addition, multivariate analysis
incorporating all relevant clinical characteristics, including
histology, modes of CRT, smoking status and overall dose,
showed that the mutant subgroup remained a strong
independent predictor of survival outcomes (Figures 6A, B).

SNPs and Somatic Mutations Predictive of
Radiation Toxicity
To identify potential risk factors that could explain individual
variations in their likelihood to develop radiotherapy-associated
toxicity, we first examined the potential effects of various clinical
characteristics and treatment regimens. None of the clinical
features, including age, smoking status, dose, sequential or
concurrent combinations of chemo- and radiotherapy, or
Frontiers in Oncology | www.frontiersin.org 8
delivery methods, had a significant influence on the
development of radiation-induced thoracic toxicity, including
grade 2 or higher pneumonitis and esophagitis. In recognition
that radiotherapy-associated toxicity are manifested as damages
to the normal tissue surrounding the site of lesion, we analyzed
the association between SNPs and the incidence of radiation-
induced thoracic toxicity. Consistent with existing studies
demonstrating the associations of radiotherapy-associated
toxicity with SNPs in genes in the DNA damage repair,
oxidative reduction and metabolic pathways, we identified
SNPs in X-ray repair cross-complementing 1 (XRCC1, rs25487,
c.1196A>G; OR=2.31 [95%CI, 1.0-5.56]; P=0.05) and XRCC5
(rs3835, c.2110-2408G>A; OR=3.59 [95% CI, 0.93-12.96];
P=0.03), which conferred increased risks of radiation-induced
pneumonitis and esophagitis, respectively (Figures 7A, B).
Further analysis revealed a stronger association between the
XRCC5 allele with severe (grade 3 or higher) esophagitis
(OR=5.71 [95% CI, 1.30-25.0]; P=0.03). In addition to these
two SNPs, MTHFR (rs1801133, c.665C>T) and NAD(P)H
A

B

FIGURE 4 | Multivariate Cox analysis of genetic features associated with survival outcomes. (A, B) Forest plots showing key genetic and clinical features in
association with (A) PFS and (B) OS following dCRT treatment by multivariate analysis.
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Quinone Dehydrogenase 1 (NQO1, rs1800566, c.559C>T) were
associated with trends towards higher incidence of radiotherapy-
associated toxicity overall (Figure 7C).

We also observed enrichments of several somatic aberrations
in patients who developed grade 2 or higher pneumonitis and/or
esophagitis (Figure 7D). The zinc-finger protein 217 (ZNF217)
gene is frequently amplified in human cancers (25, 26). It
encodes a Kruppel-like transcription factor that mediates
complex molecular processes through the regulation of gene
expression. A total of 11 patients carried ZNF217 amplifications,
ten of which developed grade 2 or higher pneumonitis and
Frontiers in Oncology | www.frontiersin.org 9
esophagitis (90.9% vs. 36.9%, OR=16.7 [95% CI, 2.24-748.4],
P=0.0007, Figure 7D). Of these, four developed radiation-
induced esophagitis (36.4% vs. 10.8%, OR=4.6 [95% CI, 0.86-
21.7], P=0.04) and eight developed pneumonitis (72.7% vs.
27.9%, OR=6.8 [95% CI, 1.5-42.1], P=0.005). Similarly, ZNF217
amplification was associated with severe pneumonitis and
esophagitis (grade 3 or higher; OR=7.5 [95% CI, 2.0-28.0],
P=0.003), as well as severe radiation-induced pneumonitis
(OR=4.9 [95% CI, 1.3-18.2], P=0.02). In addition, we found
that mutations in POLD1, encoding the DNA polymerase delta 1
that is a key protein for ensuring the replicative fidelity of DNA,
A

B

FIGURE 5 | Associations of dCRT survival outcomes with the mutant subgroup. (A, B) Kaplan-Meier estimates of (A) PFS and (B) OS in the full analysis set
comparing patients harboring any of the MET, NOTCH2 and PTEN loss of function, as well as FGFR and KEAP1-NRF2 pathway gene alterations and those without.
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were also associated with an increase in overall toxicity risk
(pneumonitis and/or esophagitis, 77.8% vs. 38.9%, OR=5.4 [95%
CI, 0.97-55.7], P=0.03, Figure 7D). Six (out of nine) POLD1
mutations were predicted to have functional consequences (SIFT
score ≤ 0.01). Of the seven patients who developed toxicity, six had
pneumonitis and one had esophagitis. It is worth noting that somatic
alterations in both genes showed stronger associations with radiation
pneumonitis, as compared to esophagitis, likely reflecting interactions
of these tumor cells with the local microenvironment.
DISCUSSION

As we enter the era of personalized medicine, there is an area of
unmet needs for identifying genetic determinants that explain
individual differences in dCRT response. The development of
disease recurrence and severe radiation-induced toxicity
following dCRT could negatively impact patients’ survival
Frontiers in Oncology | www.frontiersin.org 10
outcome and quality of life. In this study, by comprehensive
profiling of 122 unresectable stage IIIA-C NSCLC patients who
underwent dCRT, we identified a number of highly relevant and
novel genetic and pathway-level features that might serve as
potential biomarkers for predicting response to CRT.

The KEAP1-NRF2 pathway is often altered in NSCLC. In line
with previous studies that have demonstrated the potential
prognostic or predictive value of the dysregulation in the
KEAP1-NRF2 pathway in NSCLC patients following
chemotherapy and/or radiotherapy (20, 21, 27, 28), our
findings independently confirmed its association with poor
outcome in NSCLC patients following dCRT. Multiple others
signaling pathways, including the MAPK, PI3K/AKT, FGFR and
NOTCH pathways, have been implicated in radio-resistance,
through their regulation of cellular proliferation, differentiation,
apoptosis, invasion and maintenance of cancer stem cells (22, 23,
29–32). However, most findings were based on preclinical studies
using in vitro or animal models. Here, we provided the first
A

B

FIGURE 6 | Multivariate Cox analysis of clinical features associated with survival outcomes in the genetically altered subgroup. (A, B) Forest plots showing the
mutant subgroup and all relevant clinical features in association with (A) PFS and (B) OS following dCRT treatment by multivariate analysis. Mutant subgroup:
patients with any of the MET, NOTCH2 and PTEN loss of function, as well as FGFR and KEAP1-NRF2 pathway gene alterations; ADC: adenocarcinoma; SCC:
squamous cell carcinoma.
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clinical evidence showing the associations of dCRT recurrence
with several highly functionally relevant lung cancer genes,
including MET, PTEN, FGFR1-4, and NOTCH2. Of these,
MET, PTEN and FGFRs remained independent predictors of
PFS by multivariate analysis. In particular, MET is commonly
activated in NSCLC, which can be a result of gene amplification
and exon 14 skipping mutations. In our study, the majority of
MET-altered cases could lead to activation of the protein, which
included MET exon 14 skipping mutations, gene rearrangement
and amplification. While the presence of MET alterations was
associated with worse outcome when treated with dCRT, no
difference in OS was detected. Despite insufficient clinical
information on the subsequent lines of treatment, these MET-
altered cases might have derived long-term benefit from MET-
targeted therapies. Similarly, while the presence of other
potentially targetable driver mutations, such as EGFR
activating mutations, had no impact on disease progression, it
was associated with improved OS, which is also likely explained
by the later use of targeted therapies in these patients. Thus, our
data suggest that MET alteration is likely a negative predictive,
rather than prognostic, factor of dCRT recurrence.

The FGFR family receptors activate multiple signaling
pathways, including the RAS/MAPK, PI3K, and STAT
Frontiers in Oncology | www.frontiersin.org 11
pathways, which play important roles in cancer initiation and
development (33). Emerging evidence suggest that FGFR may be
implicated in variable response to radiotherapy. Pre-clinical
studies in NSCLC cell lines, xenograft models and genetically
engineered mouse models have shown that FGFR inhibition can
enhance radiation response, which may be through the
upregulation of cellular apoptosis and autophagy (23) and/or
polarization of tumor-associated macrophages towards the M1
phenotype (24). In our study, we provide the first clinical
evidence for the role of FGFR in mediating dCRT response.
Patients with FGFR family gene alterations demonstrated
reduced PFS outcome. Furthermore, the negative association of
FGFRs with PFS also translated into poor OS outcome.

In addition to disease recurrence, a subset of patients would
also develop severe, and often long-term, radiation-induced
toxicities, which can negatively impact their quality of life.
Understanding the genetic basis underlying individual
differences in the development of dCRT-associated adverse
events would allow for the risk stratification of patients and
consequently personalized dCRT regimens, which would
maximize tumor control while minimizing damage to the local
tissue. The involvement of SNPs in the various damage and
stress-response genes in mediating radiation-induced toxicities
A B

DC

FIGURE 7 | Genetic variants associated with incidence of high-grade radiation toxicity. (A–C) The proportions of patients carrying the indicated polymorphisms that
developed high-grade (A) radiation-induced pneumonitis, (B) radiation-induced esophagitis, and (C) overall pneumonitis and esophagitis. (D) The proportions of
patients carrying ZNF217 amplification or POLD1 mutations that developed high-grade radiation-induced toxicity events as indicated.
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has been extensively studied in multiple cancer types (9–12, 34–
37). Early association studies have employed a candidate gene
approach, which has led to the identification of several key genes
that may serve as potential predictors of radiation-induced
toxicities, including ATM, base excision repair genes (XRCC1-
5), mismatch repair genes (MSH2, MLH1), and oxidative
damage-detoxification genes (GSTM1, GSTT1) (38–45). As we
shift from candidate gene approach to genome-wide association
studies, such as the multi-centered RAPPER (Radiogenomics:
Assessment of Polymorphisms for Predicting the Effects of
Radiotherapy) study (46), more genetic polymorphisms
associated with radio-toxicity have been identified. However,
these studies are often underpowered and difficult to replicate
due to the small effect size of individual SNPs on radiotoxicity,
and rarely lead to clinically useful biomarkers. A gene-
expression-based radio-sensitivity model has been developed
(47–50) and clinically validated in multiple cancer types (51–
55). These data provide the prescription framework for genomic-
based radiotherapy and emphasize the importance of multi-gene
testing as response to CRT is dependent on the combined
influence of genetic variations at multiple loci. However, it
remains challenging to adopt RNA-sequencing routinely into
clinical practice, particularly on formalin-fixed paraffin-
embedded samples.

Taking advantage of the NGS technology, our study
independently verified the predictive potential of the DNA
damage repair and oxidative stress pathway gene variants for
radiotherapy-associated toxicity. Specifically, we identified
polymorphisms in XRCC1/XRCC5 (x-ray repair cross-
complementing 1/5), encoding two key genes responsible for
base excision repair, that were associated with differential risks
of high-grade toxicity. The XRCC1 rs25487 allele has been
associated with severe oral mucositis in oropharyngeal
carcinoma patients treated with radiotherapy (45). The XRCC5
rs3835 allele has been implicated in the development of severe
radiation pneumonitis in NSCLC patients (56). In our study, no
significant association between this particular allele with radiation
pneumonitis was observed. Instead, we showed that XRCC5might
increase the risk of developing severe radiation esophagitis. In
addition, we identified two risk alleles inMTHFR and NQO1 that
were associated with radiotoxicity. MTHFR encodes a
methylenetetrahydrofolate reductase, which participates in folate
metabolism and the regulation of DNA methylation and repair
(57, 58). On the other hand, NQO1 is involved in the regulation of
reactive oxygen species and continued oxidative stress can also
induce DNA damage and chronic inflammation (59, 60).
Combinatorial testing for these genetic variations might be
useful for identifying patients who are susceptible to radiation
toxicity. However, large-scale studies are needed to fully assess the
predictive potential of these particular polymorphisms or
variations in DNA damage repair and oxidative stress pathways.

Solid tumors often exhibit complex interactions with their
surrounding tissues via stromal components, the vasculature and
immune cells, among others (61). However, it has never been
reported that somatic mutations could influence a patient’s
likelihood of developing radiation toxicity. Here, we report the
Frontiers in Oncology | www.frontiersin.org 12
associations of ZNF217 amplification and POLD1 mutations
with increased likelihoods of developing radiation toxicity. In
particular, ZNF217 amplification was associated increased risks
of developing severe (grade 3 or higher) pneumonitis and
esophagitis. ZNF217 is commonly amplified in human cancers
(25, 26). While the presence of ZNF217 amplification itself may
indicate loss of genome integrity, there may also be functional
consequences given that ZNF217 encodes a transcription factor
that mediates a diverse array of cellular processes through the
regulation of various target gene expressions (62). Importantly,
ZNF217 may have a role in DNA damage repair as it has been
shown to repress the levels of BRCA1 (63). Likewise, the role of
POLD1 in controlling replicative fidelity has been firmly
established (64, 65). Thus, we speculate that ZNF217
amplification and/or POLD1 mutations in the tumor may
affect overall genome stability and lead to the generation of
tumor-specific neoantigens and consequently extensive
lymphocyte infiltration (66). Conceivably, this could also
exacerbate inflammation in the surrounding normal tissue
following radiation. Interestingly, similar to our work in small-
cell lung cancer (67), somatic alterations are more likely to affect
radiotherapy-associated toxicity at the site of the lesion, as they
were more commonly associated with pneumonitis than with
esophagitis. Due to the retrospective nature of this current study,
our cohort consisted of relatively high proportions of SCC and
former smokers, as well as widely varied radiation doses which is
associated with radiotherapy toxicity (68). Thus, the predictive
value of these novel variations’ merits further investigation.
Nevertheless, our data indicate that extra caution should be
exercised when giving radiotherapy to NSCLC patients
carrying such mutations.

Our observations from clinical data of genetic associations with
CRT survival outcome and toxicity provide a set of candidate
predictive biomarkers present in normal and also tumor tissues.
The mechanisms by which some of these genetic variants act to
promote development of adverse response or cancer recurrence
remain to be elucidated, although it is likely through their
combined influence on important oncogenic signaling pathways,
as well as DNA damage repair, oxidative and inflammatory
response pathways. Due to the lack of sufficient data from
published work or public databases such as TCGA, future work
should involve validation of these potential biomarkers in a larger
set of cohorts and generation of multifactorial prediction models
of the expected treatment outcome. Taken together, our results
demonstrate the clinical utility of NGS panels in identifying
predictive biomarkers for response to CRT and suggest that
testing for these susceptibility loci would prove beneficial in
improving personalized CRT in NSCLC patients.
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