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Background: Immune checkpoint inhibitors (ICIs) induce durable responses, but only a
minority of patients achieve clinical benefits. The development of gene expression profiling
of tumor transcriptomes has enabled identifying prognostic gene expression signatures
and patient selection with targeted therapies.

Methods: Immune exclusion score (IES) was built by elastic net-penalized Cox
proportional hazards (PHs) model in the discovery cohort and validated via four
independent cohorts. The survival differences between the two groups were compared
using Kaplan-Meier analysis. Both GO and KEGG analyses were performed for functional
annotation. CIBERSORTx was also performed to estimate the relative proportion of
immune-cell types.

Results: A fifteen-genes immune exclusion score (IES) was developed in the discovery
cohort of 65 patients treated with anti-PD-(L)1 therapy. The ROC efficiencies of 1- and 3-
year prognosis were 0.842 and 0.82, respectively. Patients with low IES showed a longer
PFS (p=0.003) and better response rate (ORR: 43.8% vs 18.2%, p=0.03). We found that
patients with low IES enriched with high expression of immune eliminated cell genes, such
as CD8+ T cells, CD4+ T cells, NK cells and B cells. IES was positively correlated with
other immune exclusion signatures. Furthermore, IES was successfully validated in four
independent cohorts (Riaz’s SKCM, Liu’s SKCM, Nathanson’s SKCM and Braun’s
ccRCC, n = 367). IES was also negatively correlated with T cell–inflamed signature and
independent of TMB.

Conclusions: This novel IES model encompassing immune-related biomarkers might
serve as a promising tool for the prognostic prediction of immunotherapy.
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INTRODUCTION

Tumor cells acquire numerous genomic alterations, deriving
“non-self” neoantigens that the immune system can recognize.
Although an immune response is noticed in patients with cancer,
this response is usually ineffective to tumor elimination (1–4).
One of the reasons is the mechanism of immune escape,
including profound local immune suppression, induction of
dysfunction, tolerance in T-cell signaling, and evasion of
immune destruction by the expression of endogenous
“immune checkpoints” that generally lead to immune
responses after antigen activation (5). These discoveries have
increased cancer understanding and developed immunotherapy
treatments such as immune checkpoint inhibitors (ICIs) (6). To
date, ICIs therapy like anti-PD-1 has been successful for treating
many cancers, particularly malignant melanoma, non-small cell
lung cancer, and bladder cancer, among others (7–10).

One challenge of the ICIs immunotherapy is the limited
proportion of responders, which leads to the urgent need to
find predictive biomarkers to identify responders from non-
responders (11). Emerging data suggest that patients
overexpressing PD-L1 in tumors by IHC have improved
clinical outcomes under anti-PD-1 immunotherapy (12).
Although PD-L1 IHC seems predictive in lung cancer, it might
not be suitable for many other cancers. The microenvironment
of tumors has been recognized as a complex system, as the
immune response is affected by many different mechanisms
besides PD-L1 (13). Besides, IHC-based detection of PD-L1 as
a predictive biomarker is confounded by multiple issues, many
still unresolved so far, such as variable detection antibodies and
cutoff values and the biomarker’s stability and staining of tumor
versus immune cells (12–14).

The development of gene expression profiling within tumors
has enabled identifying prognostic gene expression signatures and
patient selection (15, 16). Recently reported studies had assessed
the association of immune-related gene expression in patients with
various solid tumors who received immunotherapy. For instance,
a genome-wide analysis of melanoma patients treated with
recombinant IL2 revealed a signature predictive of clinical
response from pretreatment biopsies (14). Moreover, an IFN-
inflammatory immune gene expression signature is associated
with both enhanced overall response rates (ORRs) and
progression-free survival (PFS) in patients with melanoma who
received pembrolizumab, which is subsequently being investigated
in other malignancies (17). Other examples include an eight-gene
Abbreviations: IES, immune exclusion score; ICIs, immune checkpoint inhibitors;
GEPs, gene expression profiles; NK, activated natural killer; CAF, cancer-
associated fibroblast; TCGA, The Cancer Genome Atlas; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment
Analysis; NSCLC, non-small cell lung cancer; SKCM, skin cutaneous melanoma;
HNSCC, head and neck squamous cell carcinoma; ccRCC, clear-cell renal cell
carcinoma; NPC, nasopharyngeal carcinoma; anti-PD-(L)1, anti-programmed
death-(ligand) 1; MHC, major histocompatibility complex; ORR, objective
response rate; NOR, non-objective response; DCB, durable clinical benefit;
NDB, non-durable clinical benefit; CR, complete response; PR, partial response;
SD, stable disease; PD, disease progression; PFS, progression-free survival; OS,
overall survival; TMB, tumor mutation burden; ROC, receiver operating
characteristic curve; AUC, area under ROC curve; HIC, immunohistochemistry.
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signature reflecting pre-existing immunity, the T-effector/IFN-g
signature, explored in a phase II trial of non–small cell lung
carcinoma (NSCLC) (18). Although these studies revealed the
intrinsic association between pre-existing immunity and the
benefit of ICI therapy, the limitations still exist. On the one
hand, these studies failed to consider the functional status of
pre-existing immunity, which might affect the outcomes of ICI
therapy to a large extent. On the other hand, the selection of those
signature genes was mainly based on prior knowledge rather than
data exploration, which might lead to insufficient application
coverage of these signatures.

Previous research revealed two distinct mechanisms of immune
escape in tumor (5; Joyce et al., 2015).One isT cell dysfunction, and
the other is T cell exclusion. Approaches that measure immune
functional signature based on the gene expression profile were
developed to explore the correlation with clinical response of
immunotherapy, such as Tumor Immune Dysfunction and
Exclusion (TIDE) (19), which identified factors which underlie
mechanisms of tumor immune evasion.

So far, most published prognostic gene expression signatures
have been explored from the perspective of immune activation
and elimination (20, 21). However, as another essential character
of the tumor microenvironment, immune-exclusive signatures
play a suppression role and are rarely researched. Predicting
clinical benefit to ICI therapy requires an understanding of how
tumors escape the immune system.

In this study, we evaluated the immune-related gene
expression profiles in patients with advanced NSCLC, skin
cutaneous melanoma (SKCM), and also head and neck
squamous cell carcinoma (HNSCC). We are supposed to find
an immune signature that can explain the immune-exclusive
statement of tumor samples and can predict response to anti-
PD-1 checkpoint inhibitor independently of cancer type.
MATERIALS AND METHODS

Patients and Datasets
This study is a retrospective analysis of patients with immune
checkpoint inhibitor therapies. All of the cohorts involved in this
study were collected from public datasets, including Prat’s
(n=65), Liu’s (n=121), Riaz’s (n=41), Nathanson’s (n=24) and
Braun’s (n=181) (22–26). Progression-free survival (PFS) was
defined as the beginning of treatment to the date of disease
progression (PD). Patients who had not progressed were
censored at the date of their last scan. Objective response rate
(ORR) was defined as the percentage of patients with complete
response (CR) or partial response (PR). Non-objective response
(NOR) was defined as the percentage of patients who failed to
reach ORR certification. Durable clinical benefit (DCB) was
defined as the percentage of patients who achieved CR or PR
or stable disease (SD) lasting > 6 months; non-durable clinical
benefit (NDB) was defined as PD or SD that lasted ≤ 6 months.

Immune Exclusion Signature
Firstly, the elastic net-penalized Cox proportional hazards (PHs)
model was used to select genes with significant power for
June 2022 | Volume 12 | Article 930589
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predictive value in the discovery cohort. Elastic net, a
combination of Ridge and most minor absolute shrinkage and
selection operator (LASSO) methods, was applied to select
prediction features. The regularization parameter, l, was
specified by 10-fold cross-validation, whereas the L1-L2 trade-
off parameter, a, was set to 0.5, with equal Ridge and LASSO
penalties. The potential prognostic factors determined by the
elastic net-penalized CoxPH regression were subjected to
multivariate CoxPH regression analysis to adjust the risk
scores of each gene chosen for prognostic clinical parameters.
Then, variables exhibiting significance in the adjusted analyzes
were entered into a backward, stepwise-elimination Cox
regression model. The output calculation formula was:
RiskScore = gene expression 1×Coef1+gene expression 2×Coef2
+…+gene expression n×Coefn:

RiskScore = o
n

k=1

(Coefk � Expk)

In this study, the calculation formula of IES was: IES =
-2.20*10-5*exp(CCL5)-1.55*10-5*exp(CCR5)+2.67*10-7*exp
(CD46)+2.51*10-5*exp(CXCL6)+2.97*10-6*exp(GPI)-4.40*10-
4*exp(GZMM)-1.52*10-3*exp(IL13)-1.83*10-3*exp(IL1RAPL2)
+2.10*10-6*exp(ITGB1)-1.51*10-4*exp(KLRK1)-7.47*10-5*exp
(NFKB2)-1.66*10-4*exp(PDCD1)+1.12*10-4*exp(PLA2G6)-
2.56*10-4*exp(TARP)+5.85*10-5*exp(TNFSF4). The software R
package cenROC was applied to calculate the ROC of IES for
prognostic classification.

Differentially Expressed Genes
The software R package DESeq2 (V.1.30.1) was used to calculate
the fold-change of transcripts and to screen for differentially
expressed genes (DEGs) (27) in the RNA-seq data. A fold-change
larger than two and an adjusted p-value less than 0.05 were set as
the cutoff values for screening significant DEGs. Cluster analysis
and heatmap generation were performed by the R package and
ComplexHeatmap (V.3.12) (25).

KEGG Pathway, GO and GSEA
All differentially expressed genes were subjected to KEGG term
analysis and GO biological processes, including calculation of
Benjamini-Hochberg corrected p-values through ToppGene
(https://toppgene.cchmc.org/) (28). Gene Set Enrichment
Analysis (GSEA) was performed using the GSEA software v.3.0
(Broad Institute, Cambridge, USA) (22).

Estimation of Immune-Cell Type Fractions
Cell-type identification by estimating relative subsets of RNA
transcripts (CIBERSORT), which is a deconvolution algorithm
that can characterize the cell proportion of complex tissues,
based on LM22, a normalized gene expression profiles (GEPs)
(23, 24, 29). In this study, CIBERSORT (https://cibersort.
stanford.edu/) and leucocyte signature matrix 22 (LM22) were
used to quantify the proportions of immune-cell types HNSCC
samples from the TCGA data. Normalized gene expression data
were analyzed by the CIBERSORT algorithm, running 1000
permutations. The CIBERSORT p-value reflects the statistical
Frontiers in Oncology | www.frontiersin.org 3
significance of the results, and a threshold less than 0.05 is
recommended. Finally, samples with CIBERSORT p-values less
than 0.05 were included in correlation analyzes between genes
and immune-cell types.

Immune Gene Signatures
Twenty-three independent gene signatures tracking different cell
types (e.g., CD8 T cells, NK cells, and Macrophage) and
microenvironment (e.g., cytolytic and dysfunction signatures)
were evaluated. Correlation coefficients between IES and
different gene signatures were calculated. An unsupervised
analysis was performed to cluster correlation coefficients with
similar values together. The correlation coefficients of each
signature can be found in Supplementary Table S2.

Statistical Analysis
Categorical variables were evaluated with Fisher’s exact tests.
Correlation analysis was assessed by Pearson coefficient.
Multivariable Cox proportional hazards models were built with
gene expressions as covariables. Stepwise regression was used to
determine the most informative variables included in multiple
(linear) regression models. ROC analysis was done using the
cenROC package in R. Significance of overall survival (OS) and
progression-free survival (PFS) was determined via Kaplan-
Meier analysis with log-rank analysis. The hazard ratio was
calculated by the cox function of the survival package in R. All
statistical analysis was performed in the R statistical environment
version 3.6.1. All tests were two-tailed and a p-value < 0.05 was
considered significant.
RESULTS

Immune−Related Gene Expression in the
Prognosis of Immunotherapy
To explore the immune-related genes that are related to the
prognosis of immunotherapy, we introduced a cohort of 65
patients with advanced NSCLC (n=35), HNSCC (n=5), and
SKCM (n=25) from Prat et al. (26). Patients were treated with
anti-PD-1 monotherapy, and the expression profile of 730
immune-related genes on this cohort was collected. We
compared the relationship between clinical characteristics and
immune-related gene expression.

We found that the expression of 41 genes was associated with
clinical survival (p < 0.05, respectively) (Figure S1). This 41-gene
cluster includes complement-related proteins such as C3, C6 and
C8A, C-C/C-X-C chemokine ligands/receptors such as CCL5,
CCR5, CXCL6 and CXCR3, Interleukin protein families such as
IL2 and IL13, Tumor necrosis factor family/superfamily such as
TNF and TNFSF4, immune cell surface markers such as CD8A
and CD46. The expression of some genes, such as IFNA17 and
IL2, had a higher risk associated with prognosis, while others
affected patients’ survival slightly. In order to find the gene
combinations and their coefficients that are most suitable for
prognosis prediction, we applied “Coxnet”, an algorithm that fits
cox model regularized by an elastic net penalty (30). Penalty
June 2022 | Volume 12 | Article 930589
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maximum likelihood estimation was performed with 1000
bootstrap replicates (Figure 1A). The optimal weighting
coefficient of each gene was determined by the regularisation
parameter lambda using the 1–SE standard (Figure 1B). Overall,
fifteen genes, CCL5, CCR5, CD46, CXCL6, GPI, GZMM, IL13,
IL1RAPL2, ITGB1, KLRK1, NFKB2, PDCD1, PLA2G6, TARP
and TNFSF4, were selected out to explore patient prognosis
(Figure 1C). The calculation formula of risk score was defined as:

RiskScore = -2.20*10-5*exp(CCL5)-1.55*10-5*exp(CCR5)
+2.67*10-7*exp(CD46)+2.51*10-5*exp(CXCL6)+2.97*10-6*exp
(GPI)-4.40*10-4*exp(GZMM)-1.52*10-3*exp(IL13)-1.83*10-3

*exp(IL1RAPL2)+2.10*10-6*exp(ITGB1)-1.51*10-4*exp
(KLRK1)-7.47*10-5*exp(NFKB2)-1.66*10-4*exp(PDCD1)
+1.12*10-4*exp(PLA2G6)-2.56*10-4*exp(TARP)+5.85*10-5

*exp(TNFSF4)
Among 15 genes, expression of six genes, CD46, CXCL6, GPI,

ITGB1, PLA2G6 and TNFSF4, increased the risk of distant
recurrence, whereas CCL5, CCR5, GZMM, IL13, IL1RAPL2,
Frontiers in Oncology | www.frontiersin.org 4
KLRK1, NFKB2, PDCD1 and TARP expression had a
protective effect against prognosis (Table S1). In particular,
each single gene expression had little contribution to the
higher or lower risk of prognosis, such as PDCD1 (PD-1,
hazard ratio: 0.99), which indicated the complexity of the
tumor immune microenvironment (Figure 1C).

Prognosis and Clinical Response
Prediction With Gene Expression Profile
Fifteen gene expression profiles according to patient prognosis
are presented in Figure 1D. All patients were divided into two
risk groups according to predict scores based on the regression
equation of 15 gene expression profiles. The cutoff of low and
high risk was based on the median value of the predicted score
(cutoff = -0.133). The result of hierarchical cluster analysis was
similar to the predicted-score grouping (Figure 1D). Patients in
the low-risk group were enriched in expression genes of cancer-
suppressing inflammation such as NFKB2 and CCR5. In
A B

C D

FIGURE 1 | Construction of the immune−related gene model in the prognosis of immunotherapy. (A) 1000 bootstrap replicates by lasso Cox regression analysis for
variable selection. (B) LASSO coefficients of prognosis genes. Each curve represents a prognosis gene. (C) Multivariate Cox proportional-hazards model of 15
immune-related genes based on Prat cohort. Forest plot of 15 immune-related genes and their association with clinical survival, with hazard ratio values shown on
the y-axis, and p-values derived from multivariate CoxPH analysis. (D) Hierarchal clustering analysis of 15 immune-related genes in the Prat cohort. '*',P < 0.05. '**',
P < 0.01.
June 2022 | Volume 12 | Article 930589
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contrast, patients in the high-risk group were enriched in
expression genes of cancer-promoting inflammation such as
ITGB1 and CD46.

To understand the relationship between clinical prognosis
and 15 risk genes, we analyzed the correlation between
progression-free survival (PFS) and individual gene expression
(Figure S2). Patients were divided into two groups according to
the median expression level. We found that only IL1RAPL2
expression showed a significant correlation in clinical prognosis
(Figure S2). The expression of the remaining 14 genes tended to
predict prognosis to various extents, though it did not reach
significance. When merging the expression of 15 genes, patients
in the high-risk group had 2.48-fold higher risk of death
compared with patients in the low-risk group (hazard ratio
[HR]: 2.48, 95% confidence interval [CI]: 1.34, 4.59, p=0.003,
Figure 2A; Table S2). We applied R package cenROC to analysis
the ROC efficiencies and found that the area under the ROC
curve (AUC) of 1- and 3- year prognosis were 0.842 and 0.82,
Frontiers in Oncology | www.frontiersin.org 5
respectively (Figure 2B). Similar results were observed by cancer
types of non-squamous NSCLC and SKCM (Figure S3). Cancer
types of squamous NSCLC and HNSCC did not reach
significance due to the small candidate size (Figure S3).

Based on the survival analysis results, we evaluated the
predicted score and made a prediction model of clinical
response in patients. First, we analyzed the predictive
performance of every single gene by ROC curve (Figure S4).
The objective response’s largest AUC was 0.637 of PLA2G6 gene.
None of the gene expression was significantly related to the
response of anti-PD-1 therapy, including PD-1 (Figures S5, S6).
However, the predictive risk score value from 15 immune-related
gene expression levels was observed to increase significantly.
This combination predictive model had an AUC of 0.731, higher
than the AUC of PD-L1 expression (AUC=0.625, Figure S7).
Patients without clinical response had a higher value of predicted
score (Figure 2C). In particular, only 6 of 33 patients in the high-
risk group had an objective response after anti-PD-1 therapy
A B

C D

FIGURE 2 | Prognosis and clinical response prediction with gene expression profile. (A) Kaplan–Meier survival curves of PFS in high-risk patients versus low-risk
patients based on Prat pan-cancer anti-PD-1 monotherapy cohort. (B) Sensitivity and specificity of the prognosis risk score model were assessed by time-
dependent ROC analysis. (C) Violionplot of the distribution of risk score value between patients with ORR and NOR. (D) Barplot of object response rate between the
high risk group and the low risk group.
June 2022 | Volume 12 | Article 930589
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(ORR rate: 18.2%) compared with 43.8% of patients in the low-
risk group (Figure 2D). Together, the expression profile of 15
filtered risk genes was correlated with the prognosis and clinical
response of patients treated with anti-PD-1 therapy.

Pathway and Gene Ontology Analysis
Revealed the Difference in Immune
Activities Between Two Risk Groups
To identify the inner differences in the tumor microenvironment
between two risk groups divided by the predicted score of 15 genes
expression, an unsupervised analysis of 730 immune-related genes
and risk classification was performed in Figure 3A. We observed
that cluster 2, which mainly consisted of patients with a low-risk
score, was enriched with a large number of highly expressed
immune eliminated cell genes, such as CD8+ T cells (PRF1,
CD8A, CD8B, GZMM and FLT3LG), CD4+ T cells (IL26 and
IL17A), NK cells (SPN, BCL2 and NCR1) and B cells (BLK and
CD19). Then the analysis of differential expression genes was
performed between two risk groups, and the expression of 62
genes (of 730) was identified as statistically altered (p <0.05)
(Figures 3B, S8; Table S3). The majority of differentially
expressed genes displayed decreased expression in the high-risk
group. The greatest downregulation of differential expression gene
was MS4A1 (2.64 folds), while the expression of ARG1 and
S100A7 in the high-risk group upregulated 2.52 folds and 2.66
folds, respectively.

To better understand the differential expression genes
discovered above, we performed pathway enrichment analysis of
all differential expression genes between two risk groups by
computing their KEGG term and biological process associations.
Our analysis generated a total of 19 KEGG terms with a significant
p-value (p < 0.05, Benjamini-Hochberg corrected) (Figure 3C).
Among these KEGG terms, ‘Cytokine-cytokine receptor
interaction’ attracted the highest number of differential
expression genes, 16 of which seven were discovered among the
top twelvedifferentially expressed transcripts (Table S4). After gene
ontology analysis, we found ten biological process terms that highly
correlated with the differential expression genes (p < 0.001,
Benjamini-Hochberg corrected) (Figure 3D). Most terms were
immune-related receptor activity (i.e., T cell, CCR chemokine and
CXCR chemokine) and cytokine activity.

Immune cells are essential components of the tumor
microenvironment and closely correlate with immunotherapy
responses. We used the CIBERSORT software to assess the
abundances of 22 different immune-cell types in 65 patients
(Table S5). Similar to the findings of KEGG pathways, naïve B
cells, CD4 resting-memory T cells, and activated natural killer
(NK) cells account for more enormous proportions of the
infiltrating immune cells in the low-risk group than in the
high-risk group (Figure 3E).

The 15-Gene Expression Profile Is
Correlated With Immune-Excluded
Microenvironment Characteristics
Path enrichment analysis was also applied to understand the key
pathways and biological processes involved in the 15-gene
Frontiers in Oncology | www.frontiersin.org 6
expression profile. Significant pathways and GO terms with two
ormore enriched genes were selected. The results showed that all of
the selected pathways and GO terms were highly relevant to the
tumor immune response, such as cytokine signaling, interleukins
signaling and lymphocyte activation (Figures 3F, G). These critical
steps of immune response explained the expression of 15 risk genes
that could predictively evaluate the response to immunotherapy.

To further explore the association between the predictive risk
score and various immune-related signatures, Pearson correlation
analysiswas performed tocalculate thepairwise correlations among
24 signatures in 65 patients (Figure S9). The result of hierarchical
clustering revealed that our predictive risk score was positively
correlated with M2 macrophage signature, cancer-associated
fibroblast (CAF) signature and tumor exclusion signature, while
negatively correlated with immune-elimination-related signatures
such as cytotoxic T lymphocytes (CTL) signature, MHC-II
signature and interferon-gamma (IFN-g) signature. This
observation helps us understand that patients with high predicted
risk scores received worse clinical outcomes could be explained by
the immune exclusion status in their tumor microenvironment to
some extends. We also found that the predictive risk score was
positively correlated with the expression of classical immune
checkpoints, such as PD1, PD-L1, and CTLA4 (Figure 3H).
Thus, we termed our 15-gene risk score as “Immune Exclusion
Score” (IES).

Validation of IES Score in Multiple ICIs
Therapy Cohorts
To validate the robustness and eligibility of the IES, we collected
three more cohorts that underwent ICIs treatments. All of the
patients in the three cohorts were with advanced melanoma,
including Liu cohort (n=121), Riaz cohort (n=41) and
Nathanson cohort (n=24) (31–33). IES scores were calculated
among patients in three cohorts and applied to predict the
clinical response of immunotherapy (Tables S6–S8). ROC
analysis showed that the ROC efficiencies of 1- prognosis were
0.547 and 0.622 in Liu and Nathanson cohort, respectively (1-
year prognosis AUC was unevaluable in Riaz cohort). While the
ROC efficiencies of 3- year prognosis were 0.622, 0.558 and 0.836
in Riaz, Liu and Nathanson cohort, respectively (Figures 4A–C).
Patients were divided into IES high and low groups according to
the Youden index and the threshold value were -0.0006, -0.0001
and -0.0015 in Riaz, Liu and Nathanson cohort, respectively. We
observed a better survival rate and more extended survival
advantage in patients within the IES low group in all of the
three cohorts (Figures 4D–F). In the Riaz and Nathanson
cohorts, the cutoff value was close to the median value of IES
among patients. We found that patients with high IES were
correlated with worse clinical response in three cohorts, while the
objective response rates of the low IES group among three
cohorts were 31.8%, 43.9% and 60%, respectively (Figure S10).
These results confirmed the predictive performance of clinical
outcomes of IES in immunotherapy.

Since the cancer type of all three cohorts used for verification
above was melanoma, we introduced another immunotherapy
cohort of clear-cell renal cell carcinoma(ccRCC) from
June 2022 | Volume 12 | Article 930589
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A C

B D

E F

H G

FIGURE 3 | Pathway and gene ontology analysis between two risk groups. (A) Hierarchal clustering analysis of 730 immune-related genes, marked with some
markers expressed in CD8+ T cells (PRF1, CD8A, CD8B, GZMM and FLT3LG), CD4+ T cells (IL26 and IL17A), NK cells (SPN, BCL2 and NCR1) and B cells (BLK
and CD19). (B) Differential expression analysis between high-risk patients and low-risk patients in the Prat cohort. “UP” indicates that the gene was significantly up-
regulated in the high-risk group while “DOWN” indicates the gene was significantly up-regulated in the low-risk group. (C, D) were GO and KEGG enrichment of
DEGs, demonstrating that most are related to immune processes. (E) The difference of immune cell infiltration abundances between high- and low-risk patients. (F)
and (G) were GO and KEGG enrichment of 15 immune-related genes. (H) Different expression in immune checkpoints (CD274, PDCD1LG2, CTLA4, LAG3, CD28,
CD40, CD80, HAVCR2, TIGIT, and TNFRSF9) between high- and low-risk patients. '*',P < 0.05.'**',P < 0.01.'***',P < 0.001.’****’,P < 0.0001. “ns”, no significance.
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Braun et al. (34). The ccRCC cohort contains 181 patients treated
with anti-PD-1 therapy. Previously studies revealed that
traditional biomarkers of immunotherapy such as PD-L1 and
TMB didn’t show the ability to distinguish the clinical outcome in
ccRCC and the microenvironment of CD8+ T-cell infiltration was
related to poor prognosis of immunotherapy. After calculating the
IES of ccRCC patients, survival analysis and ROC analysis were
applied to evaluate the performance of IES. Intriguingly, our
results indicated that patients with high IES, whose tumor
microenvironment had the feature of immune exclusion, were
correlated with longer PFS (p=0.02, IES cutoff=-0.0976) (Figure
S11; Table S9). This result was consistent with the findings in
ccRCC, although different from the majority of understanding in
the tumor microenvironment. Previous studies proved that
PBRM1 mutation was promoting factor of ccRCC ICIs therapy.
Thus, we applied IES in the PBRM1-mut subgroup of the ccRCC
cohort (Figure S11). The findings in the datasets above showed
that patients with high IES scores showed a worse prognosis of OS
in the PBRM1-mut subgroup, which indicated that IES could
further filter patients with worse clinical outcomes and prognosis
ICIs therapy who acquired PBRM1 mutations.

Comparison Between IES and Other
Biomarkers of Immunotherapy
Recently, the expression of genes related to cytolytic immune
activity was associated with clinical response to ICIs in certain
Frontiers in Oncology | www.frontiersin.org 8
tumors (35, 36). A previous study discovered a T cell–inflamed
18-gene expression profile (GEP) shown to predict response to
anti–PD-1 therapy (37). To compare the performance on clinical
response to anti-PD-1 therapy between GEP and IES, T cell–
inflamed GEP was assessed in all patients from the Prat cohort,
Liu cohort, Riaz cohort and Nathanson cohort (Figure S12). We
found that higher T cell–inflamed GEP scores were also
positively associated with response and prognosis in Prat
cohort, Liu cohort, Riaz cohort and Nathanson cohort,
showing that the T cell–activated tumor environment also
affects response in addition to IES. However, significance was
not demonstrated in the subgroups by cancer types in Prat
cohort when using GEP as a predictor. We also found that a
higher proportion of responders were enriched in the “low-risk”
group by IES, compared with GEP.

We next evaluated the correlation between GEP and IES
among those patients. Negative correlations were found between
GEP and IES, and 57.1% of shared patients were selected as low
risk by both GEP and IES (Figure 5A). So IES could be a
necessary complement to GEP.

Furthermore, we evaluated the relationship between TMB
and IES in Liu and Riaz cohort. IES score was found independent
of TMB in the discovery and validation datasets with correlations
of -0.11 and 0.011, respectively (Figure 5B). This result indicated
that the IES score could be applied independently or jointly with
TMB in predicting the response of ICIs therapy.
A B C

D E F

FIGURE 4 | The predictive efficacy of 15 immune-related genes risk score in three validation cohorts. (A–C) Sensitivity and specificity of the risk score model were
assessed in each dataset by time-dependent ROC analysis. (D–F) Overall survival analysis between high- and low-risk groups in each cohorts.
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DISCUSSION

The immune checkpoint inhibitors (ICIs) have made remarkable
progress in the clinical treatment of tumors in the past decade (38–
40). However, immune escape mechanisms and immune
resistance to ICIs therapy have not been well-studied. Here, we
discovered and developed an immune exclusion-related 15-gene
risk score termed “Immune Exclusion Score” (IES) to predict the
clinical response and prognosis to anti-PD-1 therapy. Limited
clinical outcomes and prognosis to anti-PD-1 treatment occurred
in patients with high IES risk scores in the discovery and validation
datasets. Besides, IES was also found as a necessary complement to
T cell-inflamed GEP signature and independent to TMB, reflective
of the relationship of GEP and TMB to IES. These observations
suggest that using the IES immune exclusion biomarker may help
identify patients who are responsive to anti–PD-1 therapies and
explain the mechanism of immune exclusion in the
tumor microenvironment.

In this study, we focused on 15 immune-related gene
expressions as a prognostic marker of ICIs therapy. Among
these genes, CCL5, CCR5 and PDCD1 are essential regulators of
T-cell antigen receptor signaling (41–43). Gene GZMM, KLRK1
and NFKB2 activate and improve the cytolytic activity of T and
NK cells (44–46). While the high expression of gene CD46,
CXCL6 and GPI inhibit the inflammation of the tumor
microenvironment (47–49). Our results revealed that CCL5,
CCR5, GZMM, IL13, IL1RAPL2, KLRK1, NFKB2, PDCD1 and
TARP expression were strong protective effects against distant
recurrence of ICIs. The rest genes, CD46, CXCL6, GPI, ITGB1,
Frontiers in Oncology | www.frontiersin.org 9
PLA2G6 and TNFSF4, were revealed for the negative association
with tumor suppression.

The differential gene expression and pathway analysis were
evaluated between two risk groups divided by the IES scores. Our
results showed that patients with low IES score enriched with
highly expressed immune eliminated cell genes of CD8+ T cells,
CD4+ T cells, NK cells and B cells. Most of the enriched
pathways were related to immune-cell membrane receptor
activity and cytokine activity. We also observed that naïve B
cells, CD4 resting-memory T cells, and activated natural killer
(NK) cells infiltrated more enormous proportions in the low IES
group than in the high IES group.

Our study results may explain the low response rates and the
limited efficacy of ICIs for patients with high IES scores. The IES
was positively correlated with immune exclusion signatures such
as M2 macrophage signature and CAF signature. In contrast, IES
was negatively correlated with immune-elimination-related
signatures such as CTL signature, MHC-II signature and IFN-g
signature. In addition, the IES score was positively correlated
with the high expression of immune checkpoints like PD1, PD-
L1 and CTLA4, which indicated the status of immune
suppression among IES-high patients.

The limitations of this study still exist. Firstly, the
development and validation of IES were conducted on four
retrospective cohorts. Prospective clinical studies are needed to
verify the clinical efficacy of IES as a predictive biomarker for
immunotherapy. Secondly, the prognostic model is built based
only on gene expression data. A model involving more types of
data, especially pathological images might be able to improve the
A

B

FIGURE 5 | Comparison between IES and other biomarkers. (A) Correlation between T cell–inflamed GEP score and IES score in Prat, Liu, and Riaz cohorts.
(B) Correlation between somatic mutation counts or TMB and IES score in Liu and Riaz cohorts.
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prediction accuracy (50, 51). Thirdly, due to the limited size of
patients/cohorts, IES was confirmed in a small number of cancer
types, such as NSCLC, melanoma, ccRCC and NPC. Data on
more cancer types are needed to prove the broad applicability of
IES. Besides, all of the cohorts introduced in this study were
treated with ICI monotherapy. Combined treatment approaches
with ICIs, such as ICI combined with chemotherapy,
demonstrated a superior clinical response in recent trials. A
more significant implication will illustrate if IES is successfully
validated in the combination of ICIs and chemotherapy.
CONCLUSIONS

Our data demonstrate that IES can be used to categorize tumors
into different subgroups that exhibit distinct patterns of potentially
recognizable biology to enhance clinical response. Although the
utility of IES, T cell–inflamed GEP and TMB, as well as other
emerging agnostic biomarkers, need further validated for response
prediction to various immunotherapy approaches, including
combination therapies, these findings provide the possibility for
further exploring the utility of these biomarkers as guides for
clinical precision cancer immunotherapy.
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ORR is defined as having a partial response (PR) or a complete response (CR); NOR
is defined as having no PR or CR.

Supplementary Figure 6 | The different expression level of 15 immune-related
genes between ORR and NOR patients in the Prat cohort. ORR is defined as having
a partial response (PR) or a complete response (CR); NOR is defined as having no
PR or CR. ‘ns’, not significant. ‘*’, P < 0.05.

Supplementary Figure 7 | The ROC curves and AUC values of the risk score
from 15 immune-related genes expression level and PD-L1 expression level for
predicting objective response in the Prat cohort. ‘ns’, not significant.

Supplementary Figure 8 | Hierarchal clustering analysis of DEGs, split by the
high- and low-risk groups.

Supplementary Figure 9 | Pairwise correlation coefficients heatmap among 24
signatures in (A) Prat cohort, (B) Liu cohort and (C) Riaz cohort.

Supplementary Figure 10 | Prediction efficacy of IES for clinical response in
three validation datasets. (A) The ROC curves and AUC values in each cohort. (B)
Objective response rate (ORR) between high- and low-risk patients in the three
cohorts. ORR is defined as having a partial response (PR) or a complete response
(CR); NOR is defined as having no PR or CR.

Supplementary Figure 11 | The predictive value of IES score in ccRCC cohort. (A)
ROCcurves andAUCvalues, (B)Objective response rate (ORR), and (C)Kaplan–Meier
survival curves of PFS between high- and low-risk patients in the total ccRCC cohort,
PBRM1-mut subset, and PBRM1-wt subset. ORR is defined as having a partial
response (PR) or a complete response (CR); NOR is defined as having no PR or CR.

Supplementary Figure 12 | The predictive value of GEP score in Prat, Liu, Riaz,
and Nathanson cohorts. (A) Objective response rate (ORR) and (B) Kaplan–Meier
survival curves of PFS or OS between high- and low-risk patients in the four cohorts.
ORR is defined as having a partial response (PR) or a complete response (CR); NOR
is defined as having no PR or CR.
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