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Hematopoietic stem cells (HSCs) are known for their ability to proliferate and self-renew,
thus being responsible for sustaining the hematopoietic system and residing in the bone
marrow (BM). Leukemic stem cells (LSCs) are recognized by their stemness features such
as drug resistance, self-renewal, and undifferentiated state. LSCs are also present in BM,
being found in only 0.1%, approximately. This makes their identification and even their
differentiation difficult since, despite the mutations, they are cells that still have many
similarities with HSCs. Although the common characteristics, LSCs are heterogeneous
cells and have different phenotypic characteristics, genetic mutations, and metabolic
alterations. This whole set of alterations enables the cell to initiate the process of
carcinogenesis, in addition to conferring drug resistance and providing relapses. The
study of LSCs has been evolving and its application can help patients, where through its
count as a biomarker, it can indicate a prognostic factor and reveal treatment results. The
selection of a target to LSC therapy is fundamental. Ideally, the target chosen should be
highly expressed by LSCs, highly selective, absence of expression on other cells, in
particular HSC, and preferentially expressed by high numbers of patients. In view of the
large number of similarities between LSCs and HSCs, it is not surprising that current
treatment approaches are limited. In this mini review we seek to describe the
immunophenotypic characteristics and mechanisms of resistance presented by LSCs,
also approaching possible alternatives for the treatment of patients.

Keywords: hematopoietic stem cells, leukemia stem cell, molecular biomarkers, clinical relapse, drug resistance
INTRODUCTION

Hematopoietic stem cells (HSCs) are located in the bone marrow (BM) and are responsible for
sustaining and regenerating the hematological system. It is estimated that in a human organism,
1x106 blood cells are produced every second. This feature comes from the ability of self-renewal
together with a high proliferative rate and pluripotency of these cells. It is also worth mentioning the
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ability to resist apoptosis, necrosis and genotoxicity produced by
reactive oxygen species (ROS) that HSCs have (1–9).

Most of the time, the HSCs are quiescent, at G0 phase of the
cell cycle, depending on glucose to carry out their metabolic
activities. However, these cells, when receiving the stimuli
through severe situations, can quickly enter the cell cycle
through activation of genetic factors. It begins with a positive
control carried out in part by mTORC1 under the action of
CDK6, which in the G0 phase is in low expression or
accompanied by inhibitors such as p57 or p18 (8, 10–13).

HSCs enters the cell cycle, and therefore, their metabolic
activities start to have mitochondrial oxidative phosphorylation
as a source of energy due to the increase in energy demand. This
metabolic alteration consequently triggers a series of proteins,
such as histone and DNA modifying enzymes, which are
fundamental for the epigenetic changes carried out by the
modulation of key transcription factor activity. After their
activation, HSCs generate multipotent progenitors that are
then committed to a cell lineage and gradually differentiate
until they become mature and specialized cells (8, 10–12, 14–16).

Due to aging, HSCs lose their regenerative ability and may
undergo a process called age-related clonal hematopoiesis (ARCH).
In this process, mutations acquired over time continue to be
transmitted to their successors, giving rise to cells with mutations.
Patients withARCHaremore likely to develop leukemias, however
not all cells in thisprocesswill be related to the leukemicprocess. It is
known that the presence of certain mutations is related to the
severity factor of this cell, as mutations in TP53 and U2AF1 genes
are associated with pre-leukemic stem cells, and mutations in
DNMT3A and TET2 genes have a lower risk regarding
transformation of malignancy (12, 17–19).

In this study, we investigated clinical trials in extended
literature that focused their efforts on the identification of
LSCs in different types of leukemia and we discussed their
clinical outcome and the perspectives of new therapies.
PRE-LEUKEMIC STEM CELL AND
LEUKEMIC STEM CELL

The constant accumulation of mutations occurring in HSCs due
to ARCH or other agents can stimulate the transformation of
HSC into a pre-leukemic tumor cell (pre-LSCs). Although
mutations are present in these cells, it is still possible for them
to continue to give rise to healthy cells. However, pre-LSCs
continue to accumulate mutations for years as well as significant
clonal expansion until, after a long period, this cell acquires
malignant characteristics, becoming a leukemic stem cell (LSC)
(20–23). Despite the similarities between these two types of cells,
it is still possible to make differentiations, mainly genetic
differentiations, where it is observed that pre-LSCs do not have
mutations associated with leukemia (12, 24, 25).

Mutations that occur in pre-LSCs are related to epigenetic
genes that are responsible for histone modification, DNA
methylation and chromatin looping. In pre-LSCs mutations
can be found in AML1, ASXL1, CTCF, DNMT3A, E2H2,
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FOXO1, IDH1, IDH2, IKZF1, JAK2, NPM1, MED12, SMC1A,
STAT5B, TET2 andWT1. These mutations alone are incapable of
inducing leukemia and appear as precursor events to late
mutations that transform pre-LSCs into LSCs, which is shown
in Figure 1. Therefore, the genetic alterations present in LSCs are
related to proliferation and active signaling (26–33).

LSCs are recognized by their stemness features such as drug
resistance, self-renewal, and undifferentiated state. They were
initially pointed out by Lapidot and colleagues in 1994 (34). This
rare population of resistant cells is believed to be at the origin of
leukemia relapses. Their quiescent state and their self-renewal
capacity makes it possible to leukemia repopulating cells, despite
their low frequency (35–39).

LSCs are present at low levels in BM, being found in only
0.1%, approximately. This makes their identification and even
their differentiation difficult since, despite the mutations, they are
cells that still have many similarities with HSCs (20). Although
the common characteristics, LSCs are heterogeneous cells and
have different phenotypic characteristics, genetic mutations, and
metabolic alterations. This whole set of alterations enables the
cell to initiate the process of carcinogenesis, in addition to
conferring drug resistance and inducing relapses (36, 37, 40).

During tumor progression, cancer cells continuously acquire
genetic changes, and the fittest, most proliferative cells are selected
for giving rise to distinct tumor subclones, which is known as
clonal hematopoiesis (CH) (41–44). The clonal hematopoiesis of
indeterminate potential (CHIP) refers to the presence of at least
one driver mutation in hematopoietic cells of peripheral blood,
without hematological malignancy. It is associated with increased
risk of cancers, particularly in myeloid neoplasms, and chronic
inflammatory diseases. The phenomenon of CHIP becomes very
common in the population of people aged ≥80 years. That is
explained by the accumulation of somatic mutations in HSCs,
which occurs in an age-dependent manner (45, 46).

Clones evolve through the interaction of selectively
advantageous ‘driver’ lesions, selectively neutral ‘passenger’
lesions and deleterious lesions. Driver lesions or mutations are
the mutations that increase fitness and confer a clonal growth
advantage. The neutral mutations, also known as passenger
mutations, are accumulated in these cells but do not confer
any fitness advantage. Neutral evolution of these passenger
mutations can also shape clonal evolution, notably by a
phenomenon called genetic drift, in which the allele
frequencies of a mutation change over time. In addition, when
both driver and passenger mutations occur in the same cell, the
passenger mutations increase their allele frequency with the
driver mutations, which is a phenomenon called hitchhiking
that also participate in clonal evolution (47, 48).

The recognition of the important role of clonal hematopoiesis
and clonal evolution in tumor initiation, disease progression and
relapse have profound implications for the diagnosis and
treatment of these malignancies. Additionally, the advent of
new technologies may facilitate the definition of the molecular
determinants and underlying mechanisms of clonal evolution in
leukemia, which could provide targeted, individualized therapies
for leukemia patients (49, 50).
June 2022 | Volume 12 | Article 931050
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CHARACTERIZATION OF LEUKEMIC
STEM CELLS

A major challenge in studying LSCs is identifying a possible
unique cell surface antigen phenotype, from which it would be
possible to develop a targeted and much more specific treatment
than the treatments currently used. Furthermore, due to the
heterogeneity of the different types of leukemias, there is a lot of
variation in the antigens found on the surface of these cells,
becoming even more difficult to identify a specific marker that is
not expressed in normal cells, or has a different expression
pattern, density, or distribution (51–54).

Some common stem cell’s markers are CD34, CD117 and
HLA-DR, which expressions predict lower rate of complete
remission (CR). In addition, the principal surface antigens of
Frontiers in Oncology | www.frontiersin.org 3
the myeloid lineage are CD13, CD33, CD14, CD15 and CD11b.
Mostly, the expression of these markers have not yet showed any
prognostic significance or are associated with a poorer outcome,
such as reduction of CR, period of remission and survival.
Although, cells that expresses CD15 usually presents a higher
CR rate. Another marker found in myeloblasts is CD56, which
expression is also reported as a poorer prognostic factor (55)

As an example, we can point out that normalHSC constitutively
expresses CD34+ and CD38- antigens, in addition to others such as
Thy-1+, c-kit+ and IL-3Ra. Much of the LSC population
immunophenotypically resemble certain normal hematopoietic
progenitor populations by also expressing CD34+ and CD38-

besides others surface markers (56–58)
Despite these difficulties, a great number of cell surface

markers have been identified that are upregulated on
FIGURE 1 | Pathways of malignancy in hematopoiesis and its characteristics. Aging and exposure to hazardous environmental agents lead to accumulation of DNA
damage and mutations in hematological precursor cells, inducing a pre-leukemic stem cell (pre-LSC) phenotype. Pre-LSCs acquire proliferation advantages over normal
hematopoietic stem cells (HSCs) due to mutations in genes such as DNA methyltransferase 3 alpha (DNMT3a), but still retain their capacity to promote normal
hematopoiesis. However, further malignant characteristics acquired over the years may tip these cells into a proper leukemic stage. The transformation of pre-LSCs may
happen through cell-specific processes, such as epigenetic modulation or new acquired mutations, or through interactions between these cells and their
microenvironment, through changes in the normal growth and survival signaling pathways or due to interactions with dysfunctional stromal or mesenchymal cells that are
also present in the bone marrow. After malignancy onset, leukemic stem cells (LSC) may present a variety of karyotype rearrangements, such as BCR-ABL or FLT3-ITD,
that determine their malignant characteristics and tend to present immunophenotyping profiles that still resemble normal HSCs, such as CD34+38-, while also
overexpressing a cohort of cell-surface antigens that are highly variable between patients and even among different cell populations in the same patient.
June 2022 | Volume 12 | Article 931050
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CD34+CD38- LSCs compared with normal CD34+CD38-

HSPCs, for example, it has been revealed that CD90 and
CD117 are deficient in acute myeloid leukemia (AML) LSCs,
while CD123, TIM3, CD47, CD96, CLL-1, and IL-1 receptor
accessory protein (IL1RAP), G protein-coupled receptor 56
(GPR56), CD93, CD44 and CD99 are highly expressed in
AML LSCs. Targeting these surface markers might be a
promising strategy for eradicating AML LSCs (35, 56, 59–62).

Some studies addressing chronic myeloid leukemia (CML)
LSCs demonstrated that differentially expressed antigens include
CD25, CD26, IL-1RAP, which is associated with the activation of
NF-kb and AKT signaling pathways, increasing proliferation of
CML LSCs. In addition, the overexpression of the antigen CD25
is reported to reduce proliferation capacity of CML LSCs. Some
data suggest CD25 and IL-1RAP expression are unique to LSCs
of this type of leukemia (54, 63, 64).

The presence of LSCs is related to the rates of complete
remission (CR) and general survival (OS) of patients, besides
that, depending on the remaining amount, they may predispose
to relapse of patients with leukemias (65). The identification of
certain surface markers and molecular changes in these cells may
influence the prognosis of patients, but the results of studies are
still somewhat controversial. Bradstock et al. (66) pointed out
that patients who expressed CD9, CD14 and CD2 in their CSLs
had lower CR rates. The CD9, CD10 and CD11b markers were
associated with lower OS rates, and CD11b was also related with
a shorter duration of CR.

A study by Béné et al. (67) demonstrated that the expression
of CD10, CD14 and CD15 was associated with lower survival
rates. Nomdedeu et al. (68) found that patients who expressed
CD34, CD45, CD117 and CD123 had worse prognoses with
lower OS. Other studies, in turn, pointed out the markers CD2,
CD7, CD11b, CD22, CD133, CD135, CD262 and CD120a as
markers that confer worse prognosis to patients (69, 70).

The relationship between the molecular alterations observed in
patients and their prognosis is also somewhat controversial among
studies. Nomdedeu et al. (68) demonstrated that the FLT3-ITD
mutation had a significant influence onOS, where patients affected
by this alteration had lower rates compared to those who did not
have themutation (17.9 vs41months).On the other, Béné et al. (67)
did not find a difference in survival between patients with and
without molecular changes. However, other articles report the
relationship of FLT3-ITD, MLL-PTD, RUNX1-RUNX1T1 and
CBFB-MYH11mutations with a poor outcome (71, 72).

In addition, studies demonstrated a correlation between white
blood cells (WBC) count and poorer prognosis. Patients with a
higher WBC count were less likely to achieve CR and presented a
shorter survival rate (67, 73). Besides, a higher platelet count was
associated with a longer survival time (67). These general
findings corroborate with data found in other articles (74–77).
PRESENCE OF LSCS AND RELAPSE

Even with the course of the disease, it is possible to observe that
pre-LSCs and LSCs continue to evolve throughout the process, in
addition to the fact that treatment often fails to reach these cells.
Frontiers in Oncology | www.frontiersin.org 4
LSCs play a key role from development to disease relapse. Thus,
its analysis and quantification can be of great importance as a
prognostic factor for patients. Such processes can also assist in
choosing a more targeted treatment. The identification of these
cells can be performed through immunophenotyping, where it is
possible to differentiate HSCs from LSCs. From this
differentiation, counting methods are performed (78–80).

Recent studies point to two classifications of relapse related
LSCs: the first classification is known as LSCs of committed
relapse origin, where these cells are most like the diagnostic cell
type and were able to evolve similarly to the diagnostic dominant
clone. The second classification is the LSCs of primitive relapse
origin, which are rare cells at the diagnosis of the disease and do
not usually form blasts. However, these cells may show greater
resistance to treatment and later clonal evolutions, causing the
patient to relapse, which usually continues with the increase in
the amount of LSCs and with greater heterogeneity (81, 82).

Studies reveals that LSCs levels correspond to the clinical and
laboratory characteristics of the patient. Due to their insufficient
morphological and biochemical characterization, LSCs cannot be
reliably measured in patient samples. However, as a consequence
of the finite capacity of the joined stem cell niche, HSCs can act
as a biomarker for LSCs numbers and help identify patients with
an adverse clinical outcome (74, 83, 84).

This is noticeable through the LSCs and the HSCs count,
considering that the BM may have a limited number of cells.
Therefore, LSCs and HSCs compete for niches, their values being
inversely proportional, that is, the more LSCs the less HSCs.
Therefore, patients who had a low LSCs load also had lower blast,
platelet, and leukocyte counts. In addition to clinical features, the
cells count can represent how it might respond molecularly. This
is important when evaluating the chosen treatment. Therefore,
lower levels of LSCs are associated with a better molecular
response to treatment (85, 86).

Still on thequantificationofLSCs, its functionality also applies to
the assessment of measurable residual disease (MRD) and is
considered an effective biomarker for predicting relapses. So, in
addition to being used in the diagnosis to choose the treatment, the
immunophenotyping test can be used in the post-treatment phase
to evaluate its effectiveness and predict the patient’s survival. High
values of LSCs would be associated with worse survival and low
efficacy. This analysis is then performed using molecular
methodologies such as quantitative real-time polymerase chain
reaction (RT-qPCR) or next-generation sequencing (NGS), and
flow cytometry. It is important to remember that all these
methodologies for prognostic analysis and MRD are still being
carried out in studies and better clarification and standardization
are needed for clinical application (83, 84, 87, 88).
INSIGHTS INTO CLINICAL
INVESTIGATIONS

Table 1 is comprised of clinical trials from the past 10 years that
aimed to identify biomarkers specific to LSCs that could serve as
targets for targeted therapies or could be used as prognostic
factors (89–98). Most of the reported studies aim at AML
June 2022 | Volume 12 | Article 931050
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treatment since LSC presence and complexity is an established
risk factor for disease severity (51, 56).

Studies utilizing standard chemotherapy protocols and
induction therapies confirm that identified LSC markers,
mainly transmembrane antigens such as CD34 and CD123,
correlate with a worse patient prognosis. Increased mutation
burden, lower response rates, inability to achieve CR, worst
response to chemotherapy and higher incidence of relapse are
some of the reported factors associated with increased presence
of LSCs (89, 92–94, 96).

Although resistant to most treatment strategies, the use of
novel agents targeting specifically LSCs molecular pathways
combined with standard treatment protocols showed some
promising results for AML patients (90, 91, 95). Huselton et al.
(90) combined dociparstat sodium (DSTAT), a drug capable of
inhibiting CXCR4/CXCL12 cell adhesion molecules, with
hypomethylating agent (HMA) azacitidine in an attempt to
disrupt bone marrow niches where LSCs remain in a quiescent
state and was able to achieve CR in patients who were previously
unresponsive to treatments with HMA alone.

Riether et al. (91) identified WNT pathway as being
hyperactivated in AML LSCs due to increased expression and
interaction of CD70/CD27 molecules. In vitro, the use of
monoclonal antibodies targeting CD70 in combination with
HMAs was demonstrated to have an additive effect in
inhibiting LSC growth since the use of HMAs seem to increase
LSCs dependency on CD70/CD27 pathway and concurrent
CD70 inhibition was able to further reduce LSCs burden when
compared to monotherapies of either agent. In previously
untreated AML patients, protocols combining cusatuzumab
Frontiers in Oncology | www.frontiersin.org 5
plus azacitidine induced responses in all treated patients and
transcriptome analysis after treatment revealed increased
expression of genes involved in pathways of inflammation,
differentiation and apoptosis (91).

Lastly, Wang et al. (95) utilized compound zhebei granule
(CZBG), a herbal concoction with oncologic uses in traditional
Chinese medicine, that acts through mechanism such as apoptosis
induction and inhibition of resistance-related drug efflux proteins,
combined with standard chemotherapy to treat AML patients and
a significant decrease in CD34+CD123+ cells was observed in bone
marrow niches. CZBGwas also demonstrated to increase response
rates in AML patients in combination with chemotherapy when
compared to chemotherapy alone and to be able to reduce LSCs
markers in tumor cell xenografts when combined with
doxorubicin treatment (95, 99, 100).

In CML patients, in vitro studies indicate BCR-ABL tyrosine
kinase inhibitors (TKIs) to have no efficacy over LSCs and
leukemic progenitor cells (LPCs) and, while imatinib initial
response rates are overwhelmingly positive, disease recurrence
is usually the standard for patients after therapy discontinuation
due to remaining Philadelphia-positive (Ph+) CD34+ cells (101,
102). The use of next-generation TKIs, however, seem to be more
effective in reducing stem and progenitor cells in CML than
imatinib and may point towards a choice for more intensive
treatment options in accordance with increased LSCs and LPCs
burden (103).

Pungolino et al. (97) utilized nilotinib, a second-generation
BCR-ABL inhibitor, to treat newly diagnosed CML patients and
observed a rapid decrease in CD34+lin-Ph+ cells in the bone
marrow, with total clearance of the analyzed samples at 12
TABLE 1 | Studies of the past 10 years indicating biomarkers for stem cells and “stemness” properties in leukemia and the respective prognostic relevance after treatment.

Leukemia
Subtype

Alterations Correlated with LSC Pheno-
type

Treatment Protocols Clinical outcomes Reference

AML Pre-leukemic phenotype of
CD34+CD13+CD33+ and increased
expression of CD123 and CD117

Intensive and non-
intensive induction
regimens

Association of pre-leukemic phenotype with persistent clonal
hematopoiesis and increased mutation burden

(89)

AML; MDS Expression of CXCR4/CXCL12 Azacitidine plus DSTAT ORR of 27% among evaluable patients and major hematologic
improvements

(90)

AML Upregulation of CD70/CD27 interaction Protocols of
cusatuzumab plus
azacitidine administration

Strong reduction of LSC viability and proliferation in vitro; 100%
ORR in 12 analyzed patients with 44% of evaluable patients
achieving MRD negativity

(91)

AML Lower expression of miR-204 increasing
the expression of CD34 cell marker

Standard protocols of
induction chemotherapy

Low expression of miR-204 is associated with poorer OS and DFS (92)

AML High CD123 expression Standard protocols of
induction chemotherapy

Overexpression of CD123 is associated with poor OS and induction
therapy failure

(93)

AML Expression of CD25, CD96 and CD123 Standard protocols of
induction chemotherapy

Expression of multiple surface markers is associated with worse
OS, PFS and response to chemotherapy

(94)

AML Presence of CD34+CD123+ and
CD33+CD123+ cells

CZBG combined with
standard chemotherapy
regimens

Reduction of CD34+CD123+ cells in the bone marrow after
treatment

(95)

AML Expression of CD44, CD123 and CD184 Variable protocols of
cytotoxic chemotherapy

Increased LSC population is correlated with inability to achieve CR (96)

CML BCR-ABL translocation in CD34+lin- cells Nilotinib 300mg twice a
day

No BCR-ABL rearrangement was observed in analyzed CD34+lin-

cells in the bone marrow at 12 months of treatment
(97)

CML BCR-ABL translocation in CD34+CD38-

cells
Dasatinib 100mg a day
or imatinib 400mg a day

Rapid decrease in LSC and LPC populations after therapy initiation (98)
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months of treatment. Mustjoki et al. (98) compared imatinib and
dasatinib efficiency at decreasing stem and progenitor cell
burden and, while both treatments had similar results at LSC
inhibition, dasatinib showed increased activity over LPCs levels
at 3 months analysis.
TREATMENT PERSPECTIVES

Most conventional treatments for leukemias seek to eradicate
blasts, reaching cells that are in their active cycle. However, LSCs
are usually in a quiescent state or protected through their
molecular resistance mechanisms causing this cell to resist
therapy, leading to patient relapse (104–111). One of the major
known factors that confer drug resistance is the overexpression
of drug efflux pumps, such as the ATP-binding cassette (ABC)
transporter family proteins by CSCs. Moreover, drug efflux
increase is often combined with the upregulation of enzymes
involved in the metabolism of anticancer agents. Therefore,
enzymes and efflux transporters expressed by LSCs appear to
be crucial not only for their proliferation, but also for their
resistance to clinical treatments (108, 112–115).

The selection of a target to LSCs therapy is fundamental. Ideally,
the target chosen shouldbehighly expressedbyLSCs,highly selective,
absence of expression on other cells, in particular HSCs, and
preferentially expressed by a high number of patients. In view of
the large number of similarities between LSCs and HSCs, it is not
surprising that current treatmentapproachesare limited (20,81, 116).

Currently, different treatment methodologies have been
tested and addressed, such as the use of binding antibodies
associated with different toxins to form a specific delivery
vehicle for LSCs. Examples of such therapies are the use of
Gemtuzumab Ozogamicin for the treatment of AML, a
compound that uses an antigen against CD33, associated with
a cytotoxic agent; and the inhibition of the SIRP1-a interaction
with CD47 that activates innate immunity increasing the death
of LSCs. In addition, CD244, CD123, LLC1 or TIM3 targets are
also studied and demonstrate antileukemic efficacy in AML
patients. However, one of the main difficulties in the treatment
of LSCs is due to the low proliferation rate, which makes it
difficult to identify the cell to start the therapy (62, 81, 117–119).

Several new strategies are under development to eliminating
LSCs, which may result in a better patient response. Many of the
studies are associated with the use of TKIs, which to improve
their effectiveness can be combined with other agents. TNF-a
inhibitors combined with TKIs, for example, have shown
positive results in the elimination of LSCs. Blocking of IL-1
signaling may also be a combination with TKIs, as well as
blocking of signal pathways such as Wnt/b-catenin, Hedgehog,
MAPK/MNK1/2, mTOR, PTEN, PP2A, Alox5 and JAK/STAT.
The action of HIF-1 inhibitors associated with TKIs has been
shown to reduce the survival and growth of cells in CML in
murine models. The HIF-1 deletion has also been tested in in
vivo and in vitro models and has been shown to inhibit CML
proliferation, both without serious effects on HSCs (120–122).

Activations and gene dissections can also be used, as in the
case of p53 activation and EZH2 deletion. Both technologies
Frontiers in Oncology | www.frontiersin.org 6
demonstrate promising results that enhance the eradication of
LSCs when combined with TKIs (123, 124). The combination of
TKIs with cytarabine was also performed, demonstrating good
results in AML patients. Despite the large number of tests
involving TKIs, medications and methodologies have also been
developing as the case of Bortezomibe. Its function is based on
decreasing the expression of CDK6, an important agent in the
proliferation of LSCs (120, 125, 126).

Undoubtedly, one of the greatest difficulties in eliminating
LSCs is their resistance mechanisms. As a result, studies have
specialized in finding drugs and technologies that help to
overcome the resistance present in LSCs. In this scenario,
research diverges in different areas such as transport proteins
and signaling pathways, taking as an example Notch, Hedgehog,
andWnt/b-catenin that are describes also as responsible for drug
resistance (104, 127–129). It is also worth mentioning studies
focused on the epithelial-mesenchymal transition (EMT),
histone acetylation, hypoxia and the BM niche (104, 130, 131).

The tumor microenvironment (TME) creates a niche for itself
that influences not only the proliferation and differentiation of
LSCs but also the response to drugs. A key factor that modulates
the microenvironment and drug resistance is hypoxia, which
signaling contributes to chemoresistance of CSCs by increasing
the expression of ABC transporters and Aldehyde dehydrogenases,
a family of intracellular enzymes, which can be used as molecular
markers to identify normal stem cells (NSCs) and CSCs (104, 128,
132–134). An example was demonstrated by Giuntoli et al. (134),
when CML cells were grown in low oxygen concentrations and
became resistant to Imatinib.

The EMT process is already known in solid tumors and has
recently been explored in hematological neoplasms as well as its
treatment possibilities (104, 127, 134, 135). Thus, one of theways is to
look for drugs that can act on genes such as TRPS1, ETS2 and LSP,
known to belong to this process in AML (136, 137). Competition for
the BMniche between LSCs andHSCs has also become a therapeutic
target, transforming the environment in a more favorable way for
HSCs or increasing their hematopoietic reserve. E-selectin inhibition
is an example, being able to promote the displacement of HSCs and
LSCs. Regardinghypoxia, the use of hypoxia-activatedprodrugs such
as TH-302 has already been shown to reduce the population of LSCs
in an AML model (138, 139).

In addition to those already mentioned, the combination of
Venetoclax with Azacitidine demonstrates potential for the
treatment of LSCs in AML, as it suppresses OXPHOS.
Regarding gene deletion, it was observed that FOXO1 deletion
through genetic or pharmacological pathways is able to inhibit
the proliferation of malignant cells, which is present in LSCs and
pre-LSCs, becoming a potential target. Studies aimed at the use of
microRNAs mimics were also carried out and have potential,
such as miR-15a/16-1 acting as a tumor suppressor acting
negatively on the WT1 gene (28, 81, 140, 141).
CONCLUSION

Foremost is important to better define the molecular and cellular
biologic features of normal HSCs and LSCs, for improve the
June 2022 | Volume 12 | Article 931050
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identification of possible therapeutic targets to eradicate the
LSCs, that are responsible for treatment resistance and clinical
relapse for most patients. It is necessary to carry out studies that
correlate the quantification and immunophenotypic
characterization of LSCs with clinical data and prognosis
presented by patients, regarding the significance of this
information pointed in the studies here presented, and due to
the lack of this type of study in the literature.
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