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Skin cancer these days have become quite a common occurrence especially in

certain geographic areas such as Oceania. Early detection of such cancer with

high accuracy is of utmost importance, and studies have shown that deep

learning- based intelligent approaches to address this concern have been

fruitful. In this research, we present a novel deep learning- based classifier

that has shown promise in classifying this type of cancer on a relevant

preprocessed dataset having important features pre-identified through an

effective feature extraction method.

Skin cancer in modern times has become one of the most ubiquitous types of

cancer. Accurate identification of cancerous skin lesions is of vital importance

in treating this malady. In this research, we employed a deep learning approach

to identify benign and malignant skin lesions. The initial dataset was obtained

from Kaggle before several preprocessing steps for hair and background

removal, image enhancement, selection of the region of interest (ROI),

region-based segmentation, morphological gradient, and feature extraction

were performed, resulting in histopathological images data with 20 input

features based on geometrical and textural features. A principle component

analysis (PCA)-based feature extraction technique was put into action to

reduce the dimensionality to 10 input features. Subsequently, we applied our

deep learning classifier, SkinNet-16, to detect the cancerous lesion accurately

at a very early stage. The highest accuracy was obtained with the Adamax

optimizer with a learning rate of 0.006 from the neural network-based model

developed in this study. The model also delivered an impressive accuracy of

approximately 99.19%.

KEYWORDS

skin cancer, principle component analysis, image processing, ROI, Otsu thresholding,
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1 Introduction

Skin cancer is a type of cancer that originates in the tissues of

the skin and is due to the development of abnormal growth of cells

that can invade or spread to other parts of the body. It was the

fourth most common cancer in the year 2020 (1). Skin cancer

embodies a particular challenge for estimating incidence for

several reasons. There are multiple subtypes of skin cancer, and

non-melanoma skin cancer is often not tracked by cancer

registries (2). Registrations of skin cancer are often incomplete

because most cases are successfully treated via surgery or ablation.

Some countries do not have cancer registries, regions of some

countries have few or no records, records in countries suffering

war or other disruption are bound to be incomplete, and some

people with cancer do not consult a physician. Due to these

factors, it is likely that the reported global incidence of skin cancer

is an underestimate. Australia and New Zealand have the highest

rates of reported skin cancer (Australia 33.6 per 100,000 and New

Zealand 33.3 per 100,000) (3), followed by the Scandinavian

countries in Europe. The apparent reason behind this high rate

is that the majority of skin cancers are caused by exposure to UV

radiation in sunlight. Skin cancers are most frequently found on

the head and neck of human (4). In the Southeast Asian region,

this type of cancer is less common according to the Global Cancer

Observatory (5, 6). As skin cancer develops on the outside of the

body and is a visible type of disease, it can be examined by a

dermatologist very early. Detecting skin cancer lesions at an early

stage significantly reduces morbidity, decreases healthcare costs,

and improves patient survival rate (7). Dermoscopy is a non-

invasive examination technique for the visual investigation of the

surface structure of the skin. This detection using dermoscopy is

undeniably higher than individual observation-based detection,

but the accuracy of the diagnostic depends on the training of the

dermatologist. The inadequate number of trained dermatologists

(8) makes it hard to accurately diagnose cancerous lesions at an

early stage.
1.1 The major contributions of the paper

The research goal of this paper is to create an artificial

intelligent system that identifies skin lesions accurately at an

early stage. It is expected that this ultimately will prevent

metastases and (9) and reduce mortality. The key issues are

maintained in the following manner:

1. All 3,297 images were selected from the source dataset

(10). Selected images were cleaned and made noise-free followed

by a number of preprocessing methods before the final dataset is

compiled for this research.

2. To produce the impactful feature set, the PCA feature

selection technique was employed to reduce the dimensionality

into half (10 features).
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3. To detect the skin lesions, our produced SkinNet-16

classifier, a generalized model with no overfitting, is based on

a convolution neural network (CNN) and deployed to achieve

the desired goal.
2 Literature review

Ameri (11) proposed a skin cancer detection system in 2020

using a deep convolutional neural network (CNN). He used the

HAM10000 dermoscopy image database, which contains 3,400

images including melanoma and non-melanoma lesions. Deep

CNN was developed to classify the images into two classes:

benign and malignant. No lesion segmentation or feature

extraction techniques were used. Instead, the raw images were

directly used as the input of the CNN. A classification accuracy

of 84% was achieved using these raw images. Yu et al. (12)

proposed an automated method for recognizing melanoma skin

cancer, deploying deep convolutional neural networks (CNNs)

using the ISBI 2016 Skin Lesion Analysis toward Melanoma

Detection Challenge. They claimed that their proposed method

was more accurate than existing architectures because their

network contained more than 50 layers. Their network was

able to acquire richer and more discriminative features which

eventually resulted in a more effective performance. In this two-

stage framework, they applied the fully convolutional residual

network (FCRN) for skin lesion segmentation and very deep

residual networks for classification. The uniqueness of their

work was that they worked with limited training data, but a

substantially deeper network than other authors, resulting in a

classification accuracy of 85.5%. Their work provided some

evidence that a two-stage framework with segmentation can

achieve better results than direct manipulation of the

dermoscopic images. Andre Esteva et al. (13) performed a

classification of skin lesions using deep convolutional neural

networks. They trained the CNN using a dataset of 129,450

clinical images using only pixels and disease labels as inputs.

They then tested its performance against 21 board-certified

dermatologists on biopsy-proven clinical images. It was

demonstrated that Artificial Intelligence systems might be

capable of classifying skin cancer at a level of competence

comparable to dermatologists. The accuracy was 96% for

carcinoma images, 94% for melanoma images, and 91% for

melanoma dermoscopic images 91%. The sensitivity vs.

specificity curve for the CNN was promising, but the rate of

false positive and false negative was still too high to ignore. Jinnai

et al. (14) developed a skin cancer classification system for

pigmented skin lesions using deep learning. A total of 5,846

clinical images from 3,551 patients were used, and faster region-

based CNN (FRCNN) was used as the classifier. For six-class

classification, the accuracy of FRCNN was 86.2%, and for two-

class classification (benign or malignant), the accuracy was

91.5%. In both cases, FRCNN performed better than other
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methods and dermatologists. Boman and Volminger (15)

proposed a deep convolutional neural network model for the

classification of skin cancer in 2018. They evaluated the

performance of the CNN based on melanoma versus solar

lentigo and melanoma versus seborrheic keratosis. They

primarily used the data from the ISIC Dermoscopic Archive

dataset of 23,647 images and downloaded an additional 16,826

images from DermQuest, 4,336 images from the Dermatology

Atlas, and 1,948 images from the websites DermaAmin,

Dermoscopy Atlas, Global Skin Atlas, Hellenic Dermatological

Atlas, Medscape, Regional Derm, Skinsight, and the pH2

database. The accuracy was evaluated with both a 16-way

classification and a three-way classification. The best accuracy

achieved was 91% for the binary classification of seborrheic

keratosis versus basal comparison result. This indicated that for

binary comparison an acceptable accuracy can be obtained by

applying deep learning classifiers. In 2020, Rehan Ashraf et al.

(16) proposed a transfer learning-assisted framework based on

an intelligent region of interest (ROI) approach for skin cancer

detection. Previous deep learning-based methods had used

complete images for feature learning which can result in a lack

of performance in terms of discriminative feature extraction. An

ROI-based approach helps to identify discriminative features as

the images contain only that region to train the system. To

extract ROIs from the images, they used an improved k-mean

algorithm. They subsequently applied a convolutional neural

network (CNN)-based transfer learning model with data

augmentation for ROI images. Seventy-seven percent of the

data were used for training and the remaining 23% as testing

data. The ROI-based approach resulted in an accuracy of 97.9%

for their first dataset and 97.4% for the second dataset,

demonstrating that the ROI approach outperformed previous

methods using complete images (global features) for

classification. Region of interest (ROI) detection in

dermoscopic images was proposed by Goyal et al. (17) in 2018

in order to achieve data augmentation. They deployed CNN

(Faster-RCNN) and proposed the use of two object localization

meta-architectures for ROI skin lesion detection in dermoscopic

images. The performance of their skin localization methods

proved to be superior to other segmentation methods for skin

lesions. ROI detection not only has the potential for enhancing

the quality of the dataset but also can improve the accuracy of

lesion localization. The ROI localization in dermoscopic images

and the application of FRCNN (Faster-RCNN) Inception V2 to

the ISBI-2017 testing dataset resulted in an accuracy of 94.5%

and recall of 94.3% outperforming other models. FRCNN also

performed best on other previously unseen datasets in terms of

precision and recall, establishing its validity. In 2020, Ali et al.

(18) proposed a novel fuzzy method-based multilayer

perceptron (F-MLP) system for the detection of irregularity in

the skin lesion’s border to aid the early identification of

melanomas as border irregularity is one of the important signs

of skin cancer. Artificial neural networks (ANNs) or multilayer
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perceptrons (MLPs) have been shown to perform well in

supervised learning tasks, although they can be affected by the

way the weights are updated during the learning process which

can sometimes degrade the performance of the network when

applied to test data. To reduce the effect of ambiguous inputs on

the learning process, they proposed a fuzzy multilayer

perceptron (F-MLP) that takes the ambiguity of the inputs

into consideration. Their proposed approach outperformed

most current classification methods, in particular its standard

neural network counterpart. Using F-MLP, they obtained the

best result with an 80:20 training–testing data ratio, resulting in

an accuracy of 95.2%. However, the drawback of this proposed

fuzzy neural network was that training the network was much

more time-consuming. Fujisawa et al. (19) described an

automatic deep learning-based skin cancer classification in

mid-2019. They used the dataset ILSVR2012 containing 1.2

million images within 1,000 classes. They also showed that

useful feature extraction can drastically improve the model’s

performance and efficiency. The classification algorithm that

yielded the best result for them using the selected feature values

was a deep learning-based convolutional neural network (CNN),

as it can learn and automatically determine what features are

important for classification from the training image set. For 14-

class classification, the CNN model resulted in a 75% accuracy,

and for two-class classification in an accuracy of 92%, which

surpassed that of board-certified dermatologists. An automatic

skin cancer detection system from dermoscopic images were

proposed by Seyed Mohammad Alizadeh et al. (20) by

combining convolutional neural networks and texture features.

The datasets they used were ISIC 2016, ISIC 2019, and PH2.

After preprocessing of the images using the DullRazor algorithm

(21), texture features were extracted and their dimension was

reduced using kernel principal component analysis (kPCA) for

improving the classification performance in the feature

extraction-based phase, and their proposed network and the

VGG-19-two CNN models were employed to classify images in

the CNN phase. These two methods were fed into their ensemble

approach, and the final result was obtained by comparing the

results of these two methods. This automated system achieved

85.2%, 96.7%, and 97.5% accuracy respectively for three datasets.

Maad M. Mijwil (22) analyzed more than 24,000 skin cancer

images with the help of the CNN (ConvNet) model applying

three architectures, InceptionV3, ResNet, and VGG19, for

classifying benign and malignant types. The author employed

datasets containing high-resolution images obtained from the

ISIC archive between 2019 and 2020. The best-performed

InceptionV3 architecture achieved a diagnostic accuracy of

86.90% outperforming the other architectures. Another DCNN

model, named lesion classification network (LCNet), was

proposed by Ranpreet Kaur et al. (23) to classify malignant

and benign melanoma, where they used dermoscopic images

from International Skin Imaging Collaboration datastores (ISIC

2016, ISIC2017, and ISIC 2020). For three different datasets, they
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managed to obtain 81.41%, 88.23%, and 90.42% accuracy,

respectively. However, they did not rely on any extensive

preprocessing operations and extraction of lesion features

using ROI, which was responsible for this relatively reduced

accuracy. Using ISIC datasets, Hatice Catal Reis et al. (24) also

developed a deep learning-based convolutional neural network

(CNN) model to detect benign and malignant lesions, but they

incorporated International Skin Imaging Collaboration

HAM10000 images (ISIC 2018), ISIC 2019, and ISIC 2020

datasets. This model was developed based on the Inception

module used in GoogleNet architecture, and it used fewer

parameters and fewer medical images to make the diagnostic

time shorter. Nevertheless, more detailed diagnostic results

could have been obtained by improving the segmentation

study with meta-heuristic algorithms and graph methods. This

lightweight model achieved accuracies of 94.59%, 91.89%, and

90.54% respectively for three datasets. Bechelli et al. (25)

performed a binary classification to identify the benign and

malignant classes of skin cancer from dermoscopic images using

machine learning and deep learning images. For the study, two

datasets were used, i.e., ISIC archive and HAM10000. For the

classification task using machine learning algorithms, LR, LDA,

KNN, CART, and GNB algorithms were performed. A mean

prediction result was calculated based on maximum diversity,

average prediction, and best performance. The deep learning

model used in the study was customized by embedding

Xception, VGG16, and ResNet50. Later, the models were

modified to achieve improved accuracy. The study uses several

performance matrix such as accuracy, precision, recall, F-score,

FPR, and ROC curve to evaluate prediction results. The

ensemble machine learning method shows a precision score of

0.79 and an f-score of 0.70. Subsequently, after modification,

VGG16, ResNet50 and Xception shows f-scores of 0.69, 0.61,

and 0.50, respectively.
3 Dataset

This study employs two publicly available datasets. First is

the dataset which is retrieved from Kaggle repositories (26). The

dataset origins from the ISIC archive. It is composed of two

different types of skin cancer images: benign skin moles and

malignant skin moles. A total of 3,297 benign and malignant

histopathological images are examined for this research, where

the number of benign images is around 1,800, while malignant

images are approximately 1,497. All the introduced RGB format

images are in 224 × 224 pixels. The second dataset used is the

HAM10000 obtained from the Kaggle archive that originates in

the Harvard Dataverse (27). The dataset contains seven types of

skin lesion classes and a total of 10015 dermatoscopic images.

The seven lesions can be grouped into benign and malignant

classes for binary classification. In the lesion belonging in the

benign group are dermatofibroma (df) with 115 images, benign
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keratosis-like lesions (bkl) with 1,099 images, vascular lesions

(vasc) with 142 images, and melanocytic nevi (nv) with 6,705

images. Similarly, the lesion belonging in the malignant group

are basal cell carcinoma (bcc), melanoma (mel), and actinic

keratoses and intraepithelial carcinoma/Bowen’s disease (akiec)

with 514, 1,113, and 327 images, respectively. The HAM10000

dataset is a highly imbalanced dataset. The near-miss algorithm

(28) is employed to balance the dataset. The algorithm randomly

eliminates data from the class with high data to balance the

dataset. The final balanced dataset has a total of 1,954 data in

each benign and malignant class.
4 Methodology

4.1 Image preprocessing

Preprocessing is a crucial step of image processing (29) in

order to obtain accurate outcomes. As there are hairs in a

number of the images which could interfere with accurate

classification, a digital hair removal (DHR) algorithm (30) is

applied next. Next, we apply the rolling ball technique (31) in

order to remove background noise. Subsequently, these five well-

known filters, namely, non-local means denoising (NLMD)

algorithm (32), mean filter (MF) (33), median filter (MDF)

(34), Gaussian Filter (GF) (35), and conservative smoothing

filter (CSF) (36), are used on the rolling ball image one after

another to reduce the unnecessary spots. Thirdly, the image

enhancement techniques of histogram equalization (HE) (37)

and piecewise linear transformation (PLT) (38) are applied to all

the filters. We then picked our best image enhancement

technique with a filter based on various types of assessments,

namely, PSNR, MAE, SSIM, and histogram analysis, to ensure

that the image quality has not been reduced. Finally, color

coding (39), a technique for clearer image visualization, is

done on our selected image and then the region of interest

(ROI) (40) is extracted to show the cancerous lesion of this

particular image. Apart from these, the Dice coefficient similarity

score (DCS) of our selected image as well as the ROI image (41)

is also calculated to evaluate the correctness of our preprocessing

techniques, which is famous for comparing the original image

with the processed image to forecast the accuracy. Figure 1A

gives an overview of the preprocessing process.
4.1.1 Hair removal
As artifacts can be the root cause of poor results, removal of

the main artifact for skin cancer detection, hairs, is essential. We

remove hairs (42) from our images by applying the DHR

algorithm (30). This consists of four steps: Grayscale,

Morphological BlackHat transformation, creating the mask for

InPainting, and the InPainting algorithm.
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4.1.1.1 Grayscale image

Grayscale images, as their name suggests, are images

containing only shades of gray and no other colors. Grayscale

is defined as a range of monochromatic shades (43) from black

to white. The luminance value of each pixel, which can also be

described as the brightness or intensity, is used to convert the

images to gray scale as measured on a scale from black

(intensity = 0) to white (intensity = full). For RGB digital

images, each pixel has three separate luminance values for red,

green, and blue. With the help of cv2.cvtColor () (44), a method

of Python OpenCV, we converted our original images to

grayscale images.
4.1.1.2 Morphological BlackHat operation

Morphological image processing encompasses a range of

image processing techniques that deal with the shape (or

morphology) of features in an image. We apply the BlackHat

morphological operation to find hair contours with respect to

direction. Morphological operations are applied to shrink or

enhance some image regions through opening, closing, erosion,

and dilation. The BlackHat transformation finds the difference

between the closing of the input image and the input image itself

(45). BlackHat operators are more suited for grayscale images.

Mathematically, it can be represented as in equations (1) and (2).
Frontiers in Oncology 05
A •Bð Þ − A  in terms of dilatation and erosion½ � (1)

A⊕ Bð ÞQ B½ � − A, further break it down½ � (2)

where A is the input image matrix and B the kernel matrix (46).

This transformation is used to enhance image components for

which the structuring element is larger as well as components

which are darker than their surroundings (47). For hair

detection, a structuring element of size 23 × 23 is utilized for

this morphological operation.

4.1.1.3 Intensify the hair contours

The output from BlackHat Morphological operation results

in image with variations of grayscale intensity. To increase the

contrast of the hair regions (47), a binary thresholding is applied;

see equation (3).

I · x, yð Þ =
1,

0,

if I x, yð Þ > threshold

otherwise

(
(3)

h resulting image enhances the hair contours.

4.1.1.4 Inpainting algorithm

The Inpainting algorithm refers to the reconstruction of small

missing and damaged portions of images. This activity consists of

filling in the missing areas or modifying the damaged ones in a way
FIGURE 1

(A) Preprocessing technique of our proposed system. (B) The DHR process diagram, consisting of the (a) original image, (b) grayscale image, (c)
morphological BlackHat operation, (d) intensification of the hair contours, and (e) Inpainting algorithm.
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that is not detectable to an observer who is not familiar with the

original images. For missing or damaged areas, one can only hope

to produce a plausible rather than an exact reconstruction.

Therefore, in order for an inpainting algorithm to be reasonably

successful, the regions to be inpainted must be locally small. A

user-provided mask specifies the portions (48) of the input image

to be retouched, and the algorithm treats the input image as three

separate channels (R, G, and B). Let Ω be a small area to be

inpainted, and let ∂Ω be its boundary. The simplest version of the

algorithm consists of initializingΩ by clearing its color information

and repeatedly convolving the region to be inpainted with a

diffusion kernel. As the diffusion process is iterated, the

inpainting progresses from ∂Ω into Ω. This algorithm uses a

weighted average kernel that only considers contributions from

the neighbor pixels (i.e., it has a zero weight at the center of the

kernel). Algorithm 1 (49) describes this process:
ALGORITHM 1 Inpainting Algorithm.

BEGIN
initialize Ω;
FOR (iter =0; iter < num_iteration; iter++)
convolve masked regions with kernel;
ENDFOR
END
Intersections between Ω and high-contrast edges are the

only places where anisotropic diffusion is required, and such

regions usually account for a small percentage of the total area.

The outputs of each stage of the DHR process for one image are

shown in Figure 1B for a better understanding of the

explanation above.

4.1.2 Rolling ball algorithm

The rolling ball algorithm (31) is a well-known tool to

correct non-uniform brightness, especially in medical images.

This algorithm estimates the background intensity of a grayscale

image in the case of uneven exposure. It is frequently used in

biomedical image processing and was first proposed by Stanley

R. Sternberg in 1983 (50). This algorithm has successfully been

applied to medical images plotted as a 3D surface, with the pixel

value of the image being the surface height. A ball of a user-

defined radius is rolled over the backside of the surface creating a

background surface and subtracting this background surface

from the original image removes large spatial variations of the

background intensities. The rolling ball can be explained (7)

according to the following way.
ALGORITHM 2 Rolling the Ball.

BEGIN
FUNCTION roll_ball (ball, array):
WHILE y in range(-radius, height + radius) DO

(Continued)
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ALGORITHM 2 Continued

next_line_to_write_in_cache <- (y + radius) % ball_width
next_line_to_read <- y + radius
IF next_line_to_read < height THEN
src <- next_line_to_read * width
dest <- next_line_to_write_in_cache * width
cache [dest:dest + width] <- pixels [src:src + width]
p <- next_line_to-read * width
FOR x in range(width) DO
pixels[p] <– float (‘inf’)
p += 1
ENDFOR
ENDIF
ENDWHILE
END
Algorithm 2 provides the details of how the ball is rolled over

the surface of the image. The variables next_line_to_read and

next_line_to_write_in_cache are used by the ball to read each

pixel in the image, and if the intensity value of the pixel (i.e.,

height) is greater, then the pixel location is read and stored in the

variable “src”. After identifying the location, it is stored in

“cache” and the process is repeated till all the pixel values are

identified and stored in the cache. To obtain the image “array”, a

python program applying the “NumPy” library is used. After

applying the rolling ball technique to the hair removal images,

the output in Figure 2A was obtained.

4.1.3 Image quality improved after hair removal
and rolling ball approaches

Table 1 compares the original image with the hair removed

and inpainted image and the rolling ball image based on three

significant variables. Here, the rolling ball performs best in two

out of three techniques while the values of Original and Hair

removed image were quite similar.

1. PSNR = Peak signal-to-noise ratio (between 30 and 50

dB) (7)

2. MAE = Mean Absolute Error (values closer to zero are the

better) (7)

3. SSIM = Structural Similarity Index (Range from −1 to +1

and equals 1 for identical images) (7)

4.1.4 Explanations of image filters
Several filters were applied to the image obtained with the

rolling ball noise removal technique. They are explained

as follows.

4.1.4.1 Non-local means denoising algorithm

The non-local means (NLM) algorithm has been widely used

in the field of image processing because of its excellence. Antoni

Buades proposed the NLM algorithm originally in 2005 (32, 51).

A so-called image block is a square neighborhood centered on a

certain pixel point. Let the contaminated image have a gray value

of v (i) at pixel i and a filtered gray estimate of NL (v) (i). For any

pixel i, the filtered NL (v) (i) can be obtained by computing a

weighted average of the pixels in similar neighborhoods of the
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image; see equations (4-5) (32):

NL vð Þ ið Þ =o i, jð Þv jð Þ (4)

where i is the entire image space; the weighting factor w (i, j) is

the degree of influence of pixel j on pixel i, as shown below:

w I, jð Þ = 1
C Ið Þ e

∥ v Nið Þ− Njð Þ ∥22,a
h2 (5)

The NLM filtering algorithm shown in Figure 2B performs

image denoising by calculating the similarity of pixel points in

image blocks.

4.1.4.2 Median filter

The median filter is one of the most popular and efficient

spatial filters, and it is simple to implement. Although the

fundamental drawback of median filtering is blurring the

image, it can preserve the edges while simultaneously

suppressing the noise (33). Specifically, this filter depicted in

Figure 2) supplants a pixel by the median value of all pixels in a

sliding window. Mathematically, it can be defined as equation

(6).

f̂ x, yð Þ =
median g s, tð Þf g

x, tð Þ ∈ Sxy
(6)
4.1.4.3 Gaussian filter

Gaussian filter is a filter known for its blurring and noise

suppressing (35). This filter is a 2D convolution operator with

the weights selected pursuant to the shape of Gaussian function

(31). The function is defined in equation 7 and a graphical

representation is shown in Figure 2D:
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g x, yð Þ = 1
Mof x, yð Þ exp − x − 1ð Þ2+ y − jð Þ2� �

2s 2� �
i, jð ÞϵS

(7)

where g(x, y) is the Gaussian distribution, s is the standard

deviation of the distribution, and S is every pixel set in

the neighborhood.

M, defined in equation 8.

M =oexp − x − ið Þ2+ y − jð Þ2� �
2s 2� �

(8)

This equation defines the set of pixels and corresponding

weights of S.
4.1.4.4 Mean filter

Mean filters have a simpler structure compared to median

filters. They replace the value of every pixel in an image with the

mean (“average”) value of its neighbors (33). This has the effect

of eliminating pixel values which are unrepresentative of their

surroundings. It is illustrated in Figure 2E.

Mean filtering is usually thought of as a convolution. Like

other convolutions, it is based around a kernel, which represents

the shape and size of the neighborhood to be sampled when

calculating the mean. The mean filter is usually used to suppress

the small details in an image and also bridge the small gaps that

exist in the lines or curves. The mean filter is defined in equation

9.

g i, jð Þ = 1
M x Nof m, nð Þ (9)

where m = 1, 2…M and n = 1, 2… N and S is the neighborhood

defined by the filter mask of the point f (i, j), centered at point f

(i, j).
FIGURE 2

(A) Applying rolling ball noise removal technique. (B) Non-local means denoising algorithm. (C) Median filter on images. (D) Gaussian filter on
images. (E) Mean filter on images. (F) Conservative smoothing filter on images.
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4.1.4.5 Conservative smoothing filter

Conservative smoothing is a noise reduction technique (36)

that gets its name from the fact that it uses a simple, fast-filtering

algorithm that sacrifices noise suppression power in order to

preserve high spatial frequency details (e.g., sharp edges) in an

image. It is explicitly designed to eliminate isolated pixels of

exceptionally low or high pixel intensity. It can be used to

remove short-range variability in an image, effectively acting to

smooth the image. This algorithm operates by calculating the

minimum and maximum neighboring values surrounding a grid

cell. If the cell at the center of the kernel is greater than the

calculated maximum value, it is replaced with the maximum

value in the output image. Similarly, if the cell value at the kernel

center is less than the neighboring minimum value, the

corresponding grid cell in the output image is replaced with

the minimum value. The result is shown in Figure 2F.

4.1.5 Image enhancement techniques
All the processed images by filters were taken for the purpose

of image enhancement. In this context, two supportive

approaches, namely, histogram equalization (HE) and

piecewise linear transformation (PLT), have been applied to all

the images of the dataset to make a set of 3,297 images for each

filter after applying an image enhancement technique. As we

considered five image filters, we were supposed to get 5 * 3,297

images for a particular enhancement technique; however, we

selected the PSNR, MAE, and SSIM values of a filter. The image

selection process is completed after implementing both of these

enhancement techniques. The explanations to these two

techniques are described as follows.

4.1.5.1 Histogram equalization

Histogram equalization (HE) is a technique (37) for

adjusting image intensities to enhance the contrast. Let f be a

given image represented as an mr by mc matrix of integer pixel

intensities ranging from 0 to L − 1. L is the number of possible

intensity values, often 256. Let p denote the normalized

histogram of with a bin for each possible intensity (see

equation 10).

pn =
number of pixel with intensity n

total number of pixels
(10)

where, n = 0, 1,…, L – 1 and the histogram equalized image g is

defined in equation 11.
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gi,j = floor L − 1ð Þo
n=0

pnÞ (11)

where floor () rounds down to the nearest integer. Algorithm 3

takes x as an input signal and generates h as an output of

histogram of images (52).
ALGORITHM 3 Histogram Equalization.

BEGIN
1. [r,c] = size(x);
2. FOR I = 1:r
3. FOR j = 1:c
4. Hist {x[i,j]} = Hist {x[i,j]} + 1
5. ENDFOR
6. ENDFOR
7. For g = 1:Gmax
8. Hist [g] = Hist [g]/(M*N)
9. ENDFOR
END
Figure 3A illustrates the non-local means denoising

algorithm based on the histogram equalization.

The result of the median filter based on histogram

equalization is shown in Figure 3B.

In the same way, we demonstrated experimented results

i n F i g u r e 3C on Gau s s i a n fi l t e r b a s e d on t h e

Histogram Equalization.

In the same manner, experimented results in Figure 3D on

mean filter are shown based on histogram equalization.

For the conservative filter, we showed the experimented

results in Figure 3E on it based on histogram equalization.
4.1.5.2 Comparison between filters after using
histogram equalization image enhancement 1.1.1.1
technique

Table 2 shows the output of the previously mentioned

filters after applying histogram equalization. Here, the

mean filter (MF) provides a better result on five images in

terms of all the criteria, while the other filter values are

comparatively low.
4.1.5.3 Piecewise linear transformation

PLT (38) is a spatial domain method that is used for image

enhancement. It is applied to increase the dynamic range of gray

levels in the image (see Algorithm 4).
TABLE 1 The values of PSNR, MAE, and SSIM of an image.

Images PSNR (dB) MAE (dB) SSIM (dB)

Original 36.2 3.12 0.92

HR image 36.74 2.88 0.93

Rolling ball 42.27 0.83 0.97
fr
ontiersin.org

https://doi.org/10.3389/fonc.2022.931141
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ghosh et al. 10.3389/fonc.2022.931141
ALGORITHM 4 Piecewise Linear Transformation.

BEGIN
1. (a) start from the boundary
2. (i) let t1∈ M be completely labeled
3. (ii) find the unique s1∈M such that t1∈ ϵ1
4. (b) start from a ray
5. (i) let s1∈M have precisely one completely labeled facet t1
6. (ii) pivoting step: find s1∈M, s1=! s0 such that t1∈ s1
7. FOR i = 1,2,3,…
8. (a) IF t1 is the only completely labeled facet of ϵ1 THEN stop (ray
termination)
9. (b) ELSE piecewise linear step: find the other completely labeled facet ti+1

(Continued)
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ALGORITHM 4 Continued

of si
10. ENDIF
11. (c) if ti+1 ∈ M THEN stop (boundary termination)
12. (d) ELSE pivoting step: find si+1∈ M, si+1=! ϵi such that ti+1 ∈ si+1
13. ENDIF
14. ENDFOR
END
The result of the non-local means denoising based on PLT is

shown in Figure 4A.

Figure 4B displays the result of the median filter based on

piecewise linear transformation.
FIGURE 3

(A) Histogram equalization on the non-local means denoising algorithm. (B) Histogram equalization on the median filter. (C) Histogram
equalization on the Gaussian filter. (D) Histogram equalization on the mean filter. (E) Histogram equalization on the conservative filter.
TABLE 2 Assessments on PSNR, MAE, and SSIM values for five different images of HE and PLT.

HE PLT

Images Image quality assurance NLMD MF GF MDF CSF NLMD MF GF MDF CSF
Image 4 PSNR (dB) 39.8 41.95 40.3 40.36 40.3 41.65 42.38 40.43 41.86 41.65

MAE (dB) 4.8 1.53 3.31 4.3 3.8 1.6 0.71 1.42 1.32 1.59

SSIM (dB) 0.90 0.95 0.92 0.90 0.90 0.95 0.97 0.94 0.96 0.95

Image 7 PSNR (dB) 37.28 43.13 37.14 38.42 31.47 42.8 44.2 43.21 42.90 33.04

MAE (dB) 4.39 0.66 4.45 3.24 11.09 0.70 0.42 0.51 0.61 5.71

SSIM (dB) 0.91 0.98 0.92 0.92 0.89 0.97 0.99 0.98 0.98 0.96

Image 17 PSNR (dB) 38.55 39.76 38.55 39.04 36.33 40.18 42.78 41.51 40.72 39.84

MAE (dB) 1.71 1.18 1.72 1.74 3.93 1.77 0.77 1.15 1.33 1.75

SSIM (dB) 0.92 0.96 0.92 0.93 0.91 0.96 0.99 0.98 0.97 0.96

Image 38 PSNR (dB) 39.63 42.97 41.44 40.79 38.17 40.77 44.58 41.44 42.5 41.93

MAE (dB) 1.66 0.62 0.81 1.11 2.79 1.18 0.43 1.2 1.03 1.53

SSIM (dB) 0.94 0.99 0.98 0.96 0.94 0.95 0.99 0.98 0.99 0.96

Image 56 PSNR (dB) 38.61 41.63 39.89 40.13 39.24 41.62 43.54 41.99 42.24 38.14

MAE (dB) 4.99 3.18 4.31 3.82 3.93 0.96 0.51 0.68 0.73 2.73

SSIM (dB) 0.88 0.94 0.90 0.91 0.89 0.97 0.99 0.98 0.98 0.94
frontiers
in.org

https://doi.org/10.3389/fonc.2022.931141
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ghosh et al. 10.3389/fonc.2022.931141
Figure 4C shows the result of the Gaussian filter based on

piecewise linear transformation.

The result of the on mean filter based on piecewise linear

transformation is shown in Figure 4D.

Finally, the results of conservative filter based on piecewise

linear transformation are demonstrated in Figure 4E.

4.1.5.4 Comparison of different filters after using
piecewise linear transformation

Table 2 compares five types of filters after piecewise linear

transformation. Here again, the values of mean filter (MF) are

the highest in all the criteria. The overall promising results have

been demonstrated based on the randomly chosen images to

select the most appropriate filters.

After executing various significant assessments, namely,

PSNR, MAE, and SSIM, on these two selected enhancement

approaches with the introduced filters, the best values were

received from piecewise linear transformation with the

mean filter.
4.1.6 Region-of-interest detection with color
coding

Color coding (39) is regarded as a process of image

visualization that allows the user to gain a deep insight into

the structure of the image thoroughly. The use of color for

encoding information can greatly improve the observer’s

understanding of the information depicted by the image. It is

desirable to detect potential targets or regions of interest (ROIs)

within various kinds of medical images (53) to ensuring accuracy

of the final prediction. These ROIs can also be used to control

intelligent region-of-interest-based image compression
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algorithms, and to direct further analysis for target

identification and recognition (40).

At first, we took the selected images as an original image in

Figure 5A a. We then did color coding on the images of

Figure 5A a and received an image as shown in Figure 5A b.

Subsequently, we extracted the cancerous lesion of this image

in Figure 5A c with the help of Otsu’s thresholding (54, 55)

which is used to find a good threshold value by maximizing the

variance between objects and background for getting

better insight.

4.1.7 A comparison between original and
processed image based on histogram analysis

A histogram shows the distribution of the data to assess (7)

the central tendency, variability, and shape. A histogram for a

quantitative variable divides the range of the values into discrete

classes and then counts the number of observations falling into

each class interval. Histogram analysis is applied here to evaluate

the similarities between an original and a processed piecewise

image. Looking at Figure 5B, it can be seen that the histogram

analysis of the original images is very similar to the histogram

analysis of the piecewise images.

4.1.8 Dice coefficient score
The Dice similarity score (41, 56) is computed to compare

the original image with the processed image (see equation 12).

DSC  ¼  
2 ∗Area of Overlap

Total Number of Pixels in both Images
(12)

The area of overlap between an original image and a

processed image is estimated, and the Dice coefficient is
FIGURE 4

(A) Piecewise linear transformation on the non-local means denoising algorithm. (B) Piecewise linear transformation on the median filter. (C)
Piecewise linear transformation on the Gaussian filter. (D) Piecewise linear transformation on the mean filter. (E) Piecewise linear transformation
on the conservative filter.
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calculated between two binary images. The Dice similarity

coefficient is always between 0 and 1 where 1 means that the

two images are identical. We applied this technique to region of

interest (ROI) and PLT.
4.2 Feature extraction

Here, before starting the feature extraction process, we

selected piecewise linear transformation (PLT) with a mean

filter as an initial image. First of all, we converted it into 255,

255, and 255 values and then did region-based segmentation

(RBS) that is selected for classifying the pixel values of different

objects based on the threshold value (57) on this converted

image. Secondly, erosion (E) and dilation (D) (58) are done

based on the RBS image. Both erosion and dilation are two

fundamental morphological operations; one deals with

removing pixels on object boundaries and the other adding

pixels to the boundaries. Thirdly, we generated our desired

morphological gradient image (59) that is equal to the

difference between this dilation and erosion of an image and
Frontiers in Oncology 11
to ensure the quality of our working image; we then measure

PSNR, MAE, and SSIM values with DSC scores. Furthermore,

we are able to extract 20 input features based on both

geometrical and textural analyses and a benign or malignant

output feature. The overall process is depicted in Figure 6A.

4.2.1 Region-based segmentation
Region-based features are extracted and used to define

different “classes” (60). Most often, region-based segmentation

is texture-based. Textures are considered to be instantiations of

underlying stochastic processes and analyzed under the

assumptions of stationarity and ergodicity hold. This

segmentation relies on similarity and homogeneity of the

regions (57).
4.2.2 Erosion
Erosion is a fundamental morphological transformation (58)

of image processing. It removes pixels on object boundaries,

depending on the size and shape of the structuring element used

to process the image. The erosion of a binary image f by a
FIGURE 5

(A) (a) Original image (PLT on mean filter), (b) color coding, (c) ROI image, (B) histogram analysis between an original and a PLT image,
(C) erosion, (D) dilation, (E) morphological gradient.
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structuring element s (denoted L − 1
2 produces a new binary

image g = fs with ones in all locations (x, y) of a structuring

element’s origin at which that structuring element s fits the input

image f, i.e., g (x, y) = 1 is s fits f and 0 otherwise, repeating for all

pixel coordinates (x, y). The result is depicted in Figure 5C.

4.2.3 Dilation
Dilation, another fundamental morphological operation

(58), adds pixels to the boundaries of objects in an image. The

dilation of an image f by a structuring element s (denoted fs)

produces a new binary image g = fs with ones in all locations (x,

y) of a structuring element’s origin at which that structuring

element s hits the input image f, i.e., g (x, y) = 1 if s hits f and 0

otherwise, repeating for all pixel coordinates (x, y). Dilation has

the opposite effect to erosion—it adds a layer of pixels to both the

inner and outer boundaries of regions. The result of dilation is

shown in Figure 5D.

4.2.4 Morphological gradient
A morphological gradient, as shown in Figure 5E, is the

difference in mathematical morphology between the dilation and

the erosion of a given image (59) and digital image processing. It

is an image where each pixel value indicates the contrast

intensity in the close neighborhood of that pixel. These are the
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operators which increase the variation of pixel intensity in a

given neighborhood. Based on the morphological_gradient, we

extract different types of geometrical and textural features from

skin cancer images to generate a dataset.

The following table is added to show the correctness of our

processed images depending on the MSE, PSNR, and SSIM

values. According to Table 3, it is evident that the overall results

we generated are trustworthy.

As seen in Table 3, the similar numbers of images that have

been evaluated to compute the PSNR, MAE, and SSIM results

are taken to calculate the dice coefficient scores. Averaging the

above values generated 94%, which recommends that applying

the proposed methods on our collected images did not affect the

skin lesions.
4.2.5 Feature extraction techniques
4.2.5.1 Constructed dataset description

Good data are essential (52) to get a robust result with deep

learning techniques. We choose two publicly available datasets

downloaded from Kaggle (26) using the preprocessing methods

which have been described in the previous section. In the case of

the ISIC archive, all the images are recorded in a.csv file with 20

input features, where 1,800 records were from benign and 1,497
FIGURE 6

(A) The process of data construction. (B) A performance analysis diagram based on the extracted features of PCA.
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from malignant cases. Similarly, the second dataset used in the

study is the HAM10000 dataset which has a total of 1,954 images

in each benign and malignant class. Then, all the cases are

recorded in a.csv file with 20 input features. The 20 attributes of

this dataset are used as diagnosis inputs, whereas the

“prediction” attribute is selected as an output.

4.2.5.2 Geometrical feature extraction

Geometric features are the features of objects constructed

by a set of geometric elements (61) like lines, points, curves,

spheres, or surfaces. These features might be corner
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features, edge features, blobs, ridges, and salient point’s

image texture and so on. These can be detected by feature

detection methods.

Based on the relation between skin cancers and the locations

and shapes of the lesions, it is believed that geometrical features

(62) such as {Scratched Area (SA), Scratched Area in sq. Microns

(SAS) (63), Area (A), Perimeter (P), P/A Ratio (PR), Major Axis

Length (MaAL), Minor Axis Length (MiAL), LS Ratio (LR),

Solidity (S), Circularity (C) (64), Filled Area (FA), Extent (Ex),

EquivDiameter (E) and ConvexArea (CA)} are very important

features for skin cancer detection (see Table 4).
TABLE 3 Comparison on PSNR, MAE, SSIM, and DSC for five morphological gradient (MG) images.

Images PSNR (dB) MAE (dB) SSIM (dB) DSC

Image 4 44.58 0.43 0.99 0.95

Image 7 46.95 0.29 0.99 0.95

Image 17 41.65 0.82 0.98 0.95

Image 38 45.01 0.43 0.99 0.95

Image 56 46.58 0.33 0.99 0.95
frontiers
TABLE 4 A detailed explanation of geometrical features.

Attributes Attribute description Values Normalized
values

Scratched area Scratches are areas of damaged pixels on the surface of the skin. A scratch is a particular surface damage which does not
penetrate the lower tissues.

1,117.44
cm2

0.8846 cm2

Scratched area
in sq. microns

A measurement of scratched area equal to one micron length by one micron width. 226.28
cm2

0.8846 cm2

Area The total of all pixels (p) of the segmented nucleus (n). 1327.57
cm2

1 cm2

Perimeter The nuclear envelope length is computed as a polygonal length approximation of the boundary (B). 23.71
cm2

0 cm2

PA_ Ratio It is measured by the degree to which the perimeter of the boundary (B) is the exposed area ratio of the boundary (B). 0.0179
cm

0 cm

Solidity Also known as convexity. The proportion of the pixels in the convex hull that is also in the object. Computed as Area/
ConvexArea.

2.2196
cm

0.4066 cm

EquivDiameter Diameter of a circle with the same area as the region, returned as a scalar. Computed as sqrt (4*Area/pi). 41.1135
cm

0 cm

ConvexArea Number of pixels in “ConvexImage”, returned as a scalar 598.117
cm

0.1851 cm

Circularity A measure of circularity (area-to-perimeter ratio) which excludes local irregularities can be obtained as the ratio of the
area of an object to the area of a circle with the same convex perimeter: circularity = 4p*area/(convex perimeter)2

29.6843
cm

1 cm

Extent The ratio of pixels in the region to pixels in the total bounding box, returned as a scalar. Computed as the Area divided
by the area of the bounding box.

0.0005
cm

0.6667 cm

FilledArea Number of on pixels in FilledImage, returned as a scalar. 23.0981
cm

0.4537 cm

Minor axis
length

It is computed as the length of the minor axis of an ellipse having the same second moments as the region. 3.6978
cm

0.2002 cm

Major axis
length

It is computed as the length of the major axis of an ellipse having the same second moments as the region. 6.3934
cm

0.0684 cm

LS_ Ratio It is computed as the length ratio of the major axis length to the minor axis length of the equivalent ellipse of the lesion. 1.7289
cm

0.2540 cm
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Normalized value

Image normalization is a process (65) in image processing

that changes the range of pixel intensity values. Image

normalization ensures optimal across data acquisition methods

and texture instance comparisons (66). The values from this

process are thus normalized. Below, we explain each geometrical

feature (67) with its original and normalized values which were

used in the proposed method.

4.2.5.3 Textural feature extraction technique

The texture can be defined as a function of spatial variation

(68) of the brightness intensity of the pixels. Texture is the main

term used to define objects or concepts of a given image,

characterized by the spatial distribution of intensity levels in a

neighborhood. As a result, textural features are those used to

partition images into regions of interest and to classify those

regions (69). They provide information on the spatial

arrangement of colors or intensities in that image.

Textural feature extraction (62) is important in cancer

detection as a tumor can distort a cancerous lesion. There are

many techniques for the extraction of textural features (see

Table 5), namely, Shannon entropy (70), gray-level co-

occurrence matrix (71), entropy (GLCME), mean (72),

skewness (S), kurtosis (K), and standard deviation (SD), which

are widely used nowadays to detect cancerous skin lesions at an

early stage.
4.3 Analysis of various classifiers based
on the constructed dataset

4.3.1 Overview of the proposed algorithm
First off, the dataset we generated based on the highest

PSNR, MAE, and SSIM values is prepared for data

transformation. There are several transformation techniques,

but we selected Min Max Scaler which is applied to the dataset to

keep the data between 0 and 1. Secondly, the PCA algorithm
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(73), a process of data reduction, is used to reduce unnecessary

parameters and improve accuracy. The dataset is then separated

into training and testing parts. The training phase for the ISIC

and HAM10000 datasets is completed with 80% of the data,

while remainders (20%) are then used in the testing phase.

Among these training data of the ISIC archive, 1,455 images are

randomly chosen from the benign case and 1,183 cases are

selected from the malignant class. Similarly, 1,563 images from

the HAM10000 dataset are randomly selected in each benign

and malignant class. Next, 10% of the training phase data from

both datasets is experimented for validation. The DL classifier,

SkinNet-16, is applied to check the model performance. The

prediction rate of this model has been generated based on five

different optimizers along with three different learning rates. The

process is depicted in Figure 6B.

4.3.2 An overview of data transformation
technique

The Min Max Scaler techniques (74) has been deployed on

our created dataset (See equation 13).

Min Max Scaler m  =   X  − Xminð Þ =  Xmax  − Xminð Þ (13)

where m is the updated value and X the original one. Xmin and

Xmax represent the minimum number and maximum number

of values.
4.3.3 Data reduction process using a feature
engineering algorithm

Feature selection techniques (75, 76) are important for deep

learning. This also helps to reduce the execution time. We have

applied principal component analysis (PCA) to extract features.
4.3.3.1 Principal component analysis

Principal component analysis is a dimensionality reduction

technique (77). It uses an orthogonal transformation to convert a

set of related variables into a set of linear uncorrelated variables,
TABLE 5 Textural features.

Attributes Attribute description Values Normalized
values

Mean Mean value is the sum of pixel values divided by the total number of pixel values. 1.583
cm

0.115566

Standard
deviation

The standard deviation of gray-scale values, ϵ is the estimate of the mean square deviation of the grey pixel value v(x, y)
from its mean volume. It describes dispersion within a local region.

1.213
cm

0.249035 cm

Shannon
entropy

The Shannon entropy can measure the uncertainty of a random process. 0.0972
cm

0.201357 cm

GLCM
entropy

A gray-level co-occurrence matrix (GLCM) is a histogram of co-occurring grayscale values at a given offset over an image. 1.1172
cm

0.1649 cm

Skewness Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it
looks the same to the left and right of the center point.

0.0613
cm

0.7066 cm

Kurtosis Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution. 0.2733
cm

0.3564 cm
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where the first principal component has the largest variance.

This feature extraction technique generates new features which

are linear combination of the initial features. PCA maps each

instance of the given dataset present in a d dimensional space to

a k dimensional subspace such that k < d. The set of k new

dimensions generated is called the principal components (PCs),

and each principal component is directed toward maximum

variance excluding the variance already accounted for in all its

preceding components. Subsequently, the first component

covers the maximum variance and each component that

follows it covers a lesser value of variance. The principal

components can be represented by equation (14).

PCi = a1 X1 + a2 X2 +⋯+aj Xj (14)

where PCi — principal component ‘i’; Xj— original feature ‘j’; aj

— numerical coefficient for Xj.

m denotes the mean vector. X has size F × N, where F is the

number of dimensions and N is the number of observations. Let

us assume that B = 〖XX〗^T and C =〖 X〗^T X. It can be

supported that both B and C have the same positive eigenvalues

L, and assuming that N < F, then the eigenvectors U of Band the

eigenvectors V of C are related as U =– − 1
2 matrix with the

eigenvectors as columns, and L is a (N-1) × (N−1) diagonal

matrix with the eigenvalues. Algorithm 5 for calculating PCA

has been added below (78).
ALGORITHM 5 Principal Component Analysis.

BEGIN
1. Procedure PCA

2. Compute dot product matrix: XTX =oN
i=1(xi − m)T (xi − m)

3. Eigenanalysis: XTX=VLVT

4. Compute eigenvectors: U = XVL−1
2

5. Keep specific number of first components:
6. Ud = [u1,…, ud]

7. Compute d features: Y = UT
dX

END
4.3.3.2 Outcomes of the PCA algorithm

Since the significance from PC1 to PC5 was quite high as

compared to other PCA components, we used a summation of

the first five components (see Figure 7A) based on their total

weights and then selected only those features which have a large

value for the generated dataset. Later, we selected 10 input

features based on this analysis for comparison.
4.3.3.3 Correlation of the selected features

Figure 7A indicates the correlation among the evaluated

features which have been extracted by the PCA algorithm. The

attribute values of the following graph are composed of 10 input

features along with an output feature given from 0.2 to -0.6. It

can be seen that the correlation between Area and Circularity,
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EquivDiameter and PA_Ratio, Extent and Solidity, and

MinorAxisLength and FilledArea was close to 0.2, whereas a

negative correlation (about –0.6) was noticed for FilledArea and

MinorAxisLength. (see Figure 7B).

4.3.4 Generalized model: no overfitting or
underfitting

In case of model overfitting, a model tries to fit the training

data entirely and ends up memorizing the data patterns and the

noise or random fluctuations (79). These models fail to

generalize and perform well in the case of unseen data

scenarios, which defeats the model’s purpose. Low bias and

high variance are one of the signs of model overfitting.

In our proposed model, the training data samples were

adequate and training data were cleaned and made noise-free,

which helped the model to generalize the model’s learning. The

model was trained with sufficient data for several epochs, and it

had low variance.

On the other hand, when the model cannot create a clear

mapping between the input and the target variable, underfitting

occurs. Under-observing the features leads to a higher error in

the training and unseen data samples. It can be detected when

the training error is very high, and the model is unable to learn

from the training data. High bias and low variance are the most

common indicators of underfitting.

In case of our model, there was no chance of uncleaned

training data and the dataset was not varied either. It can be

stated that no overfitting or underfitting occurred for our

proposed model.

4.3.5 Proposed approach for deep learning
classification

SkinNet-16 is a model which is based on a convolution

neural network (CNN) model. The CNN is one of the most

frequently used deep learning classifiers which outperformed its

predecessors for the detection of important features (80).

Why CNN has been used: CNNs are the most commonly

used deep learning algorithms which outperformed its

predecessors for its detection of important features with ease.

Its methods have been favorably admitted for numerous imaging

classifications (80) for its notable accuracy. In detection of

cancerous lesion, we have witnessed this remarkable accuracy

while using deep CNN previously. The demonstration of Andre

Esteva’s (13), Rehan Ashraf et al.’s (16), Manu Goyal et al.’s (17)

studies yielded the performance of CNN as a superior classifier,

which made us choose CNN in our approach.
4.3.5.1 SkinNet-16 neural network

SkinNet-16 is a type of convolutional neural network (CNN)

and a special case of ANN model (8). The majority of the deep

learning algorithms have many layers of artificial neurons to
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improve accuracy. However, such complex processing requires a

larger memory and processing footprint from the hardware.

Moreover, the use of optimizers (81) helped us to optimize the

learning rate to reduce the losses. For example, Adam computes

adaptive learning rates for each parameter which makes it the

fastest algorithm to converge to minima, Nesterov-accelerated

adaptive moment estimation (Nadam) (81) usually outperforms

Adam although it depends on the model, the stochastic gradient

descent (SGD) (76) algorithm derivative is computed taking one

point at a time requiring way less memory, and Adamax (82) is

known for its robustness to gradient update noise and having

better numerical stability. We utilized these optimizers and

customized this deep learning classifier to get a better result

(see Figure 8).
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We used the training data as inputs, and then we created our

first dense layer where 64 neurons were added. After that, a

kernel_regularizer which took 0.001 was added as an attribute in

this dense layer. Later, one of the most activation layer functions

such as ReLU was added. In the second phase of the dense layer,

only 32 neurons were taken and connected wi th

0.002 kernel_regularizer.

Subsequently, similar activation layers and dropout rates of

the first dense layer were added here. In the third phase, a kernel

regularizer which was 0.001 was connected to a previous dense

layer’s dropout rates. Then, the ReLU activation layer and

minimal dropout rates (0.002) were added in this layer. In the

final phase, the Softmax activation layer along with two output

layers benign and malignant was used to get a more robust result.
FIGURE 7

(A) Weight components of PCA. (B) Histogram plot among the correlated features.
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5 Results and discussion

5.1 Performance evaluation of different
deep learning optimizers

Deep learning is considered to be the most promising field

(83) in the detection of skin lesions. It is clearly proved from the

past literature described briefly above.
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5.1.1 Comparison among all deep learning
optimizers based on their testing accuracies
for both classes of the ISIC dataset

Table 6 and Table 7 describe the results of various

optimizers based on the testing accuracy (T_Acc), learning

rate (LR), compilation time (CT), validation loss (V_Loss),

and validation accuracy (V_Acc). Adamax, Adam, and

RMSprop perform very well with an accuracy of around 99%
FIGURE 8

A robust architecture of our pruposed SkinNet - 16 neural network.
TABLE 6 A detailed comparison of testing accuracies among all the optimizers with different learning rates, comparison of the optimizers, and
optimistic outcomes of various optimizers on the ISIC benign dataset.

Optimizer LR CT V_Loss V_Acc T_Acc SEN SPE FPR FNR FDR MSE RMSE LL

RMSprop 0.001 0.0126 8.00% 98.79% 99% 98% 98% 2% 2% 2% 1.21% 10.99% 41.78%

0.006 0.0071 10.69% 98.39% 98% 97% 96% 4% 3% 2% 1.61% 12.70% 55.71%

Adam 0.001 0.0072 9.11% 98.39% 98% 97% 96% 4% 3% 2% 1.61% 12.70% 55.70

0.006 0.0085 10.22% 98.79% 99% 98% 98% 2% 2% 2% 1.21% 10.99% 41.78%

SGD 0.001 0.0085 6.90% 98.39% 98% 97% 96% 4% 3% 2% 1.61 12.70% 55.70

0.006 0.0067 6.82% 97.98% 97% 96% 96% 4% 4% 3% 2.01% 14.19% 69.63%

Adamax 0.001 0.0079 7.39% 98.79% 99% 98% 98% 2% 2% 2% 1.21% 10.99% 41.78%

0.006 0.0068 6.50% 99.19% 99% 99% 99% 1% 1% 1% 0.81% 8.98% 27.85%

Nadam 0.001 0.0075 12.31% 97.98% 97% 96% 96% 4% 4% 3% 2.01% 14.19% 69.63%

0.006 0.0066 9.79% 98.79% 99% 98% 98% 2% 2% 2% 1.21% 10.99% 41.78%
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compared to other introduced optimizers in benign class.

Besides, Adamax has the lowest 0.001 learning rate and 6.50

validation loss; however, it took a little bit more time (0.0068)

compared to the SGD and Nadam optimizers. The validation

loss (10.69%) of RMSprop is comparatively higher than the

Adam and Nadam optimizers while they have a similar

validation accuracy of approximately 98.79%, and in Nadam,

the validation loss is the highest among all the optimizers at

12.31%. In terms of malignant class, Adamax only achieves an

accuracy of 99% although the validation loss is similar to the

benign class.

5.1.2 Comparison of the deep learning
optimizers for both classes of the ISIC dataset

Table 6 and Table 7 also provide a comparison of the

performance of the five optimizers. Adamax gives the best

result among all the optimizers. Regarding Adamax, the

sensitivity (SEN) and specificity (SPE) are higher than for all

other optimizer values at 99% and 99%, respectively, for the

benign class. The false-positive (84) rate (FPR), false-negative
Frontiers in Oncology 18
rate (FNR), and false discovery rate (FDR) (85) are low

compared to the other optimizers with values of 1%, 1%, and

1%, respectively. In terms of malignant class, the SEN and SPE

rates are above 94% for other four optimizers (Nadam, Adam,

SGD, and RMSprop).

5.1.3 Optimistic justification of our proposed
techniques for both classes of the ISIC dataset

Table 6 and Table 7 depict two types of errors and

Log_Loss (LL), along with the learning rate (LR) for the five

optimizers. Adamax provided a good performance. This

optimizer produces the lowest error rates among all

optimizers. For Adamax, the value of mean squared error

(MSE) is 0.8065, root mean squared error (RMSE) is 8.9803,

and Log_Loss is 27.8539 for the 0.006 learning rate. The other

four optimizers produce a comparatively higher error rate.

Among these four, SGD provides more error values where

Log_Loss is 69.6346 which is similar to Nadam’s value for the

0.001 learning rate. Furthermore, all these results produced are

similar in both classes.
TABLE 8 A detailed comparison of testing accuracies among all the optimizers with different learning rates, comparison of the optimizers, and
optimistic outcomes of various optimizers on the HAM10000 dataset.

Optimizer LR CT V_Loss V_Acc T_Acc SEN SPE FPR FNR FDR MSE RMSE LL

RMSprop 0.001 0.0072 26.83% 90.71% 92.82% 91.89% 93.77% 6.23% 8.10% 6.20% 7.18% 26.79% 50.91%

0.006 0.0106 33.36% 88.46% 91.79% 92.15% 91.43% 8.57% 7.85% 8.31% 8.21% 28.64% 64.11%

Adam 0.001 0.0084 31.06% 87.82% 90.26% 87.83% 92.95% 7.05% 12.16% 6.72% 9.74% 31.21% 41.37%

0.006 0.0093 32.01% 86.22% 90.38% 89.66% 91.18% 8.82% 10.34% 8.31% 9.62% 31.01% 55.48%

SGD 0.001 0.0056 54.63% 90.06% 86.28% 84.70% 88.30% 11.69% 15.29% 9.73% 13.72% 37.03% 52.49%

0.006 0.0087 47.47% 81.73% 84.87% 87.39% 82.5% 17.44% 12.60% 17.88% 15.13% 38.8% 41.97%

Adamax 0.001 0.0091 21.07% 95.51% 94.10% 91.37% 97.25% 2.75% 8.63% 2.56% 5.89% 24.28% 39.65%

0.006 0.0044 29.85% 93.59% 94.74% 92.58% 97.24% 2.76% 7.42% 2.52% 5.26% 22.93% 25.63%

Nadam 0.001 0.0095 30.35% 91.03% 90.89% 89.74% 92.05% 7.95% 10.26% 8.14% 9.10% 30.17% 65.75%

0.006 0.0203 31.78% 87.82% 90.51% 91.94% 89.11% 10.89% 8.05% 10.83% 9.49% 30.80% 51.00%
frontier
TABLE 7 A detailed comparison of testing accuracies among all the optimizers with different learning rates, comparison of the optimizers and
optimistic outcomes of various optimizers on the ISIC malignant dataset .

Optimizer LR CT V_Loss V_Acc T_Acc SEN SPE FPR FNR FDR MSE RMSE LL

RMSprop 0.001 0.0126 8.00% 98.79% 97% 96% 96% 4% 4% 3% 1.21% 10.99% 41.78%

0.006 0.0071 10.69% 98.39% 97% 95% 94% 6% 5% 5% 1.61% 12.70% 55.71%

Adam 0.001 0.0072 9.11% 98.39% 97% 95% 94% 6% 5% 5% 1.61% 12.70% 55.70%

0.006 0.0085 10.22% 98.79% 97% 96% 96% 4% 4% 3% 1.20% 10.99% 41.78%

SGD 0.001 0.0085 6.90% 98.39% 97% 95% 94% 6% 5% 5% 1.61% 12.70% 55.70%

0.006 0.0067 6.82% 97.98% 95% 94% 94% 6% 6% 5% 2.01% 14.19% 69.63%

Adamax 0.001 0.0079 7.39% 98.79% 97% 96% 96% 4% 4% 3% 1.21% 10.99% 41.78%

0.006 0.0068 6.50% 99.19% 99% 98% 98% 2% 2% 1% 0.81% 8.98% 27.85%

Nadam 0.001 0.0075 12.31% 97.98% 95% 94% 94% 6% 6% 5% 2.07% 14.19% 69.63%

0.006 0.0066 9.79% 98.79% 97% 96% 96% 4% 4% 3% 1.21% 10.99% 41.78%
sin.org

https://doi.org/10.3389/fonc.2022.931141
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ghosh et al. 10.3389/fonc.2022.931141
5.1.4 Comparison among all deep learning
optimizers based on their testing accuracies
from the HAM10000 dataset

Table 8 presents the results of various optimizers based on

the testing accuracy (T_Acc), learning rate (LR), compilation

time (CT), validation loss (V_Loss), and validation accuracy

(V_Acc). Adamax performs adequately with a testing accuracy

of 99.19%. Moreover, the learning rate is 0.006 and validation

loss is 29.85%. Similarly, the compilation time taken by the

optimizer is 0.0044 which is much lower than other optimizers.

The validation loss (54.63%) of SGD is comparatively higher

than the optimizers. While the optimizers have the almost

similar accuracies among them, SGD has the lowest accuracy

of 84.87%.

5.1.5 Comparison of the deep learning
optimizers from the HAM10000 dataset

Table 8 delivers a performance comparison of the five

employed optimizers. The optimizer Adamax shows

sensitivity (SEN) and specificity (SPE) values at 92.5837 and

97.2375, respectively. Subsequently, the false-positive rate

(FPR), false-negative rate (FNR), and false discovery rate

(FDR) have values of 2.7624, 7.4162, and 2.5188, respectively,

which are comparatively much lower than the rest of

the optimizers.
5.1.6 Optimistic justification of our proposed
techniques from the HAM10000 dataset

Table 8 portrays mean squared error (MSE) and root mean

squared error (RMSE) as well as Log_Loss (LL). The Adamax

optimizer produces the lowest error rates where MSE is 5.2564

and RMSE is 22.9268. The Log_Loss is 25.6270 for the 0.006

learning rate. The highest Log Loss of 65.7466 is obtained from

the Nadam optimizer at the 0.001 learning rate.
5.2 Justification of our proposed model:

Preprocessing is a crucial step of image processing (29) to

obtain accurate outcomes. As all the images processed are in 224

× 224 pixels (RGB format), most deep learning algorithms have

many layers of artificial neurons to classify the images correctly.

Therefore, such complex processing requires a larger memory

and processing time. Due to having such complex architecture,

machine learning tends to do overfitting. To have this intuition,

we convert our images into numerical instances; therefore, the

complexity of our work is also minimal. We then propose our

SkinNet-16 with a balanced layer. To compute the performance,

we create three dense layers where 64, 32, and 16 neurons are
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added with kernel regularizers which are 0.001. Subsequently, to

maintain a balance between our data, we turn off a few

parameters with the help of the dropout library. Both dropout

and kernel regularizers are basically used to deal with overfitting

issues. In the final phase, we use a sigmoid classifier in our study

due to binary classification. Consequently, we get a balanced

performance from all types of optimizers, and our model

produces the results in a minimal time.
5.3 Strengths and limitations

5.3.1 Strengths of the study
The study is performed using two prominent datasets that

are available publicly. The proposed deep learning model is

implemented on both datasets to evaluate its performance. It is

observed from the recorded performance measures that the

novel model has consistent and high accuracy when applied

on both the datasets. Additionally, this model produces the

results shown in a minimum amount of time.
5.3.2 Limitations of the work proposed

Skin lesions can be of various types. In the HAM10000

dataset, there are seven types of skin lesions available. However,

in the skin, we performed binary classification to detect only the

malignant and benign class. At the same time, it is known that

any machine learning algorithm requires a large number of data

to train the model better. Conversely, the datasets used in the

study have a limited amount of image data to train the

proposed model.
6 Conclusions

In this paper, a novel approach was proposed for detecting

skin cancer. First of all, we obtained our dataset from the Kaggle

website. Next, we applied the DHR algorithm to remove hairs

from the images and applied the rolling ball method to remove

background noise, both of which resulted in significant noise

reduction. We deployed five image filters to obtain noise-free,

unambiguous images on these 3,297 images for further

processing where the mean filter exhibited top values in all

criteria. The image enhancement technique of piecewise linear

transformation (PLT) yielded the best performance after

applying all of the five filters based on assessments of PSNR,

MAE, SSIM, and histogram analysis to make sure that the image

quality was not compromised. The color coding and ROI-based

technique facilitated us to select the relevant and accurate region

in the image. The morphological operations—dilation, erosion,
frontiersin.org

https://doi.org/10.3389/fonc.2022.931141
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ghosh et al. 10.3389/fonc.2022.931141
and morphological gradient—helped us obtain the desired image

outcomes, and we considered both geometrical and textural

features consisting of 20 different parameters. We observed

that PCA was a successful technique in dimensionality

reduction in this case and we used it for feature selection

resulting in 10 input features for further analysis. We used the

SkinNet-16 model which is a modified version of CNN used for

skin lesion projection. This prediction has been generated using

five different optimizers along with two different learning rates.

This intelligent system achieved an overall accuracy of 99.19%

on ISIC dataset, based on the Adamax optimizer with a learning

rate of 0.006 and more than 98% sensitivity and specificity,

which is substantially higher than related works and an

indication that demonstrates the efficacy of the proposed

system. Thus, it makes a promising approach to detect skin

lesions effectively at an early stage.
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