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Minimal residual disease
detection by next-generation
sequencing in multiple
myeloma: Promise and
challenges for response-
adapted therapy
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Assessment of minimal residual disease (MRD) is becoming a standard

diagnostic tool for curable hematological malignancies such as chronic and

acute myeloid leukemia. Multiple myeloma (MM) remains an incurable disease,

as a major portion of patients even in complete response eventually relapse,

suggesting that residual disease remains. Over the past decade, the treatment

landscape of MM has radically changed with the introduction of new effective

drugs and the availability of immunotherapy, including targeted antibodies and

adoptive cell therapy. Therefore, conventional serological and morphological

techniques have become suboptimal for the evaluation of depth of response.

Recently, the International Myeloma Working Group (IMWG) introduced the

definition of MRD negativity as the absence of clonal Plasma cells (PC) with a

minimum sensitivity of <10−5 either by next-generation sequencing (NGS) using

the LymphoSIGHT platform (Sequenta/Adaptative) or by next-generation flow

cytometry (NGF) using EuroFlow approaches as the reference methods. While

the definition of the LymphoSIGHT platform (Sequenta/Adaptive) as the

standard method derives from its large use and validation in clinical studies

on the prognostic value of NGS-based MRD, other commercially available

options exist. Recently, the LymphoTrack assay has been evaluated in MM,

demonstrating a sensitivity level of 10−5, hence qualifying as an alternative

effective tool for MRD monitoring in MM. Here, we will review state-of-the-art

methods for MRD assessment by NGS. We will summarize how MRD testing

supports clinical trials as a useful tool in dynamic risk-adapted therapy. Finally,

we will also discuss future promise and challenges of NGS-based MRD

determination for clinical decision-making. In addition, we will present our

real-life single-center experience with the commercially available NGS strategy
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LymphoTrack-MiSeq. Even with the limitation of a limited number of patients,

our results confirm the LymphoTrack-MiSeq platform as a cost-effective,

readily available, and standardized workflow with a sensitivity of 10−5. Our

real-life data also confirm that achieving MRD negativity is an important

prognostic factor in MM.
KEYWORDS

multiple myeloma, next gene sequencing, treatment strategy, complete response,
minimal residual disease
Introduction

The treatment landscape for multiple myeloma (MM) has

been radically changed during the past decade by the

introduction of new drugs with different mechanisms of

action, which has led to a significant improvement of

survival (1).

Nearly all patients now achieve a treatment response, with

more than half reaching a complete response (CR) that is defined

by less than 5% plasma cells in the bone marrow (BM) regardless

of their clonal nature and by the absence of monoclonal proteins

in serum or urine by immunofixation or disappearance of

soft tissue plasmacytomas. In 2006, the criteria of stringent

complete response (sCR) were introduced (2), adding the

normalization of the kappa and lambda serum free light chain

(sFLC) ratio and the absence of clonal plasma cells in BM by

immunohistochemistry (IHC) or immunofluorescence with a

sensitivity of 10−3 (3, 4).

Despite achieving CRs, most patients eventually relapse,

reflecting a persistent minimal residual disease (MRD) that

cannot be detected with standard disease evaluation methods

(5). Consequently, new techniques have been identified to detect

a deeper response than CR; sensitive assays like next-generation

sequencing (NGS) or eight-color next-generation flow

cytometry (NGF) could further improve MRD detection. A

third method, allele-specific oligonucleotide quantitative

polymerase chain reaction (ASO-qPCR), has also been

extensively studied, but the need for patient-specific primers,

high technical complexity, and low applicability limit its use.

In 2016, the IMWG established new consensus criteria to

define MM disease response that include MRD assessment.

MRD should be assessed when a patient achieves a CR or

better, with a minimum sensitivity of one nucleated tumor cell

in 100,000 normal cells (10-5 sensitivity), by either NGS or NGF

(5, 6).

MM is a heterogeneous and patchy disease within the BM;

these disease characteristics need to be considered in MRD

evaluation (7). Additionally, the presence of extramedullary

disease (EMD) may lead to false-negative MRD results (8, 9).
02
These limitations, together with patients’ discomfort with BM

evaluation, have led to efforts to individuate alternative

approaches to test MRD.

In particular, positron emission tomography–computed

tomography (PET-CT) can have a complementary role to

marrow MRD assessment. The absence of metabolically active

areas after treatment had already been correlated with improved

clinical outcomes. Moreover, it proved to be an independent

outcome predictor (10). For example, the CASSIOPEA study has

identified a concordance of 61.9% between MRD and PET-CT

negativity post consolidation, with 6.8% of patients showing

PET-CT positivity and MRD negativity (11). These observations

demonstrate the failure of BM-based assays to detect MRD in

specific cases (7, 11, 12). Indeed, PET-CT has already been

included as a separate subcategory in the latest IMWG response

criteria (5).

Liquid biopsy has also been proposed as an alternative

approach for tracking MRD after treatment based on the

hypothesis that a peripheral blood sample would be able to

reflect BM and/or EMD status. Current approaches for liquid

biopsy testing are mostly based on circulating tumor DNA

(ctDNA). While one study (13) reported that ctDNA levels

were significantly correlated with MRD levels obtained by 8-

color flow cytometry, other studies reported detectable ctDNA in

less than 50% of patients with very good partial response

(VGPR) or worse response after treatment (14, 15) or revealed

a low correlation between ctDNA and flow-MRD status (16).

Even if a possible explanation for low concordance is that

ctDNA may decline more rapidly than residual disease in

other compartments after effective treatment (14, 17, 18), these

assays are still relatively new and with several open issues, thus

not constituting the currently preferable choice for

MRD evaluation.

Currently, MRD has been incorporated in numerous clinical

trials with different aims, as follows: 1) as a prognostic factor; 2)

as a surrogate end to evaluate treatment efficacy and compare

different treatment approaches; 3) as an adapted treatment

strategy according to MRD status and its follow-up especially

in maintenance duration and early salvage approach.
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Minimal residual disease as a
prognostic factor

The association between depth of response and long-term

outcome is a current topic of debate in MM. CR has been

generally considered as the best possible response after

treatment and an indicator of improved outcome. The value of

sCR compared to CR is still controversial, with only one out of

four studies reporting a better prognosis after autologous stem

cell transplantation (ASCT) when sCR rather than CR was

achieved (19–22).

On the opposite, MRD is emerging as a more sensitive

assessment of depth of response and a more powerful

prognostic tool, with many studies demonstrating that

undetectable MRD is associated with improved progression-

free survival (PFS) and overall survival (OS) (23–31).

The strongest evidence, so far, comes from a large meta-

analysis of MRD data of 44 studies for PFS and 23 studies for OS.

Achieving MRD negativity led to improved PFS and OS

regardless of several disease and patient characteristics. The

beneficial effect of MRD negativity was sustained regardless of

MRD sensitivity thresholds (older studies reported results with a

sensitivity of 10-4), cytogenetic risk, method of MRD assessment,

and depth of clinical response at the time of MRD

measurement (26).

Strong evidence also comes from a pooled analysis of four

phase III clinical studies of daratumumab plus standard-of-care

regimens in relapsed patients and in transplant-ineligible newly

diagnosed disease (ALCYONE, CASTOR, MAIA, and POLLUX)

that demonstrates the high efficacy of daratumumab-based

regimens in improving MRD negativity rates and reducing the

risk of disease progression or death. In all of these studies, MRD

was assessed by NGS using the clonoSEQ assay (v.2.0; Adaptive

Biotechnologies, Seattle, WA, USA) with a sensitivity of 10-5,

and patients who achieved CR or more with MRD negativity had

improved PFS compared to those who failed to reach CR and

were MRD positive. This large-scale analysis examined a

homogeneous population using similar intervals of periodic

MRD assessments applying uniform MRD assessment

techniques and thresholds, supporting MRD negativity as a

prognostic tool for PFS in transplant-ineligible newly

diagnosed multiple myeloma (NDMM) and relapsed or

refractory multiple myeloma (RRMM) (32).

Another example supporting the value of MRD in prolonged

survival is the phase III PETHEMA/GEM2012MENOS65 trial.

MRD was assessed by NGF in BM samples in NDMM after

bortezomib-lenalidomide and dexamethasone (RVD) induction,

autotransplant, and two RVD consolidation cycles in order to

modify accordingly the maintenance therapy. Importantly, with

a median follow-up of 40 months, patients with undetectable

MRD after consolidation showed very low risk of disease

progression (7%), with a 3-year survival rate reaching 90%.
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Attaining undetectable MRD also overcame poor prognostic

features at diagnosis, including high-risk cytogenetics, thus

confirming MRD as the strong prognostic factor for MM (33).

Several other studies support these conclusions and confirm

their value in different patient populations at different time

points and with several MRD assessment methods.

In conclusion, MRD negativity is associated with improved

survival independently of the disease status (newly diagnosed or

relapsed disease), cytogenetic risk, MRD sensitivity level,

method used for MRD assessment, and the level of the clinical

response at the time of MRD evaluation negativity. Moreover,

MRD negativity is the most relevant predictor of clinical

outcome compared with other prognostic factors (23–26, 28,

30, 31, 34–38).
State of the art of next-generation
sequencing for minimal residual
disease assessment

The IMWG defined MRD negativity as the absence of clonal

plasma cells by either sequencing- or flow cytometry-based

techniques with a minimum sensitivity of <10−5 using as the

reference methods (5) the LymphoSIGHT (Sequenta/

Adaptative) (24) and NGF EuroFlow approaches (39). IMWG

does not favor either NGF or NGS technology because the

defined 10−5 sensitivity is obtainable with both.

Multiparametric flow cytometry (MFC) allows highly

sensitive discrimination between polyclonal and clonal plasma

cells based on their immunophenotypic characteristics (normal

vs. aberrant). MFC detects cell surface markers using

fluorescently labeled antibodies. Canonical markers include

CD138, CD38, CD45, CD56, CD19, and cytoplasmic k and l
immunoglobulin light chain, while other markers include CD20,

CD27, CD28, CD81, CD117, and CD200. In order to overcome

the limitations of conventional MFC, highly sensitive NGFMRD

approaches have been developed in the last years by EuroFlow.

Current NGF methods rely on a more efficient sample

preparation protocol that allows acquisition of >10 million BM

cells (eight-color two-tube panel) and on innovative automatic

data analysis software tools that have resulted in increased

sensitivity of 10-6 (5, 33, 39, 40).

NGS cons i s t s o f the molecu lar a s ses sment o f

immunoglobulin gene rearrangements, and it allows to detect

MM MRD in the BM. The development of NGS methods for

MRD assessment has focused mainly on the third

complementarity determining region (CDR3), a sequence of

30–70 nucleotides, at the intersection of variable (V), diversity

(D), and joining (J) immunoglobulin gene segments (41).

During formation of the mature immunoglobulin gene, vast

diversity is introduced through V(D)J recombination, junctional

insertions/deletions, and somatic hypermutation. Therefore, this
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rearrangement pattern is patient-specific and provides a cancer

cell-specific measure. NGS uses primers to amplify gene

fragments and then sequences immunoglobulin gene segments

within IgH (VDJ), IgH (DJ), IgK, and IgL receptor

gene sequences.

Once amplified, the immunoglobulin gene DNA is

sequenced and the frequencies of the different clonotypes are

determined. To avoid disproportional amplification of the

immunoglobulin heavy chain gene (IGH) rearrangements and

immunoglobulin light chain gene (IGK) rearrangements, the

extensive sets of primers need to be attuned and validated to

guarantee correct and proportional amplification of each target

rearrangement compared with many rearrangements derived

from normal B cells (42).

These gene rearrangements must be studied at diagnosis in a

baseline sample; baseline clonality detection rates vary between

80% and 97% in different studies using different NGS platforms

(24, 28, 31, 35, 39, 43). As MM is a post-germinal center B-cell

disease, IGHV and IGK rearrangements often bear an extensive

imprint of somatic hypermutation (SHM). This is in contrast to,

for example, B-lymphoblastic leukemia, where the neoplastic

cells have not yet undergone SHM. Of note, lambda-restricted

MM has a higher probability clonality detection because clonal

IGK rearrangements are identified more frequently in this group

and there are fewer SHMs of IGK clonal rearrangement

sequences in lambda-restricted cases than kappa ones.

Extensive SHM can interfere with PCR primer annealing,

resulting in less effective amplification of V(D)J rearranged

sequence and making the clonal sequence indistinguishable

from the background of normal polyclonal B cells. When

using primers that anneal inside the IGHV exon (FR1, FR2,

FR3), the myeloma-associated rearrangement may be missed,

making impossible to determine clonality. This could be avoided

by using primers that bind in the leader region targeting the
Frontiers in Oncology 04
leader sequences upstream of the VH region avoiding

amplification bias due to SHM. However, these approaches

lack validation data for MRD tracking (44–46).

The NGF and NGS technology platforms have different

advantages and limitations; Table 1 compares some of the

salient features of each of these techniques.

NGF has an analytical sensitivity of 2 tumor cells in 1 million

(10−6) BM cells if 10 million cells can be acquired; NGS has an

analytical sensitivity of 10−6 once a DNA input from 3 million

BM cells is granted. Therefore, NGS requires a smaller specimen

volume than NGF. Moreover, NGS can be applied

retrospectively on stored material including not only

cryopreserved cells but also archival BM slides, while NGF

requires a fresh sample that has to be processed within 24 h

from aspiration.

NGS requires a baseline patient sample for identification and

detection of MRD, while NGF can detect abnormal cells in any

given sample. NGS analysis is performed in specialized

laboratories and thus requires the specimen to be shipped for

processing, often resulting in a longer turnaround time

(approximately 7 days) than NGF (24–48 h).

A novel, not yet clinically approved, NGS approach, the

LymphoTrack-MiSeq platform, potentially overcomes this

pitfall because it could potentially be performed at individual

institutions, with a higher degree of patient applicability.

Currently, the turnaround time of the LymphoTrack-MiSeq

platform for fresh samples is about 5 days [Day 1: sample

processing, DNA extraction, and preparation and purification

of the libraries; Day 2: kappa library (for quantification of

libraries) and loading of pooled libraries on MiSeq; Days 3–4:

run on MiSeq; Day 5: data analysis].

NGS is still an expensive technique, with the cost per sample

about twice or thrice that of NGF; however, prices vary for

different platforms, and the LymphoTrack-MiSeq platform is
TABLE 1 Comparison of NGS and NFG for assessment of MRD in multiple myeloma.

NGS NGF

Applicability >90% Nearly 100%

Baseline sample required Baseline sample required for identification of the dominant
clonotype

Not required

Method Specific immunoglobulin rearrangements are identified and
detected by comparison with baseline sample

Abnormal (clonal) plasma cells are identified by their distinct
immunophenotypic pattern vs. normal plasma cells

Turnaround time
including analysis time

>7 days 5 hours

Sensibility 10-6 10-6

Quantity of sample
required

3 million for 10-6 sensitivity; higher numbers improve sensibility Up to 10 million for 10-6 sensitivity

Clonal evolution Evaluable Not evaluable

Standardization Commercial companies EuroFlow consortium

Sample processing Can be delayed; both fresh and stored samples can be used Needs assessment within 24–48 h; requires a fresh sample

Cost sample ++/+++ +

Sample quality control Not possible Immediate with bone marrow analysis
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among the least expensive and can be competitive with NGF.

Moreover, NGS costs can be reduced by testing multiple samples

at the same time.

Most published data have been generated with the

LymphoSIGHT platform (Sequenta Inc., San Francisco, CA,

USA). Notably, the sensitivity threshold was claimed to be of

at least 10−5 (24, 31) or 10−6 (35, 47, 48), depending on the

different studies. The 10−7 sensitivity has also been reached but

requires high amounts of DNA that make it infeasible in clinical

practice (49). Another NGS-based platform, the clonoSEQ Assay

(Adaptive Biotechnologies, Seattle, WA, USA), obtained

clearance from the US Food and Drug Administration in 2019

for the detection and monitoring of MRD in BM samples from

MM patients or B-cell acute lymphoblastic leukemia. The

European Medicines Agency (EMA) has issued guidance on

the use of MRD in MM studies but has not adjudicated the use of

this or any other method.

More recently, the LymphoTrack-MiSeq platform, a

commercial strategy designed by In VivoScribe Technologies,

has been evaluated for MRD detection in MM patients

demonstrating a minimum sensitivity level of 10−5, hence

qualifying as an alternative effective tool for MRD monitoring

in MM (50, 51).

Several clinical studies investigated the prognostic value of

NGS technology in MM management and compared it with the

other MRD tools.

Compared to ASO-qPCR, NGS has similar sensitivity (at

least 10−5) but has the advantage of not requiring patient-specific

primers (52).

Martinez-Lopez et al. (24) compared MRD using the

LymphoSIGHT sequencing platform with MFC and ASO-

qPCR. The applicability of deep sequencing was very high

(91%). Concordance between sequencing and MFC and ASO-

qPCR was 83% and 85%, respectively (24).

In the IFM2009 (bortezomib, lenalidomide, and

dexamethasone plus up-front vs. deferred transplant), MRD

was originally evaluated by first-generation flow cytometry

(seven-color MFC), showing that patients who were MRD-

negative with a sensitivity of 10-4 had improved PFS. As NGS

techniques became more widely available, stored samples were

reapproached using the LymphoSight platform (Sequenta/

Adaptive Inc.), reaching a sensitivity of 10-6. This follow-up

study demonstrated that the ability to measure deeper response

provides superior outcome. With 10−6 sensitivity, MRD

negativity was a strong prognostic biomarker of PFS and OS.

This approach demonstrated a higher level of discrimination

than had previously been achieved with the less sensitive MFC

technique (28, 53, 54).

The concordance between MRD evaluation by NGS and

MFC was analyzed in the FORTE trial. MRD was assessed by

NGS or by eight-color second-generation flow cytometry

(sensitivity 10−5) and by NGF in subgroup patients. MFC and
Frontiers in Oncology 05
NGS evaluations with high sensitivity (sensitivity 10−5–10−6)

were available only in ≥CR patients, while MRD was analyzed

both by NGS and second-generation MFC in patients achieving

VGPR or better. In 30% of cases, a discordance between NGS

and second-generation MFC was detected: in all of the

discordant cases but one, MRD positivity was missed by MFC.

However, when NGF was compared with NGS in the subgroup

of CR patients, results were highly concordant with the two

techniques (83%) (55).

Even in the CASSIOPEIA trial, MRD has been evaluated

with both NGS and NGF. A good concordance (83.5%) was

observed using the same sensitivity threshold (10−5), regardless

of response in patients achieving CR or more, indicating that

both techniques performed similarly in evaluating MRD

(56–58).

Another study analyzed patients from the GEM2012 trial,

comparing the NGF (Euroflow) and NGS (LymphoTrack)

methods for MRD detection. NGS showed good concordance

with NGF, with only 15 out of the 106 patients studied having

contradictory results. Most discordant cases had MRD levels

below 10−5 that either may be explained by a higher sensitivity

for one method over the other or can be explained with

technical inaccuracies or in differences in the sampling

procedure (51).

In conclusion, the NGS approach is a powerful tool for MRD

detection, considering the key role of the achievement of MRD

negativity in the clinical management of MM patients. During

the last few years, several NGS platforms for MRD detection in

MM were tested but there are no data that compare the different

platforms yet.
Single-center experience with the
LymphoTrack-MiSeq platform

We present our single-center experience with the

LymphoTrack-MiSeq platform for the diagnosis and MRD

detection in a selected cohort of MM patients. Our aim was to

test the applicability and verify a sensitivity of at least 10−5 of a

new commercial NGS panel.
Patients and samples

In 2018, we retrospectively selected 28 consecutive

transplant-eligible newly diagnosed MM patients. We selected

52 samples, consisting of 28 diagnoses and 24 follow-up

specimens at day +100 following ASCT. BM aspirates were

collected at diagnosis and subsequently at follow-up from our

Institutional Biobank. All patients included in the present study

provided a written informed consent to have their biological

samples stored and characterized.
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DNA sample quality check
and quantification

Genomic DNA (gDNA) was isolated from BM aspirates with

the automated Maxwell 16 system using 16 LEV Blood DNA kit

according to the manufacturer’s instructions (Promega,

Madison, WI, USA). gDNA was isolated from total white

blood cells (WBC) after lysis of red blood cells. In some cases,

DNA was extracted immediately after sample processing

according to Maxwell manufacturer’s protocol. In other cases,

cells were resuspended with a solution of 10% Dimethyl

Sulfoxide (DMSO) and 90% fetal bovine serum (FBS) and

stored in liquid nitrogen. After the extraction, gDNA was

conserved at -20°C. For long-term storage (over 1 year), DNA

was conserved at –80°C.

After the extraction, gDNA purity was checked using the

Nanodrop spectrophotometer (Thermo Scientific, Wilmington,

MA, USA) considering absorbance ratio at both 260/280 and

230/260 nm. In order to verify gDNA quality, we analyzed its

size distribution electrophoresis on 1% agarose gel. Samples with

smears below 2.5 kb were classified as degraded and were

excluded from further analysis. DNA concentration was

measured by the Qubit dsDNA HS assay kit and Qubit 2.0

fluorometer (Life Technologies, Grand Island, NY, USA).
Library preparation and sequencing

Library preparation was performed using the LymphoTrack

Dx IGH (FR1, FR2, FR3) and IGK assays according to the

manufacturer’s recommendation (InVivoScribe Technologies,

San Diego, CA, USA). Briefly, LymphoTrack Dx IGH (FR1,

FR2 and FR3) and IGK Assays include a single multiplex master

mix that targets one of the conserved IGH framework regions

(FR1, FR2, or FR3) within the VH and JH regions and Vk-Jk,

Vk-Kde, and INTR-Kde gene rearrangements, respectively. Each

master mix contains primers with Illumina adapters and up to

24 different indices that allow library preparation in one-step

PCR reaction. Amplicons were purified using AMPure XP beads

(Beckman Coulter, Brea, CA, USA) and quantified with KAPA

Library Quantification Kit for Illumina platforms (Roche, Basel,

Switzerland). Here, 4 nM of each library was pooled, denatured,

and diluted to 12–20 pM. Sequencing was performed in the

MiSeq platform (Illumina, San Diego, CA, USA) using v3 (600

cycles) reagent kits. FASTQ files generated from sequencing

were analyzed using the LymphoTrack-Miseq and

LymphoTrack MRD Software (InVivoScribe Technologies, San

Diego, CA, USA).

For the 28 samples of newly diagnosed patients, clonality

was assessed by both LymphoTrack IGH (FR1, FR2, or FR3) and

IGK assays. Each MRD sample was analyzed in triplicate, and for
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each replicate, 500–1,500 ng of DNA was used as input (total

DNA analyzed 1,500–4,500 ng); for each replicate, we obtained

at least 1,080,000 total reads. Experiment setting up was

performed using Lymphotrack MRD software according to the

manufacturer brochure available at the time (2020) that

indicated a minimum of 1,000 ng per replicate to reach 10-5

sensitivity with 95% confidence. Based on those requirements,

some of our samples fell below this threshold because of

insufficient input DNA (<1,000 ng per replicate). Importantly,

1,000 ng per replicate was loaded for all of the MRD-negative

samples (6/24, see below), ensuring 10-5 sensitivity.

Manufacturer’s brochure was updated in 2021 and now

reports a minimum requirement of 2,000 ng total gDNA

analyzed and a total read depth of 44 million reads to reach

10-5 sensitivity with 95% confidence of a true MRD negativity.

This real-life experience reveals how standardization and

optimization of NGS techniques are still ongoing and crucial.
Results and minimal residual
disease assessment by
next-generation sequencing

We retrospectively selected 28 consecutive transplant-

eligible newly diagnosed MM patients (12 men and 16 women;

median age at diagnosis 55 years, range 17–71 years). All

patients received VTd induction (bortezomib–thalidomide–

dexamethasone) and tandem ASCT. No maintenance therapy

was used. Clinical variables of our cohort are described in

Table 2, including ISS and R-ISS prognostic score, cytogenetic

risk assessed by FISH for del17p, t (4;14), t (14;16), BM

infiltration, and bone lesions.

We evaluated clonal rearrangements of IGH (FR1, FR2, FR3)

and IGK target region by the LymphoTrack-MiSeq platform on

BM samples at two time points: at diagnosis and at day 100

following first ASCT. At diagnosis, 26 samples (26/28) showed

monoclonality and 2 samples (2/28) polyclonality. Interestingly,

these two patients had EMD at PET/CT evaluation. In the

evaluation of the single targets (IgH and IgK), the results

highlighted the presence of monoclonality for the IgH loci in 7

samples (7/26) and for the IgK loci in 4 samples (4/26) while 15

samples (15/26) in both of them. At day 100 after ASCT I

consider only 24 patients who had evaluable MDR.We evaluated

MRD at day 100 after first ASCT: 2 patient samples were not

evaluable, and MRD was positive in 18 patients (18/24) and

negative in 6 (6/24) patients. In the evaluation of the single

targets (IgH and IgK) at day 100 post first ASCT, the results

highlighted the presence of monoclonality for the IgH loci in 7

samples (7/24) and for the IgK loci in 4 samples (4/24), in 7

samples (7/24) for both of them. Such variations are in line with

disease heterogeneity in which the dominant clone is eradicated
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during treatment, but resistant and quiescent subclones persist

and inevitably proliferate, resulting in relapsing disease.

The response to treatment was evaluated according to IMWG

criteria at different time points: after induction (5 sCR, 4 CR, 17

VGPR, 2 PR) and at day 100 following first ASCT (13 sCR, 1 CR, 12

VGPR, 2 PR). Among patients who reached sCR at day 100

following first ASCT, five patients were MRD-negative and six

patients were MRD-positive; a single MRD-negative patient was in

CR and 10 patients in VGPR were MRD-positive and one patient

was MRD-negative.

At a median follow-up of 81 months (range: 25–149

months), 15 out of 24 MRD evaluated patients relapsed during

follow-up, 2 in the MRD-negative group (2/6) and 13 in the

MRD-positive group (13/18). The time to next treatment was 87

months for MRD-negative patients (range 35–140 months),

while the median time to next treatment was significantly low

in the MRD-positive patients: 44 months (range 14–90 months;

log rank test: P = 0.175).

At the last follow-up, five patients in the MRD-positive

group had died (5/28), one due to infection and four for

progressive disease. In the MRD-negative group, all patients

are alive. Among the MRD-negative patients, four out of six are

maintaining complete remission until the last control.

The OS of all our cohorts from diagnosis was 82 months

(range: 25–150 months), with 23 patients still alive. The OS was

90 months for MRD-negative patients (range 63–140), while the
Frontiers in Oncology 07
median OS in the MRD-positive group was 71 months (range

25–150 months; log rank test: P = 0.038) (Figures 1A, B).

Our pilot experience with LymphoTrack is in line with the

other studies that support the prognostic role of MRD.

Moreover, we tested the feasibility of this platform: this assay

offers a sensitive and precise method for diagnostic testing and

disease MRD monitoring. In particular, the LymphoTrack

bioinformatics software allows a simple automated

visualization of data and analysis, demonstrating a consistent

and reliable routine clinical testing.
Minimal residual disease as an end
point in clinical trials

Therapeutic advances have greatly increased outcome in

MM patients. However, the usage of classical end points such

as OS or PFS needs longer follow-up. Given the stringent

correlation of MRD negativity with prognostic parameters,

MRD evaluation has been widely accepted as a robust

surrogate method for measuring the clinical end points of

current clinical trials. Indeed, MRD can also be used as a

marker of efficacy in new combination therapy for accelerated

drug development and fast approval. For example, the phase III

CASSIOPEIA trial demonstrates the clinical benefit of

daratumumab plus VTd (D-VTd) in transplant-eligible

patients with newly diagnosed MM. The MRD was assessed by

MFC during induction/consolidation and additionally by NGS

during maintenance, both with the 10–5 sensitivity. MRD status

is reported for patients who achieved a CR or better. During

induction and consolidation therapy, D-VTd leads to increased

rates of MRD negativity and prolonged PFS associated with

sustained MRD negativity at 1 and 2 years of follow-up.

Secondly, daratumumab maintenance is compared to

observation. Daratumumab before and after ASCT

significantly improves PFS and depth of response, as

demonstrated by significant increases in MRD-negative rates

vs. VTd. Sustained MRD negativity was higher in the D-VTd

group compared to VTd at 1 year (50.1% vs. 30.1%) and at 2

years (35.5% vs. 18.8%) (56–58).

An MRD correlative study conducted in a randomized phase

3 study (EMN02 HOVON95) supported the role of lenalidomide

maintenance in patients with newly diagnosed MM after

different induction strategies. In patients achieving a CR before

maintenance BM samples were processed, applying EuroFlow-

based MFC protocols (eight colors, two tubes, with 10-4–10-5

sensitivity), after a median follow-up of 75 months, 5-year PFS

was 66% in MRD-negative patients vs. 31% in MRD-positive

patients, and 5-year OS was 86% vs. 69%, respectively. In the 1-

year maintenance MRD population, 42% of MRD-positive

patients at pre-maintenance became MRD-negative after

lenalidomide exposure. The authors concluded that MRD by
TABLE 2 Patient characteristics.

Characteristics N = 28

Sex, men/women 12/16

Age, median (range), years 55 (17–71)

Type of multiple myeloma (IgG/non-IgG) 18/28

Bone marrow plasma cells >60% 4/28

Bone lesions
Monofocal
Multifocal

23/28
2/23
21/23

Cytogenetic profile

Standard risk
high risk,
del 17 p
t (4;14)

17
2
1/2
1/2

ISS

I
II
III

17/28
7/28
3/28

Response to therapy at 100 days following first ASCT

sCR
CR
VGPR
PR

13/28
1/28
12/28
2/28

Disease progression 18/28

Overall survival, months (range) 77 (25–145)

Dead 4/28
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MFC is a strong prognostic factor and that lenalidomide

maintenance can improve MRD negativity rate and therefore

prolong OS (59).

Another example is the MANHATTAN trial, a non-

randomized phase II trial that evaluates the addition of

daratumumab to the combination of carfilzomib, lenalidomide,

and dexamethasone (KRD) in patients with newly diagnosed

MM. The primary end point was the MRD (MRD <10-5
Frontiers in Oncology 08
sensitivity) rate in the absence ASCT. MRD negativity was

achieved in 71% of patients. Median time to MRD negativity

was 6 cycles. At 11 months of the median follow-up, the 1-year

PFS rate and the OS rate were 98% and 100%, respectively. This

rate of MRD negativity allowed the authors to underline the

efficacy in response rates and PFS of the new combination

therapy based on carfilzomib-lenalidomide-dexamethasone-

daratumumab (27).
A

B

FIGURE 1

(A) Kaplan–Meier curves comparing the time to next treatment of minimal residual disease (MRD)-positive and MRD-negative subsets. (B) Kaplan–Meier
curves comparing the overall survival of MRD-positive and MRD-negative subsets. Negative patients are represented in blue; positive patients are
represented in red.
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Minimal residual disease study-
adapted strategy

Given its power in predicting long-term outcomes, MRD

represents an attractive tool to potentially guide treatment choices.

Phase II/III clinical trials can explore treatment

intensification or deintensification according to MRD status

after treatment at different time points or during maintenance.

MRD in the different studies is valuated with NGS (different

commercial platforms) or NGF (threshold of 10-5).

For example, a Minimal Residual Disease Adapted Strategy

(MIDAS) (NCT04934475) is an interventional and prospective

phase III randomized trial. After an induction regimen

consisting of isatuximab, carfilzomib, lenalidomide, and

dexamethasone (Isa-KRD), MRD status is determined by NGS

and used to classify patients as standard (MRD <10-5) or high

(MRD >10-5) risk. Standard-risk patients are randomized to six

additional cycles of Isa-KRD or ASCT followed by two cycles of

Isa-KRD, while high-risk patients are randomly assigned to

ASCT followed by two cycles of Isa-KRD or tandem ASCT.

Also, maintenance is informed by post-induction MRD status, as

standard-risk patients receive lenalidomide for 3 years and high-

risk patients receive iberdomide and isatuximab for 3 years (57).

Results are still awaited.

The MASTER trial (NCT03224507) is a multicenter, single-

arm, phase II study in which NDMM patients received induction

with daratumumab, carfi lzomib, lenal idomide, and

dexamethasone (Dara-KRd) followed by autologous transplant

and Dara-KRd consolidation. MRD evaluation by ClonoSEQ

NGS (MRD <10-5) was used to inform therapy at two time

points. First, Dara-KRd consolidation was interrupted in

patients with two consecutive MRD-negative assessments.

Second, patients who completed consolidation therapy and

remained MRD-positive received lenalidomide maintenance.

This study demonstrated how MRD response-adapted

consolidation leads to higher rates of MRD negativity a higher

PFS in NDMM, offering an alternative strategy to indefinite

maintenance (1).

In the recruiting phase 3 DRAMMATIC (NCT04071457)

study, after induction and ASCT, patients are randomized

between lenalidomide and lenalidomide with daratumumab/

rHuPH20. After 2 years of maintenance, MRD is assessed to

guide further therapy. MRD-positive patients will continue with

the assigned treatment. MRD-negative patients will be further

randomized to continue/discontinue the assigned treatment.

In the recrui t ing phase 2–3 study REMNANT

(NCT04513639), newly diagnosed patients are treated with

standard induction (RVD), ASCT (single or tandem), and

consolidation. Patients who reach MRD negativity (<10-5,

Euroflow NGF) post consolidation are randomized to receive

second-line treatment at MRD reappearance (arm A) or at

progressive disease as defined by the IMWG criteria (arm B)
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in order to evaluate whether treating MRD relapse after first-line

treatment prolongs PFS and OS for myeloma patients vs.

treating relapse after progressive disease.

A recru i t ing phase 2 s ing le-arm cl in ica l t r ia l

(NCT04140162) will test MRD status after induction therapy

with DRd combination (daratumumab, lenalidomide, and

dexamethasone): MRD-positive patients will receive

consol idat ion therapy with DRVd (daratumumab,

lenalidomide, bortezomib, and dexamethasone), with the aim

of testing if MRD-adapted consolidation will result in more

patients achieving MRD negativity.

In the phase 3 AURIGA (NCT03901963) study, patients

who remain MRD-positive after frontline ASCT are randomized

to daratumumab-lenalidomide or lenalidomide alone in order to

evaluate the intensification of maintenance therapy with

daratumumab. NGS is used to assess the conversion rate to

MRD negativity during maintenance.

A phase 2 recruiting study, DART4MM (NCT03992170), is

now evaluating the effect of daratumumab administration in

patients who test MRD-positive by NGF after any therapy

(ASCT, VMP, Rev-Dex). If patients will be still MRD-positive

after 6 months of therapy, treatment will be continued up to 2

years. If MRD negativity will be reached, daratumumab will

be suspended.

All these trials are examples of how the spectrum of uses of

MRD in the future will expand and become increasingly crucial

in everyday choices.
Minimal residual disease in
therapeutic decision: Ready
for minimal residual
disease-guided therapy?

MRD detection is widely used in several hematological

malignancies (e.g., myeloid chronic leukemia, acute

lymphoblastic leukemia), both for risk assessment and

therapeutic choices. In MM, the prognostic value of MRD has

been amply demonstrated, but its role in therapeutic decision is

still a matter of debate (1, 60–67). Indeed, while ongoing clinical

trials are studying the role of MRD status in clinical

management (Figure 2), many questions remain open.

A crucial discussion regards the identification of optimal

time points of MRD testing. Now, no standard rule exists, and

the matter is further complicated by the possible additional value

of repeated MRD measurement over time rather than a single

determination at the first achievement of CR.

Many studies are exploring the role of MRD testing in

defining the timing of ASCT. In particular, the question is

whether patients who achieve deep MRD-negative responses

after induction therapy should harvest stem cells but delay ASCT

until salvage therapy after disease progression (33, 54, 55, 63).
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Similarly, MRD could be a useful tool to define the need for

consolidation therapy after ASCT (68).

Another possible application of MRD is in the definition of

the optimal length of maintenance therapy following ASCT.

Current data suggest an advantage of continuous maintenance

therapy (69–72), but cost-of-care and toxicity implications due

to long-term maintenance should be taken into consideration.

Of note, many ongoing clinical trials are testing the efficacy of

maintenance cessation upon achievement of sustained MRD

negativity. In a similar approach, several trials are randomizing

MRD-positive patients to continuous maintenance or switching

therapy (63).

Similar questions exist also for the non-transplant-eligible

patients, where the positive impact of continuous treatment on

OS is not well demonstrated (71, 73, 74). Clinical trials where

MRD-negative patients are randomized to therapy suspension

or continuation until disease progression or intolerance will

prove informative.

Similar to other hematological malignancies, MRD could

also be used to guide retreatment. The current paradigm for

relapsing patients is a relative delay of retreatment initiation

until appearance of CRAB (hypercalcemia, renal insufficiency,

anemia, or bone lesions) features (5, 71). Though many pieces

of evidence support the role of MRD to define treatment

failure, to our knowledge, only one ongoing trial is designed

to explore the potential benefit of an early treatment

intervention based only on the reversal of the MRD status

from negative to positive (NCT04513639); interim analysis

is ongoing.
Conclusions

In this work, we summarize and comment on the status of

MRD testing in MM. In particular, our review retraces the recent

and ongoing clinical trials that demonstrate or explore the
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prognostic role of the different MRD testing techniques.

We also summarize the current efforts to determine the power

of MRD as a tool in dynamic risk-adapted therapy.

We also test the potential applicability and usefulness of a

new commercial NGS panel, the LymphoTrack-MiSeq NGS

methodology, for the diagnosis and MRD detection in our

court of MM patients. Our work highlights the advantages of

NGS over flow cytometry for MRD testing. One potential

perceived disadvantage of the NGS test is that it is performed

in a central laboratory, and results require more time as

compared with in-house tests. Our single-center pilot

experience supports the potential applicability of a commercial

NGS panel and the value of MRD determination by the

LymphoTrack-MiSeq platform as a cost-effective, readily

available, and sensitive workflow. Even if the limit of our

analysis is the low number of patients and the sensitivity level

of the method adopted (acceptable in 2018), our results are in

line with all available studies that confirm that achieving MRD

negativity is an important prognostic factor in MM.

While the high efficacy of new treatment strategies requires

highly sensitive tools to monitor disease status and inform

clinical decisions, the role of MRD testing in MM is currently

limited to clinical trials. With the increasing validation of its

prognostic role, MRD testing will move from passive (i.e., a

measure of the extent of treatment effectiveness) to active (i.e.,

a tool to guide treatment choices) and will leave the clinical

trial setting to be included in standard care. For these reasons,

NGS standardization is of extreme importance for the clinical

applicability of MRD detection. While NGS can have

discrepant results because of interlaboratory differences,

variable performance of the available technologies, and site-

specific sample collection procedures, strict standardization

will ensure consistent and comparable results. Ongoing efforts

are aimed at reaching uniform timing of BM collection and

sample processing and at defining the amount of DNA input,

number of replicates, number of sequencing reads, and
FIGURE 2

Future minimal residual disease (MRD) prospects in a multiple myeloma clinical trial.
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sequence similarity thresholds for determining clonotypes.

With the aim of implementing MRD in MM everyday

patients’ care, careful standardization, consistent sensitivity,

reproducibility, and affordability of NGS-MRD assays will be

fundamental (1, 75, 76).
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