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Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal

tumors of the gastrointestinal tract. At present, surgery is the first-line

treatment for primary resectable GISTs; however, the recurrence rate is high.

Imatinib mesylate (IM) is an effective first-line drug used for the treatment of

unresectable or metastatic recurrent GISTs. More than 80% of patients with

GISTs show significantly improved 5-year survival after treatment; however,

approximately 50% of patients develop drug resistance after 2 years of IM

treatment. Therefore, an in-depth research is urgently needed to reveal the

mechanisms of secondary resistance to IM in patients with GISTs and to

develop new therapeutic targets and regimens to improve their long-term

prognoses. In this review, research on the mechanisms of secondary resistance

to IM conducted in the last 5 years is discussed and summarized from the

aspects of abnormal energy metabolism, gene mutations, non-coding RNA,

and key proteins. Studies have shown that different drug-resistance

mechanism networks are closely linked and interconnected. However, the

influence of these drug-resistance mechanisms has not been compared. The

combined inhibition of drug-resistance mechanisms with IM therapy and the

combined inhibition of multiple drug-resistance mechanisms are expected to

become new therapeutic options in the treatment of GISTs. In addition,

implementing individualized therapies based on the identification of

resistance mechanisms will provide new adjuvant treatment options for

patients with IM-resistant GISTs, thereby delaying the progression of GISTs.

Previous studies provide theoretical support for solving the problems of drug-

resistance mechanisms. However, most studies on drug-resistance

mechanisms are still in the research stage. Further clinical studies are needed

to confirm the safety and efficacy of the inhibition of drug-resistance

mechanisms as a potential therapeutic target.
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1 Introduction

Gastrointestinal stromal tumors (GISTs) are the most

common mesenchymal tumors of the digestive tract,

originating from gastrointestinal pacemaker cells (interstitial

cells of Cajal, ICC) or related stem cells (1, 2). GISTs are

typically driven by mutations of the receptor tyrosine kinase

oncogene (C-KIT) or the platelet-derived growth factor receptor

a (PDGFRa), which account for more than 80% and 5%–10% of

all cases of GIST, respectively (3–5). GISTs without KIT or

PDGFRamutations are known as wild-type GISTs (WT-GISTs),

which account for 10%–15% of all cases of adult GISTs and up to

85% of all cases of pediatric GISTs (6–8). In this category, 20%–

40% are characterized by the loss of succinate dehydrogenase

complex (SDH-deficient GISTs), approximately 15% carry

BRAF/RAS or NF1 mutations, and the remainder is referred to

as KIT/PDGFRA/SDH/RAS-P WT-GISTs (or quadruple WT-

GISTs) (9, 10). A careful examination for germline mutations is

of great significance for all patients with WT-GISTs (11).

Analyses conducted using tissue microarrays have shown that

the DOG1 gene is relatively specifically expressed in GISTs,

regardless of the KIT or PDGFRA mutation status (12). A

monoclonal antibody against DOG1 has been proven to be a

highly sensitive specific marker for the diagnosis of GISTs, and

its sensitivity is higher than that of KIT (13).

Imatinib mesylate (IM) is a selective tyrosine kinase

inhibitor (TKI) that targets KIT and PDGFRa for the

treatment of unresectable or metastatic GISTs, which

significantly improves the 5-year survival of patients (14, 15).

The efficacy of IM varies among different KIT and PDGFRA
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mutation types, depending on the exons involved (16, 17).

Approximately 14% of patients with GISTs are initially

resistant to IM (18), whereas approximately 50% of patients

develop resistance after 2 years of treatment, the so-called

secondary resistance to IM (19). Therefore, it is important to

clarify the mechanisms of secondary resistance to IM through

research and develop new therapeutic targets and regimens to

improve the long-term prognoses of patients with GISTs. A

recent study demonstrated that IM specifically increases the

expression of the complex II (SDHB) protein in oxidative

phosphorylation (OXPHOS) proteins by downregulating miR-

483-3p (Figure 1A). This study demonstrated the molecular

mechanism of increased OXPHOS protein expression induced

by IM and confirmed the biological role of miR-483-3p in

regulating energy metabolism after IM treatment (20).This

review will focus on the discussion and summary of research

on the mechanisms of secondary resistance to IM conducted in

the last 5 years from the aspects of abnormal gene mutation,

energy metabolism, non-coding RNA, and key proteins.
2 Mechanisms of secondary
resistance to imatinib

2.1 Gene mutation and resistance
to imatinib

Secondary KIT and PDGFRA mutations are the main causes

of secondary resistance to IM in non–wild-type GIST (21, 22). In

most cases of GIST, secondary KIT mutations reactivate KIT
FIGURE 1

Abnormal energy metabolism and resistance to imatinib. (A) OXPHOS protein expression is increased in IM-resistant GIST cells, and IM
specifically increases the expression of complex II (SDHB) protein by downregulating miR-483-3p. (B) GLUT-1 and glycolytic pathway
components increase in IM-resistant GIST cells. (C) The HIF-1a–PGD–PPP axis and IM-induced ROS stimulate GIST cells from the G1 phase to
the S phase, leading to drug resistance.
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downstream signaling pathways, such as the PI3K/AKT/mTOR

pathway, and continue to drive GIST proliferation and survival,

leading to acquired IM resistance (23–27). KIT T670I is one of

the most common types of secondary KIT mutations (24).

Cassier et al. found that PDGFRA exon 18 D842V gene

subtype mutation is associated with primary resistance to IM

(16). Secondary PDGFRA mutations are less common in IM-

resistant GISTs than secondary KIT mutations (28, 29).

Secondary KIT mutations or PDGFRA mutations do not occur

in wild-type IM-resistant GISTs (30).

In a previous study of 210 Chinese patients with IM-resistant

GIST who underwent next-generation sequencing for the

identification and characterization of secondary KIT

mutations, the results showed that 63.81% of the patients had

mutations on exon 13, 4.76% had mutations on exon 14, and

31.43% had mutations on exon 17. All secondary KITmutations

were missense mutations, mostly located in the kinase domain

(31). Zhao et al. obtained consistent results in an analysis of the

distribution of the most common Kit mutation forms in 2,273

Chinese patients with GIST. The results showed that KIT exon

13 V654A and exon 17 N822K were the most common

secondary mutations in GISTs with primary mutations in exon

11 (32). These two secondary KITmutations induce resistance to

IM by activating the PI3K/AKT/mTOR pathway (33). Inhibition

of PI3K induces massive apoptosis in IM-resistant GISTs (34).

Interestingly, KIT is overactivated in IM-resistant GISTs with

secondary KITmutations; however, the expression levels are not

significantly increased. Secondary PDGFRA mutations are

mostly located in exon 18 (24, 35).

In addition to secondary KIT and PDGFRA mutations,

several additional genetic mutations have been associated with

secondary resistance to IM in GISTs. Additional mutations of

RB1, SMARCB1, and MAX (myc-related protein) are important

causes of resistance to IM. Notably, GISTs caused by different

gene mutations show different clinicopathological characteristics

(31). Genome-scale CRISPR-Cas9 knockout (GeCKO) screening

classifies TP53 and SOCS6 as candidate genes for resistance to

IM owing to their presence in multiple signaling pathways, such

as the apoptosis pathway, Wnt signaling pathway, and JAK-

STAT signaling access (36).

Identifying the abovementioned types of gene mutation is a

key supplement to the existing GIST risk assessment model. In

addition, the discovery of new potential candidate therapeutic

targets for different genetic mutations will be beneficial in

delaying the progression of GISTs. Individualized therapy

based on the identification of types of genetic mutation will

also provide new adjuvant treatment options for patients with

IM-resistant GIST. Furthermore, the type of gene mutation may

be used as a biomarker to help identify patients who can benefit

more from adjuvant therapy and to predict the risk of recurrence

of GISTs.
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2.2 Abnormal energy metabolism and
resistance to imatinib

An important feature of cancer cells is abnormal energy

metabolism, which is characterized by strong aerobic glycolysis

and reduced mitochondrial energy metabolism. This feature is

called the Warburg effect (37). Metabolic reprogramming of

cancer cells sets the stage for rapid growth and metastasis (38,

39). Drug-resistant cancer cell subsets depend on the

enhancement of mitochondrial function and OXPHOS (40,

41). Moreover, the metabolic adaptation of cancer cells to the

toxic effects of targeted drugs contributes to drug resistance (42–

45). GIST cells exhibit high levels of glucose uptake and aerobic

glycolytic activity, and metabolic reprogramming induced by IM

stress enhances mitochondrial function and OXPHOS (46).

IM alters the metabolic phenotype of GISTs (46) and

increases the expression of several OXPHOS proteins,

including complexes II, III, and V (40). Huang et al. found

that IM-resistant GIST cells show increased OXPHOS protein

expression compared with IM-sensitive GIST cells (Figure 1A)

(40). In addition, IM-resistant GIST cells show higher OXPHOS

levels and glycolysis rates than IM-sensitive cells and are more

susceptible to glycolysis inhibition. Inhibition of OXPHOS

increases the sensitivity of GISTs to IM. OXPHOS protein

expression is increased in IM-sensitive GIST cells after IM

treatment but not in IM-resistant GIST cells (47). Notably,

there is a heterogeneity of metabolic phenotypes in IM-

resistant GIST (40). Glucose transporter 1 (GLUT-1) is a key

component of the glycolytic pathway and is associated with

secondary resistance to IM in GIST cells. IM downregulates the

expression of GLUT-1 and the glycolytic pathway components

hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase in

IM-sensitive GIST cell lines. In contrast, the expression of

GLUT-1 and these glycolytic pathway components increases

after the treatment of IM-resistant GIST cell lines using IM

(Figure 1B). This indicates that IM-resistant GIST cells have a

higher glycolysis rate than IM-sensitive GIST cells (48).

Following chronic IM induction, energy metabolism in GIST

cells shifts from the tricarboxylic acid cycle to the pentose

phosphate pathway (PPP) (47). On one hand, the expression

of phosphate glucose dehydrogenase (PGD), one of the rate-

limiting enzymes of the PPP, is significantly upregulated in IM-

resistant GIST cell lines. Overexpression of PGD promotes GIST

cell proliferation and inhibits cell apoptosis. On the other hand,

the level of hypoxia-inducible factor 1a (HIF-1a) is elevated

under prolonged stimulation of reactive oxygen species

generated by IM (47). HIF-1a leads to changes in metabolic

pathways as follows: the HIF-1a–PGD–PPP axis stimulates

GIST cells from the G1 phase to the S phase, inhibits GIST

cell apoptosis through metabolic reprogramming, and ultimately

leads to IM resistance (Figure 1C) (47).
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Most of the research viewpoints on energy metabolism in

GIST cells have reached a consensus, which provides a

theoretical basis for overcoming resistance to IM from the

perspective of abnormal energy metabolism. Therapy involving

the inhibition of the energy metabolism pathway combined with

IM, such as VLX600 combined with IM and WZB117 combined

with IM, requires further preclinical validation (46, 48).
2.3 Non-coding RNAs and
resistance to imatinib

2.3.1 Long non-coding RNAs
Long non-coding RNAs (lncRNAs) are transcripts longer

than 200 nucleotides with no or limited protein-coding capacity

(49–51). LncRNAs play key roles in several important biological

processes, including regulation of epigene expression, as well as

transcriptional and posttranscriptional regulation (52).

Numerous studies have demonstrated that lncRNAs play key

regulatory roles in the disease course of human cancers,

including cancer cell proliferation, apoptosis, and drug

resistance (53–55). In addition, recent studies have shown that

lncRNAs can modulate the sensitivity of patients to anticancer
Frontiers in Oncology 04
drugs and thus have the potential to be therapeutic targets in the

treatment of drug-resistant tumors (56, 57). Moreover, lncRNAs

may promote the progression and metastasis of GISTs, and the

expression of many lncRNAs in primary GIST tissue differs from

that in recurrent GIST tissue (58, 59). Furthermore, lncRNAs are

associated with secondary resistance to IM in GISTs, and the

resistance mechanisms are mostly related to signaling pathways

(60–63). LncRNAs, such as the HOX antisense intergenic RNA

(HOTAIR), can also promote IM resistance by activating

autophagy in GIST cells (62).

The lncRNA coiled-coil domain-containing 26 (CCDC26),

located on chromosome 8q24.21, is a retinoic acid–dependent

regulator of myeloid differentiation, also known as RAM (64).

CCDC26 interacts with C-KIT and regulates its transcription. In

addition, CCDC26 downregulates the expression of c-Kit in

GISTs, whereas CCDC26 knockout induces IM resistance

in GIST cells by upregulating the expression of C-KIT

(Figure 2A) (60). CCDC26 knockout also upregulates the

expression of insulin-like growth factor 1 receptor (IGF-1R)

(Figure 2A). IGF-1R induces drug resistance by participating in

the apoptosis pathway (Figure 2C), whereas inhibition of IGF-1R

reverses CCDC26 knockout–induced drug resistance (59, 65, 66).

These findings suggest that treatment targeting the CCDC26 or
A

B

C

FIGURE 2

(A) CCDC26 knockout upregulates the expression of C-KIT and IGF-1R in IM-resistant GISTs. (B) Additive antiproliferative and proapoptotic
effects are obtained after the combined inhibition of IR and KIT in IM-resistant GIST cells. (C) Upregulation of IGF-1R leads to drug resistance
through the PI3K/AKT/MDM2 signaling pathway.
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CCDC26-IGF-1R axis may improve sensitivity to IM in patients

with IM-resistant GISTs.

Yan et al. identified a set of dysregulated lncRNAs in IM-

resistant GISTs using chip technology and found that

lncRNAJC6-2 is associated with the HIF-1a pathway, which

links lncRNAs to energy metabolism (61). Using high-

throughput RNA sequencing, Shao et al. found that GIST

samples express 40% of all annotated lncRNAs in humans.

Notably, the number of downregulated lncRNA expressions

was greater than the number of upregulated expressions,

irrespective of the presence or absence of resistance to IM. The

expression of RP11616M22.7 is significantly increased in IM-

resistant samples than that in non-resistant samples and is

closely related to the Hippo pathway. Overexpression of RP11-

616M22.7 induces resistance to IM in GIST cells, whereas

RP11616M22.7 gene knockout enhances IM resistance in GIST

cells both in vitro and in vivo (62).

Some studies have demonstrated that the expression and

dysregulation of lncRNAs are more cancer-specific than those of

protein-coding genes (67). Therefore, specific lncRNAs in GISTs

are likely to be involved in unique biological functions related to

treatment and drug resistance. With an in-depth exploration of

specific lncRNAs and their mechanisms, our understanding of

the non-coding transcriptome of GISTs will become more

comprehensive, which will, in turn, accelerate the development

of new effective therapeutic targets.
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2.3.2. MicroRNAs
MicroRNAs (MiRNAs) are 22-nucleotide non-coding small

ribonucleic acids that control tumor cell growth by regulating

the expression of multiple gene products and the function of

cellular pathways (68). MiRNAs play important roles in the

pathogenesis, invasion, and drug resistance of tumors and are

thus identified as targets for cancer diagnosis, therapy, and

prognosis (69–72). Akçakaya et al. analyzed miRNA

expression profiles to study the miRNA expression signatures

associated with response to IM and KIT mutation status in

patients with GIST. They found that miR-125a-5p and its target

gene, tyrosine-protein phosphatase non-receptor type 18

(PTPN18), play important roles in IM resistance. The

mechanism behind this is that overexpression of miR-125a-5p

downregulates the level of PTPN18 expression in GISTs and

promotes resistance to IM (73). Subsequent studies

demonstrated that the effects of miR-125a-5p and PTPN18 on

IM resistance are mediated through phosphorylated FAK levels

(Figure 3) (28). By comparing two groups of IM-resistant GIST

samples with and without secondary mutations, Amirnasr et al.

detected 22 significantly differentially expressed miRNAs and

almost completely separated the two groups of samples. Three of

these miRNAs, namely, miR-92a-3p, miR-99a-5p, and miR-101-

3p, are potential effectors of IM resistance. This suggests that the

distribution of miRNA biomarkers may be related to the

presence of secondary mutations (74). Zhang et al. used
FIGURE 3

Overexpression of miR-125a-5p downregulates the expression of PTPN18 and promotes IM resistance in GISTs mediated by phosphorylated
FAK levels.
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themicroarray data preserved by Akçakaya et al. to identify five

key miRNAs in the lncRNA–miRNA target gene regulatory

network, confirming that overexpression of miR-28-5p and

miR-125a-5p is significantly related to secondary resistance to

IM (75). Kou et al. studied the miRNA expression profiles in the

serums of patients with GIST and found that the levels of miR-

518e-5p and miR-548e in the serums of the patients in the IM-

resistant group were significantly higher than those of the

patients in the IM-sensitive and healthy control groups. This

indicates that the serum level of miR-518e-5p can distinguish

IM-resistant patients from IM-sensitive patients or healthy

individuals (76).

Studies have demonstrated that miRNAs can regulate

resistance to chemotherapy by inducing autophagy in GIST

cells (77, 78). Chen et al. found that miR-30a sensitizes GIST

cells to IM by inhibiting autophagy and confirmed that the

autophagy marker Beclin-1 is a target gene of miR-30a (79).

Zhang et al. found that HOTAIR targeting the autophagy-related

protein 2 homolog B inhibitor miR-130a promotes resistance to

IM by upregulating the level of autophagy (63).

Information regarding most miRNAs associated with

secondary resistance to IM is still in the discovery stage; thus,

the resistance mechanisms need to be studied further. Because

miRNAs are closely related to the pathogenesis, invasion,

metastasis, and drug resistance of tumors, research ideas

should be broadened rather than limited to one aspect. Several

studies have confirmed that lncRNAs can regulate other non-

coding RNAs, especially miRNAs, and that miRNAs also have

regulatory effects on lncRNAs (80, 81). Therefore, improving the

regulatory network of miRNAs and lncRNAs in IM-resistant

GISTs is also a promising research direction.
2.4. Several key proteins and
resistance to imatinib

From a protein perspective, approximately 10% of KIT-

positive GISTs lose the expression of KIT oncoproteins and

become resistant to TKIs owing to the transition to a KIT-

independent state (KIT-negative) during TKI treatment (82). Tu

et al. found that Axl in TKIs is highly expressed in KIT-negative

GISTs and that Axl gene knockout or silencing can inhibit the

proliferation of KIT-negative GISTs. This information provides

a new perspective regarding the Axl/P53 signaling axis as a

therapeutic target for a subset of KIT-negative GISTs (83).

Cyclin D1 can regulate the cell cycle through the activation

of the cyclin-dependent kinase (CDK), activation of

transcription factors, RAD51 co-regulation of DNA repair, and

activation of the AMPK-LKB1 signaling pathway (84). Cyclin

D1 is highly expressed in each KIT-independent GIST cell

subl ine . In addi t ion, inhibi t ion of cycl in D1 has

antiproliferative and proapoptotic effects in KIT-independent

GISTs, which are associated with Rb activation and p27
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upregulation. Notably, PRKCQ is a negative regulator of cyclin

D1 expression, whereas the Jun and Hippo pathway effector

molecules YAP and TAZ are positive regulators of cyclin D1

expression. The PRKCQ , Jun, and Hippo pathways

synergistically regulate cyclin D1 expression in GISTs (85).

Using GeCKO screening, (85) found that CDK1 is highly

expressed in advanced and IM-resistant GISTs in three patient

cohorts. CDK1 is the founding member of the CDK family (86).

It can promote the proliferation and progression of GISTs by

binding to substrate protein kinase B (Akt) and regulating its

phosphorylation (87). In most solid tumors, Aurora kinase A

(AURKA) promotes cell cycle progression by regulating cell

cycle checkpoints (88). A clinical analysis has demonstrated

that AURKA can be an independent prognostic factor for GISTs.

In addition, experiments have shown that overexpression of

AURKA can promote the proliferation of GIST-T1 cells, inhibit

cell apoptosis, and enhance the resistance of cells to IM (89).

Several multidrug transporters play key roles in secondary

drug resistance by regulating drug concentrations in tumor cells.

Multidrug resistance–related protein 1 (MRP1) is one of the major

multidrug transporters (90). Intracellular IM level plays an

important role in the development of IM resistance in patients

with chronic myeloid leukemia (91). Studies have confirmed that

MRP1 and breast cancer resistance protein are highly expressed in

IM-resistant GIST cell lines and that IM-resistant patients with

GIST show significantly lower intracellular IM levels than IM-

sensitive patients (92). This suggests that drug transporters may

play an important role in IM resistance. Xu et al. proposed the

following mechanism for this: the methyltransferase METTL3

mediates 6-methyladenosine (M6A) to modify the 5’end non-

coding region of the multidrug transporter MRP1 mRNA and

promotes the translation of MRP1 mRNA, leading to drug

resistance in GISTs (93). M6A is a common mRNA

modification that regulates mRNA stability, splicing, and

translation (94, 95). These findings suggest that drug

transporters may be potential therapeutic targets in the

treatment of IM-resistant GISTs.

The insulin receptor (IR) is a member of the tyrosine kinase

family, including homologous types 1 and 2 (IGF-1R and IGF-

2R) (96). IR and IGF-1/2R play important roles in energy

metabolism and cell growth, division, and differentiation (97).

Chen et al. showed that IR and Kit are co-activated in IM-

resistant GIST cells and biopsy samples but not in IM-sensitive

GIST cells (Figure 2A). They also found that additive

antiproliferative and proapoptotic effects were obtained after

the combined inhibition of IR and KIT in IM-resistant GIST

cells (Figure 2B) (98). Thus, the inactivation of IR increases the

sensitivity of resistant cells to IM, suggesting that the combined

inhibition of IR and KIT is a promising therapeutic strategy in

the treatment of IM-resistant GISTs.

Serrano-Candelas et al. found that the linker molecule SH3-

binding protein 2 (SH3BP2) is expressed in non–wild-type

GISTs. SH3BP2 is involved in the regulation of the expression
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and cellular activity of KIT and PDGFRA in GISTs. They also

found that silencing of SH3BP2 is accompanied by

downregulation of oncogenic KIT and PDGFRA and

significant promotion of apoptosis in IM-sensitive and

resistant GIST cells (99).

The relationship between various key proteins and IM

resistance mechanisms is intricate and interconnected.

However, there is no clear comparison of the role of each

protein network in the mechanism of resistance to IM.

Targeted therapy that involves a single protein network may

not solve the problem of secondary resistance to IM. The

combined inhibition of multiple protein networks may become

a new research direction for the treatment of IM-resistant GISTs.
2.5. Mutation and other gene aberrations
and resistance to imatinib

2.5.1. Oncogenic KIT signaling on
the Golgi apparatus

The Golgi apparatus may serve as a platform for oncogenic

KIT signaling (100, 101). Moreover, oncogenic KIT signaling on

the Golgi apparatus is essential for the autonomous proliferation

of GIST cells (101). In IM-resistant GISTs with secondary KIT

mutations, oncogenic KIT signaling is predominantly localized
Frontiers in Oncology 07
to the Golgi apparatus (100). This KIT activates the PI3K/AKT/

mTOR pathway, MEK-Erk pathway, and signal transducer and

activator of transcription 5 (Figure 4) (100). Blocking KIT

biosynthetic transport from the endoplasmic reticulum to the

Golgi apparatus suppresses oncogenic signaling, suggesting that

Kit autophosphorylation is spatiotemporally regulated (100,

101). In an analysis of this mechanism, Obata et al. discovered

a biosynthetic protein, 2-methylcopropylamide (M-COPA; also

known as “AMF-26”), which blocks the transport of KIT from

the endoplasmic reticulum to the Golgi apparatus by inhibiting

the autophosphorylation of KIT at Y703/Y721/Y730/Y936 and

ultimately inhibits oncogenic KIT signaling (Figure 4) (101). M-

COPA inhibits the activation of Kit kinase domain mutants,

thereby inhibiting the proliferation of IM-resistant GISTs (101).

A novel heat shock protein 90 inhibitor, TAS-116, also inhibits

the growth of drug-resistant cells and induces their apoptosis by

reducing KIT autophosphorylation in the Golgi apparatus (102).

Notably, the effect of TAS-116 has been validated in an animal

study conducted using a xenograft mouse model (102).

Oncogenic KIT signaling on the Golgi apparatus

provides new insights into not only the pathogenesis of

KIT but also the treatment of IM-resistant GISTs that

express mutant KIT. However, further studies are needed

to confirm the clinical efficacy of drug therapies that target

this carcinogenic signal.
FIGURE 4

Model of oncogenic KIT signaling on intracellular compartments in GISTs. KIT is normally transported from the endoplasmic reticulum to the
Golgi apparatus, followed by full glycosylation. After reacting with the Golgi apparatus, KIT can activate the PI3K/AKT/mTOR pathway, MEK-Erk
pathway, and STAT5. M-COPA inhibits oncogenic signaling by blocking the transport of KIT from the endoplasmic reticulum to the Golgi
because KIT activates downstream molecules only on the Golgi apparatus.
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2.5.2. KITlow cell subsets
KITlow cell subsets may be a cell bank that mediates the

progression and recurrence of GISTs (103). Bardsley et al.

detected a precursor cell of ICCs in the stomach wall of a

mouse that possesses stem cell properties, including the ability

to self-renew and differentiate into mature ICCs. This ICC

precursor cell–derived cell line was able to spontaneously

transform to form GIST-like tumors. Notably, the expression

of Kit in this ICC precursor cell was lower than that in mature

ICC precursor cells (104, 105).

Inherently, IM-resistant CD34 KITlow cells are a distinct

subset of GIST cells. KITlow cells have stronger replication ability

and clonogenic potential than KITHigh cell subsets. This

subpopulation has tumor stem cell– l ike expression

characteristics and behaviors and can self-renew and

differentiate into IM-sensitive CD34 KITHigh progeny. Notably,

TKI treatment results in the enrichment of this KITlow cell

subset, which may be mediated by cell-associated transcription

factors (OCT4 and NANOG) (103). The KITlow cell subset

represents a novel mechanism of primary resistance to TKIs

and a targetable subpopulation in the treatment of GISTs. This

provides valuable therapeutic ideas for overcoming the

persistence and recurrence of GISTs after TKI therapy.
3 Conclusions

In this review, the findings of studies on mechanisms of

secondary resistance conducted over the last 5 years are

summarized from the aspects of abnormal energy metabolism,

gene mutations, non-coding RNA, and key proteins. These

previous studies provide theoretical support for solving the

problem of the mechanism of resistance to IM. However, the

available data on most drug-resistance mechanisms are still in

the research stage. Further clinical studies are needed to confirm

the safety and efficacy of utilizing drug-resistance mechanisms as

potential therapeutic targets.

Addressing the problem of secondary resistance to IM has

always been the key to improving the treatment outcomes and

prognoses of patients with GISTs. Different resistance

mechanisms are closely linked and interact with each other;

thus, using a single resistance mechanism as a therapeutic target

should be avoided. The combined inhibition of drug-resistance

mechanisms with IM therapy and the combined inhibition of

multiple drug-resistance mechanisms are expected to become
Frontiers in Oncology 08
new options in the treatment of GISTs. Implementing

individualized therapy based on the identification of resistance

mechanisms will provide new adjuvant treatment options for

patients with IM-resistant GISTs, thereby delaying the

progression of GISTs.
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104. Bardsley MR, Horváth VJ, Asuzu DT, Lorincz A, Redelman D, Hayashi Y,
et al. Kitlow stem cells cause resistance to kit/platelet-derived growth factor alpha
inhibitors in murine gastrointestinal stromal tumors. Gastroenterology (2010) 139
(3):942–52. doi: 10.1053/j.gastro.2010.05.083
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